1
|
Gruet C, Abrouk D, Börner A, Muller D, Moënne-Loccoz Y. Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. PLANT, CELL & ENVIRONMENT 2023; 46:1018-1032. [PMID: 36494920 DOI: 10.1111/pce.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wheat has undergone a complex evolutionary history, which led to allopolyploidization and the hexaploid bread wheat Triticum aestivum. However, the significance of wheat genomic architecture for beneficial plant-microbe interactions is poorly understood, especially from a functional standpoint. In this study, we tested the hypothesis that wheat genomic architecture was an overriding factor determining root recruitment of microorganisms with particular plant-beneficial traits. We chose five wheat species representing genomic profiles AA (Triticum urartu), BB {SS} (Aegilops speltoides), DD (Aegilops tauschii), AABB (Triticum dicoccon) and AABBDD (Triticum aestivum) and assessed by quantitative polymerase chain reaction their ability to interact with free-nitrogen fixers, 1-aminocyclopropane-1-carboxylate deaminase producers, 2,4-diacetylphloroglucinol producers and auxin producers via the phenylpyruvate decarboxylase pathway, in combination with Illumina MiSeq metabarcoding analysis of N fixers (and of the total bacterial community). We found that the abundance of the microbial functional groups could fluctuate according to wheat genomic profile, as did the total bacterial abundance. N fixer diversity and total bacterial diversity were also influenced significantly by wheat genomic profile. Often, rather similar results were obtained for genomes DD (Ae. tauschii) and AABBDD (T. aestivum), pointing for the first time that the D genome could be particularly important for wheat-bacteria interactions.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
2
|
Gebauer L, Breitkreuz C, Heintz-Buschart A, Reitz T, Buscot F, Tarkka M, Bouffaud ML. Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Front Microbiol 2022; 13:824437. [PMID: 35770171 PMCID: PMC9234553 DOI: 10.3389/fmicb.2022.824437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
Water deficit tolerance is critical for plant fitness and survival, especially when successive drought events happen. Specific soil microorganisms are however able to improve plant tolerance to stresses, such as those displaying a 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Microorganisms adapted to dry conditions can be selected by plants over time because of properties such as sporulation, substrate preference, or cell-wall thickness. However, the complexity and interconnection between abiotic factors, like drought or soil management, and biotic factors, like plant species identity, make it difficult to elucidate the general selection processes of such microorganisms. Using a pot experiment in which wheat and barley were grown on conventional and organic farming soils, we determined the effect of water deficit history on soil microorganisms by comparing single and successive events of water limitation. The analysis showed that water deficit strongly impacts the composition of both the total microbial community (16S rRNA genes) and one of ACC deaminase-positive (acdS+) microorganisms in the rhizosphere. In contrast, successive dry conditions moderately influence the abundance and diversity of both communities compared to a single dry event. We revealed interactive effects of the farming soil type and the water deficit conditioning treatment. Indeed, possibly due to better nutrient status, plants grown on soils from conventional farming showed higher growth and were able to select more adapted microbial taxa. Some of them are already known for their plant-beneficial properties like the Actinobacteria Streptomyces, but interestingly, some Proteobacteria were also enriched after a water deficit history under conventional farming. Our approach allowed us to identify key microbial taxa promoting drought adaptation of cereals, thus improving our understanding of drought effects on plant-microbe interactions.
Collapse
Affiliation(s)
- Lucie Gebauer
- Helmholtz Centre for Environmental Research, Halle, Germany
| | | | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Reitz
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tarkka
- Helmholtz Centre for Environmental Research, Halle, Germany
| | - Marie-Lara Bouffaud
- Helmholtz Centre for Environmental Research, Halle, Germany
- *Correspondence: Marie-Lara Bouffaud
| |
Collapse
|
3
|
Wheat Metabolite Interferences on Fluorescent Pseudomonas Physiology Modify Wheat Metabolome through an Ecological Feedback. Metabolites 2022; 12:metabo12030236. [PMID: 35323679 PMCID: PMC8955329 DOI: 10.3390/metabo12030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Plant roots exude a wide variety of secondary metabolites able to attract and/or control a large diversity of microbial species. In return, among the root microbiota, some bacteria can promote plant development. Among these, Pseudomonas are known to produce a wide diversity of secondary metabolites that could have biological activity on the host plant and other soil microorganisms. We previously showed that wheat can interfere with Pseudomonas secondary metabolism production through its root metabolites. Interestingly, production of Pseudomonas bioactive metabolites, such as phloroglucinol, phenazines, pyrrolnitrin, or acyl homoserine lactones, are modified in the presence of wheat root extracts. A new cross metabolomic approach was then performed to evaluate if wheat metabolic interferences on Pseudomonas secondary metabolites production have consequences on wheat metabolome itself. Two different Pseudomonas strains were conditioned by wheat root extracts from two genotypes, leading to modification of bacterial secondary metabolites production. Bacterial cells were then inoculated on each wheat genotypes. Then, wheat root metabolomes were analyzed by untargeted metabolomic, and metabolites from the Adular genotype were characterized by molecular network. This allows us to evaluate if wheat differently recognizes the bacterial cells that have already been into contact with plants and highlights bioactive metabolites involved in wheat—Pseudomonas interaction.
Collapse
|
4
|
Renoud S, Vacheron J, Abrouk D, Prigent-Combaret C, Legendre L, Muller D, Moënne-Loccoz Y. Field Site-Specific Effects of an Azospirillum Seed Inoculant on Key Microbial Functional Groups in the Rhizosphere. Front Microbiol 2022; 12:760512. [PMID: 35154023 PMCID: PMC8825484 DOI: 10.3389/fmicb.2021.760512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023] Open
Abstract
The beneficial effects of plant growth–promoting Rhizobacteria (PGPR) entail several interaction mechanisms with the plant or with other root-associated microorganisms. These microbial functions are carried out by multiple taxa within functional groups and contribute to rhizosphere functioning. It is likely that the inoculation of additional PGPR cells will modify the ecology of these functional groups. We also hypothesized that the inoculation effects on functional groups are site specific, similarly as the PGPR phytostimulation effects themselves. To test this, we assessed in the rhizosphere of field-grown maize the effect of seed inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the size and/or diversity of selected microbial functional groups important for plant growth, using quantitative polymerase chain reaction and/or Illumina MiSeq metabarcoding. The functional groups included bacteria able to fix nitrogen (a key nutrient for plant growth), producers of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (which modulate ethylene metabolism in plant and stimulate root growth), and producers of 2,4-diacetylphloroglucinol (an auxinic signal enhancing root branching). To test the hypothesis that such ecological effects were site-specific, the functional groups were monitored at three different field sites, with four sampling times over two consecutive years. Despite poor inoculant survival, inoculation enhanced maize growth. It also increased the size of functional groups in the three field sites, at the maize six-leaf and flowering stages for diazotrophs and only at flowering stage for ACC deaminase and 2,4-diacetylphloroglucinol producers. Sequencing done in the second year revealed that inoculation modified the composition of diazotrophs (and of the total bacterial community) and to a lesser extent of ACC deaminase producers. This study revealed an ecological impact that was field specific (even though a few taxa were impacted in all fields) and of unexpected magnitude with the phytostimulatory Azospirillum inoculant, when considering microbial functional groups. Further methodological developments are needed to monitor additional functional groups important for soil functioning and plant growth under optimal or stress conditions.
Collapse
Affiliation(s)
- Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Jordan Vacheron
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Laurent Legendre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France.,Univ Lyon, Université de St Etienne, St Etienne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
5
|
Renoud S, Abrouk D, Prigent-Combaret C, Wisniewski-Dyé F, Legendre L, Moënne-Loccoz Y, Muller D. Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize. Microorganisms 2022; 10:microorganisms10020325. [PMID: 35208780 PMCID: PMC8877547 DOI: 10.3390/microorganisms10020325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
The impact of inoculated plant growth-promoting rhizobacteria (PGPR) on its host physiology and nutrition depends on inoculum level. Whether the impact of the inoculated PGPR on the indigenous rhizosphere microbiota also varies with the PGPR inoculum level is unclear. Here, we tested this issue using the PGPR Azospirillum lipoferum CRT1—maize model system, where the initial seed inoculation is known to enhance maize growth and germination, and impacts the maize rhizomicrobiota, including microbial functional groups modulating plant growth. A. lipoferum CRT1 was added to the seeds at standard (105–6 cells.seed−1) or reduced (104–5 cells.seed−1) inoculation levels, in three fields. The effect of the two PGPR formulations was assessed on maize growth and on the nifH (nitrogen fixation), acdS (ACC deaminase activity) and phlD (2,4-diacetylphloroglucinol production) microbial functional groups. The size of the three functional groups was monitored by qPCR at the six-leaf stage and the flowering stage, and the diversity of the nifH and acdS functional groups (as well as the bacterial community) were estimated by MiSeq metabarcoding at the six-leaf stage. The results showed that the benefits of the reduced inoculant formulation were significant in two out of three fields, but different (often lower) than those of the standard formulation. The effects of formulations on the size of the three functional groups differed, and depended on field site and functional group. The reduced formulation had an impact on the diversity of nifH and acdS groups at one site, whereas the standard formulation had an impact at the two other sites. Inoculation significantly impacted the total bacterial community in the three fields, but only with the reduced formulation. In conclusion, the reduced inoculant formulation impacted the indigenous rhizosphere microbiota differently, but not less efficiently, than the standard formulation.
Collapse
Affiliation(s)
- Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Florence Wisniewski-Dyé
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Laurent Legendre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
- Département de Biologie Biochimie, Univ Lyon, Université Jean Monnet, UFR des Sciences et Techniques, F-42000 Saint-Etienne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne, France; (S.R.); (D.A.); (C.P.-C.); (F.W.-D.); (L.L.); (Y.M.-L.)
- Correspondence: ; Tel.: +33-4-72-43-27-14
| |
Collapse
|
6
|
Manriquez B, Muller D, Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front Microbiol 2021; 12:619122. [PMID: 34025595 PMCID: PMC8137971 DOI: 10.3389/fmicb.2021.619122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
In natural environments, microbial communities must constantly adapt to stressful environmental conditions. The genetic and phenotypic mechanisms underlying the adaptive response of microbial communities to new (and often complex) environments can be tackled with a combination of experimental evolution and next generation sequencing. This combination allows to analyse the real-time evolution of microbial populations in response to imposed environmental factors or during the interaction with a host, by screening for phenotypic and genotypic changes over a multitude of identical experimental cycles. Experimental evolution (EE) coupled with comparative genomics has indeed facilitated the monitoring of bacterial genetic evolution and the understanding of adaptive evolution processes. Basically, EE studies had long been done on single strains, allowing to reveal the dynamics and genetic targets of natural selection and to uncover the correlation between genetic and phenotypic adaptive changes. However, species are always evolving in relation with other species and have to adapt not only to the environment itself but also to the biotic environment dynamically shaped by the other species. Nowadays, there is a growing interest to apply EE on microbial communities evolving under natural environments. In this paper, we provide a non-exhaustive review of microbial EE studies done with systems of increasing complexity (from single species, to synthetic communities and natural communities) and with a particular focus on studies between plants and plant-associated microorganisms. We highlight some of the mechanisms controlling the functioning of microbial species and their adaptive responses to environment changes and emphasize the importance of considering bacterial communities and complex environments in EE studies.
Collapse
Affiliation(s)
| | | | - Claire Prigent-Combaret
- UMR 5557 Ecologie Microbienne, VetAgro Sup, CNRS, INRAE, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Gebauer L, Bouffaud ML, Ganther M, Yim B, Vetterlein D, Smalla K, Buscot F, Heintz-Buschart A, Tarkka MT. Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Front Microbiol 2021; 12:616828. [PMID: 33613486 PMCID: PMC7891401 DOI: 10.3389/fmicb.2021.616828] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
Preservation of the phytostimulatory functions of plant growth-promoting bacteria relies on the adaptation of their community to the rhizosphere environment. Here, an amplicon sequencing approach was implemented to specifically target microorganisms with 1-aminocyclopropane-1-carboxylate deaminase activity, carrying the acdS gene. We stated the hypothesis that the relative phylogenetic distribution of acdS carrying microorganisms is affected by the presence or absence of root hairs, soil type, and depth. To this end, a standardized soil column experiment was conducted with maize wild type and root hair defective rth3 mutant in the substrates loam and sand, and harvest was implemented from three depths. Most acdS sequences (99%) were affiliated to Actinobacteria and Proteobacteria, and the strongest influence on the relative abundances of sequences were exerted by the substrate. Variovorax, Acidovorax, and Ralstonia sequences dominated in loam, whereas Streptomyces and Agromyces were more abundant in sand. Soil depth caused strong variations in acdS sequence distribution, with differential levels in the relative abundances of acdS sequences affiliated to Tetrasphaera, Amycolatopsis, and Streptomyces in loam, but Burkholderia, Paraburkholderia, and Variovorax in sand. Maize genotype influenced the distribution of acdS sequences mainly in loam and only in the uppermost depth. Variovorax acdS sequences were more abundant in WT, but Streptomyces, Microbacterium, and Modestobacter in rth3 rhizosphere. Substrate and soil depth were strong and plant genotype a further significant single and interacting drivers of acdS carrying microbial community composition in the rhizosphere of maize. This suggests that maize rhizosphere acdS carrying bacterial community establishes according to the environmental constraints, and that root hairs possess a minor but significant impact on acdS carrying bacterial populations.
Collapse
Affiliation(s)
- Lucie Gebauer
- Helmholtz Centre for Environmental Research, Halle, Germany
| | | | - Minh Ganther
- Helmholtz Centre for Environmental Research, Halle, Germany
| | - Bunlong Yim
- Julius Kühn-Institute, Braunschweig, Germany
| | - Doris Vetterlein
- Helmholtz Centre for Environmental Research, Halle, Germany.,Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - François Buscot
- Helmholtz Centre for Environmental Research, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika T Tarkka
- Helmholtz Centre for Environmental Research, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|