1
|
Guo Y, Liu W, Xiao D, Zhang S, Li Z, Luo K, Luo G, Tan H. A novel multitrophic biofloc technology for duckweed and Megalobrama amblycephala integrated culture: Improving nutrient utilization and animal welfare. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173239. [PMID: 38750742 DOI: 10.1016/j.scitotenv.2024.173239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Biofloc technology (BFT) is an eco-friendly aquaculture model that utilizes zero-exchange water. In this study, we investigated the integration of duckweed into BFT in an effort to enhance nitrogen, phosphorus, and carbon utilization and to improve animal welfare for cultivating Megalobrama amblycephala. The experiment spanned 75 days, comparing a group of M. amblycephala supplemented with duckweed (DM) to a control group (CG) with no supplementation, where duckweed consumption relied solely on the feeding behavior of the fish. The concentrations of nitrate, total nitrogen, and phosphorus accumulation were lower in the DM than in the CG from day 45 onwards, with differences of 16.19, 26.90, and 1.45 mg/L, respectively, at the end of the experiment. The DM showed simultaneous increases of 5.77, 11.20, and 5.07 % in the absolute utilization of nitrogen, phosphorus, and carbon, respectively. The abundance of TM7a (10.27 %), linked to nitrate absorption, became the dominant genus in the water of the DM. Additionally, the abundance of Cetobacterium, associated with carbohydrate digestion, was significantly higher in gut of the DM (23.83 %) than in the gut of CG (1.24 %, P < 0.05). Supplementing the diet of M. amblycephala with duckweed improved digestion and antioxidant enzyme activity. Transcriptome data showed that duckweed supplementation resulted in an increase in the expression of genes related to protein digestion and absorption and carbohydrate metabolism in M. amblycephala, and analysis of the significantly enriched pathways further supported improved antioxidant capacity. Based on the above results, we concluded that as M. amblycephala consumes more duckweed, the differences in nitrogen and phosphorus levels between the DM and CG would continue to increase, along with a simultaneous increase in fixed carbon. Thus, this study achieved the goal of recycling BFT resources and improving animal welfare by integrating duckweed.
Collapse
Affiliation(s)
- Yanshuo Guo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Wenchang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, 201306 Shanghai, China,.
| | - Dingdong Xiao
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Sihui Zhang
- College of Food Science & Technology, Shanghai Ocean University, 201306 Shanghai, China
| | - Zhifan Li
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Kunfeng Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Guozhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, 201306 Shanghai, China
| | - Hongxin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, 201306 Shanghai, China,.
| |
Collapse
|
2
|
Ishizawa H, Tashiro Y, Inoue D, Ike M, Futamata H. Learning beyond-pairwise interactions enables the bottom-up prediction of microbial community structure. Proc Natl Acad Sci U S A 2024; 121:e2312396121. [PMID: 38315845 PMCID: PMC10873592 DOI: 10.1073/pnas.2312396121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Understanding the assembly of multispecies microbial communities represents a significant challenge in ecology and has wide applications in agriculture, wastewater treatment, and human healthcare domains. Traditionally, studies on the microbial community assembly focused on analyzing pairwise relationships among species; however, neglecting higher-order interactions, i.e., the change of pairwise relationships in the community context, may lead to substantial deviation from reality. Herein, we have proposed a simple framework that incorporates higher-order interactions into a bottom-up prediction of the microbial community assembly and examined its accuracy using a seven-member synthetic bacterial community on a host plant, duckweed. Although the synthetic community exhibited emergent properties that cannot be predicted from pairwise coculturing results, our results demonstrated that incorporating information from three-member combinations allows the acceptable prediction of the community structure and actual interaction forces within it. This reflects that the occurrence of higher-order effects follows consistent patterns, which can be predicted even from trio combinations, the smallest unit of higher-order interactions. These results highlight the possibility of predicting, explaining, and understanding the microbial community structure from the bottom-up by learning interspecies interactions from simple beyond-pairwise combinations.
Collapse
Affiliation(s)
- Hidehiro Ishizawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji671-2280, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu432-8561, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita565-0821, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita565-0821, Japan
| | - Hiroyuki Futamata
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu432-8561, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu432-8561, Japan
| |
Collapse
|
3
|
Saimee Y, Butdee W, Boonmak C, Duangmal K. Actinomycetospora lemnae sp. nov., A Novel Actinobacterium Isolated from Lemna aequinoctialis Able to Enhance Duckweed Growth. Curr Microbiol 2024; 81:92. [PMID: 38315241 DOI: 10.1007/s00284-023-03595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Duckweed-associated actinobacteria are co-existing microbes that affect duckweed growth and adaptation. In this study, we aimed to report a novel actinobacterium species and explore its ability to enhance duckweed growth. Strain DW7H6T was isolated from duckweed, Lemna aequinoctialis. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that the strain was most closely related to Actinomycetospora straminea IY07-55T (99.0%), Actinomycetospora chibensis TT04-21T (98.9%), Actinomycetospora lutea TT00-04T (98.8%) and Actinomycetospora callitridis CAP 335T (98.4%). Chemotaxonomic and morphological characteristics of strain DW7H6T were consistent with members of the genus Actinomycetospora, while average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the draft genomes of this strain and its closely related type strains were below the proposed threshold values used for species discrimination. Based on chemotaxonomic, phylogenetic, phenotypic, and genomic evidence obtained, we describe a novel Actinomycetospora species, for which the name Actinomycetospora lemnae sp. nov. is proposed. The type strain is DW7H6T (TBRC 15165T, NBRC 115294T). Additionally, the duckweed-associated actinobacterium strain DW7H6T was able to enhance duckweed growth when compared to the control, in which the number of fronds and biomass dry weight were increased by up to 1.4 and 1.3 fold, respectively. Moreover, several plant-associated gene features in the genome of strain DW7H6T potentially involved in plant-microbe interactions were identified.
Collapse
Affiliation(s)
- Yuparat Saimee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Waranya Butdee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, 10900, Thailand
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Boonmak C, Kettongruang S, Buranathong B, Morikawa M, Duangmal K. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm. Arch Microbiol 2023; 206:43. [PMID: 38148332 DOI: 10.1007/s00203-023-03778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Duckweed has been highlighted as an invaluable resource because of its abilities to remove nitrogen and phosphorus from wastewater coupling with the production of high starch/protein-containing plant biomass. Duckweed recruits microbes and particularly forms a stable "core" bacterial microbiota, which greatly reduces the colonization efficiency of plant growth-promoting bacteria (PGPB). In this study, natural duckweeds were enriched in a sterilized-partially treated wastewater effluent from a poultry farm. After 24 days of cultivation, the duckweed-associated bacteria (DAB) were isolated and evaluated for their plant growth-promoting (PGP) potentials by co-cultivation with axenic Spirodela polyrhiza. Ten species were found in more than one location and could be considered candidates for the stable "core" DAB. Among them, all isolates of Acinetobacter soli, Acidovorax kalamii, Brevundimonas vesicularis, Pseudomonas toyotomiensis, and Shinella curvata increased duckweed growth in Hoagland medium. The highest PGP ability was observed in Sh. curvata W12-8 (with EPG value of 208.72%), followed by Paracoccus marcusii W7-16 (171.31%), Novosphingobium subterraneum W5-13 (156.96%), and Ac. kalamii W7-18 (156.96%). However, the highest growth promotion in the wastewater was observed when co-cultured with W7-16, which was able to increase biomass dry weight and root length of duckweed by 3.17 and 2.26 folds, respectively.
Collapse
Affiliation(s)
- Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Biodiversity Center Kasetsart University (BDCKU), Kasetsart University, Bangkok, 10900, Thailand.
- Duckweed Holobiont Resource and Research Center (DHbRC), Kasetsart University, Bangkok, 10900, Thailand.
| | - Sirapat Kettongruang
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Buranaporn Buranathong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Kasetsart University, Bangkok, 10900, Thailand
- Duckweed Holobiont Resource and Research Center (DHbRC), Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
5
|
Ziegler P, Appenroth KJ, Sree KS. Survival Strategies of Duckweeds, the World's Smallest Angiosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112215. [PMID: 37299193 DOI: 10.3390/plants12112215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Klaus J Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, 07743 Jena, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
6
|
Kajadpai N, Angchuan J, Khunnamwong P, Srisuk N. Diversity of duckweed ( Lemnaceae) associated yeasts and their plant growth promoting characteristics. AIMS Microbiol 2023; 9:486-517. [PMID: 37649804 PMCID: PMC10462456 DOI: 10.3934/microbiol.2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023] Open
Abstract
The diversity of duckweed (Lemnaceae) associated yeasts was studied using a culture-dependent method. A total of 252 yeast strains were isolated from 53 duckweed samples out of the 72 samples collected from 16 provinces in Thailand. Yeast identification was conducted based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis. It revealed that 55.2% and 44.8% yeast species were Ascomycota and Basidiomycota duckweed associated yeasts, respectively. Among all, Papiliotrema laurentii, a basidiomycetous yeast, was found as the most prevalent species showing a relative of frequency and frequency of occurrence of 21.8% and 25%, respectively. In this study, high diversity index values were shown, indicated by the Shannon-Wiener index (H'), Shannon equitability index (EH) and Simpson diversity index (1-D) values of 3.48, 0.86 and 0.96, respectively. The present results revealed that the yeast community on duckweed had increased species diversity, with evenness among species. Principal coordinate analysis (PCoA) revealed no marked differences in yeast communities among duckweed genera. The species accumulation curve showed that the observed species richness was lower than expected. Investigation of the plant growth promoting traits of the isolated yeast on duckweed revealed that 178 yeast strains produced indole-3-acetic acid (IAA) at levels ranging from 0.08-688.93 mg/L. Moreover, siderophore production and phosphate solubilization were also studied. One hundred and seventy-three yeast strains produced siderophores and exhibited siderophores that showed 0.94-2.55 activity units (AU). One hundred six yeast strains showed phosphate solubilization activity, expressed as solubilization efficiency (SE) units, in the range of 0.32-2.13 SE. This work indicates that duckweed associated yeast is a potential microbial resource that can be used for plant growth promotion.
Collapse
Affiliation(s)
- Napapohn Kajadpai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jirameth Angchuan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
7
|
Acosta K, Sorrels S, Chrisler W, Huang W, Gilbert S, Brinkman T, Michael TP, Lebeis SL, Lam E. Optimization of Molecular Methods for Detecting Duckweed-Associated Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:872. [PMID: 36840219 PMCID: PMC9965182 DOI: 10.3390/plants12040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The bacterial colonization dynamics of plants can differ between phylogenetically similar bacterial strains and in the context of complex bacterial communities. Quantitative methods that can resolve closely related bacteria within complex communities can lead to a better understanding of plant-microbe interactions. However, current methods often lack the specificity to differentiate phylogenetically similar bacterial strains. In this study, we describe molecular strategies to study duckweed-associated bacteria. We first systematically optimized a bead-beating protocol to co-isolate nucleic acids simultaneously from duckweed and bacteria. We then developed a generic fingerprinting assay to detect bacteria present in duckweed samples. To detect specific duckweed-bacterium associations, we developed a genomics-based computational pipeline to generate bacterial strain-specific primers. These strain-specific primers differentiated bacterial strains from the same genus and enabled the detection of specific duckweed-bacterium associations present in a community context. Moreover, we used these strain-specific primers to quantify the bacterial colonization of duckweed by normalization to a plant reference gene and revealed differences in colonization levels between strains from the same genus. Lastly, confocal microscopy of inoculated duckweed further supported our PCR results and showed bacterial colonization of the duckweed root-frond interface and root interior. The molecular methods introduced in this work should enable the tracking and quantification of specific plant-microbe associations within plant-microbial communities.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - William Chrisler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99354, USA
| | - Weijuan Huang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Thomas Brinkman
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Todd P. Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sarah L. Lebeis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Bunyoo C, Roongsattham P, Khumwan S, Phonmakham J, Wonnapinij P, Thamchaipenet A. Dynamic Alteration of Microbial Communities of Duckweeds from Nature to Nutrient-Deficient Condition. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212915. [PMID: 36365369 PMCID: PMC9658847 DOI: 10.3390/plants11212915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Duckweeds live with complex assemblages of microbes as holobionts that play an important role in duckweed growth and phytoremediation ability. In this study, the structure and diversity of duckweed-associated bacteria (DAB) among four duckweed subtypes under natural and nutrient-deficient conditions were investigated using V3-V4 16S rRNA amplicon sequencing. High throughput sequencing analysis indicated that phylum Proteobacteria was predominant in across duckweed samples. A total of 24 microbial genera were identified as a core microbiome that presented in high abundance with consistent proportions across all duckweed subtypes. The most abundant microbes belonged to the genus Rhodobacter, followed by other common DAB, including Acinetobacter, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Pseudomonas. After nutrient-deficient stress, diversity of microbial communities was significantly deceased. However, the relative abundance of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pelomonas, Roseateles and Novosphingobium were significantly enhanced in stressed duckweeds. Functional prediction of the metagenome data displayed the relative abundance of essential pathways involved in DAB colonization, such as bacterial motility and biofilm formation, as well as biodegradable ability, such as benzoate degradation and nitrogen metabolism, were significantly enriched under stress condition. The findings improve the understanding of the complexity of duckweed microbiomes and facilitate the establishment of a stable microbiome used for co-cultivation with duckweeds for enhancement of biomass and phytoremediation under environmental stress.
Collapse
Affiliation(s)
- Chakrit Bunyoo
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Peerapat Roongsattham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Sirikorn Khumwan
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Juthaporn Phonmakham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
9
|
Stegelmeier AA, Rose DM, Joris BR, Glick BR. The Use of PGPB to Promote Plant Hydroponic Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202783. [PMID: 36297807 PMCID: PMC9611108 DOI: 10.3390/plants11202783] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 05/13/2023]
Abstract
Improvements to the world's food supply chain are needed to ensure sufficient food is produced to meet increasing population demands. Growing food in soilless hydroponic systems constitutes a promising strategy, as this method utilizes significantly less water than conventional agriculture, can be situated in urban areas, and can be stacked vertically to increase yields per acre. However, further research is needed to optimize crop yields in these systems. One method to increase hydroponic plant yields involves adding plant growth-promoting bacteria (PGPB) into these systems. PGPB are organisms that can significantly increase crop yields via a wide range of mechanisms, including stress reduction, increases in nutrient uptake, plant hormone modulation, and biocontrol. The aim of this review is to provide critical information for researchers on the current state of the use of PGPB in hydroponics so that meaningful advances can be made. An overview of the history and types of hydroponic systems is provided, followed by an overview of known PGPB mechanisms. Finally, examples of PGPB research that has been conducted in hydroponic systems are described. Amalgamating the current state of knowledge should ensure that future experiments can be designed to effectively transition results from the lab to the farm/producer, and the consumer.
Collapse
Affiliation(s)
- Ashley A. Stegelmeier
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada
- Correspondence: author:
| | - Danielle M. Rose
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada
| | - Benjamin R. Joris
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
O'Brien AM, Yu ZH, Pencer C, Frederickson ME, LeFevre GH, Passeport E. Harnessing plant-microbiome interactions for bioremediation across a freshwater urbanization gradient. WATER RESEARCH 2022; 223:118926. [PMID: 36044799 DOI: 10.1016/j.watres.2022.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Urbanization impacts land, air, and water, creating environmental gradients between cities and rural areas. Urban stormwater delivers myriad co-occurring, understudied, and mostly unregulated contaminants to aquatic ecosystems, causing a pollution gradient. Recipient ecosystems host interacting species that can affect each others' growth and responses to these contaminants. For example, plants and their microbiomes often reciprocally increase growth and contaminant tolerance. Here, we identified ecological variables affecting contaminant fate across an urban-rural gradient using 50 sources of the aquatic plant Lemna minor (duckweed) and associated microbes, and two co-occurring winter contaminants of temperate cities, benzotriazole and salt. We conducted experiments totalling >2,500 independent host-microbe-contaminant microcosms. Benzotriazole and salt negatively affected duckweed growth, but not microbial growth, and duckweeds maintained faster growth with their local, rather than disrupted, microbiota. Benzotriazole transformation products of plant, microbial, and phototransformation pathways were linked to duckweed and microbial growth, and were affected by salt co-contamination, microbiome disruption, and source sites of duckweeds and microbes. Duckweeds from urban sites grew faster and enhanced phytotransformation, but supported less total transformation of benzotriazole. Increasing microbial community diversity correlated with greater removal of benzotriazole, but taxonomic groups may explain shifts across transformation pathways: the genus Aeromonas was linked to increasing phototransformation. Because benzotriazole toxicity could depend on amount and type of in situ transformation, this variation across duckweeds and microbes could be harnessed for better management of urban stormwater. Broadly, our results demonstrate that plant-microbiome interactions harbour manipulable variation for bioremediation applications.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824, USA.
| | - Zhu Hao Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Clara Pencer
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering and IIHR-Hydroscience & Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, USA
| | - Elodie Passeport
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Department of Civil and Mineral Engineering, University of Toronto, 35 St George St, Toronto, ON, M5S 1A4, Canada
| |
Collapse
|
11
|
Genome-wide identification of bacterial colonization and fitness determinants on the floating macrophyte, duckweed. Commun Biol 2022; 5:68. [PMID: 35046504 PMCID: PMC8770550 DOI: 10.1038/s42003-022-03014-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractBacterial communities associated with aquatic macrophytes largely influence host primary production and nutrient cycling in freshwater environments; however, little is known about how specific bacteria migrate to and proliferate at this unique habitat. Here, we separately identified bacterial genes involved in the initial colonization and overall fitness on plant surface, using the genome-wide transposon sequencing (Tn-seq) of Aquitalea magnusonii H3, a plant growth-promoting bacterium of the floating macrophyte, duckweed. Functional annotation of identified genes indicated that initial colonization efficiency might be simply explained by motility and cell surface structure, while overall fitness was associated with diverse metabolic and regulatory functions. Genes involved in lipopolysaccharides and type-IV pili biosynthesis showed different contributions to colonization and fitness, reflecting their metabolic cost and profound roles in host association. These results provide a comprehensive genetic perspective on aquatic-plant-bacterial interactions, and highlight the potential trade-off between bacterial colonization and proliferation abilities on plant surface.
Collapse
|
12
|
Demmig-Adams B, López-Pozo M, Polutchko SK, Fourounjian P, Stewart JJ, Zenir MC, Adams WW. Growth and Nutritional Quality of Lemnaceae Viewed Comparatively in an Ecological and Evolutionary Context. PLANTS (BASEL, SWITZERLAND) 2022; 11:145. [PMID: 35050033 PMCID: PMC8779320 DOI: 10.3390/plants11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna's response to elevated CO2 was evaluated in the context of the source-sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source-sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant-microbe interaction, for which duckweeds have a high propensity.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48049 Bilbao, Spain;
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Paul Fourounjian
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
- International Lemna Association, Denville, NJ 07832, USA
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Madeleine C. Zenir
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| |
Collapse
|
13
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Ishizawa H, Tada M, Kuroda M, Inoue D, Futamata H, Ike M. Synthetic Bacterial Community of Duckweed: A Simple and Stable System to Study Plant-microbe Interactions. Microbes Environ 2021; 35. [PMID: 33268659 PMCID: PMC7734406 DOI: 10.1264/jsme2.me20112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A complete understanding of the plant microbiome has not yet been achieved due to its complexity and temporal shifts in the community structure. To overcome these issues, we created a synthetic bacterial community of the aquatic plant, duckweed. The synthetic community established with six bacterial strains showed a stable composition for 50 days, which may have been because duckweed maintains a similar physiological status through its clonal reproduction. Additionally, the synthetic community reflected the taxonomic structure of the natural duckweed microbiome at the family level. These results suggest the potential of a duckweed-based synthetic community as a useful model system for examining the community assembly mechanisms of the plant microbiome.
Collapse
Affiliation(s)
- Hidehiro Ishizawa
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Minami Tada
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University
| | - Masashi Kuroda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University.,Faculty of Social and Environmental Studies, Tokoha University
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University
| | - Hiroyuki Futamata
- Research Institute of Green Science and Technology, Shizuoka University
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University
| |
Collapse
|
15
|
Fourounjian P, Slovin J, Messing J. Flowering and Seed Production across the Lemnaceae. Int J Mol Sci 2021; 22:2733. [PMID: 33800476 PMCID: PMC7962950 DOI: 10.3390/ijms22052733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Plants in the family Lemnaceae are aquatic monocots and the smallest, simplest, and fastest growing angiosperms. Their small size, the smallest family member is 0.5 mm and the largest is 2.0 cm, as well as their diverse morphologies make these plants ideal for laboratory studies. Their rapid growth rate is partially due to the family's neotenous lifestyle, where instead of maturing and producing flowers, the plants remain in a juvenile state and continuously bud asexually. Maturation and flowering in the wild are rare in most family members. To promote further research on these unique plants, we have optimized laboratory flowering protocols for 3 of the 5 genera: Spirodela; Lemna; and Wolffia in the Lemnaceae. Duckweeds were widely used in the past for research on flowering, hormone and amino acid biosynthesis, the photosynthetic apparatus, and phytoremediation due to their aqueous lifestyle and ease of aseptic culture. There is a recent renaissance in interest in growing these plants as non-lignified biomass sources for fuel production, and as a resource-efficient complete protein source. The genome sequences of several Lemnaceae family members have become available, providing a foundation for genetic improvement of these plants as crops. The protocols for maximizing flowering described herein are based on screens testing daylength, a variety of media, supplementation with salicylic acid or ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA), as well as various culture vessels for effects on flowering of verified Lemnaceae strains available from the Rutgers Duckweed Stock Cooperative.
Collapse
Affiliation(s)
- Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Janet Slovin
- Genetic Improvement of Fruits & Vegetables Laboratory, USDA, Beltsville, MD 20705, USA;
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|