1
|
Rétif F, Kunz C, Calabro K, Duval C, Prado S, Bailly C, Baudouin E. Seed fungal endophytes as biostimulants and biocontrol agents to improve seed performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1260292. [PMID: 37941673 PMCID: PMC10628453 DOI: 10.3389/fpls.2023.1260292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Seed germination is a major determinant of plant development and final yield establishment but strongly reliant on the plant's abiotic and biotic environment. In the context of global climate change, classical approaches to improve seed germination under challenging environments through selection and use of synthetic pesticides reached their limits. A currently underexplored way is to exploit the beneficial impact of the microorganisms associated with plants. Among plant microbiota, endophytes, which are micro-organisms living inside host plant tissues without causing any visible symptoms, are promising candidates for improving plant fitness. They possibly establish a mutualistic relationship with their host, leading to enhanced plant yield and improved tolerance to abiotic threats and pathogen attacks. The current view is that such beneficial association relies on chemical mediations using the large variety of molecules produced by endophytes. In contrast to leaf and root endophytes, seed-borne fungal endophytes have been poorly studied although they constitute the early-life plant microbiota. Moreover, seed-borne fungal microbiota and its metabolites appear as a pertinent lever for seed quality improvement. This review summarizes the recent advances in the identification of seed fungal endophytes and metabolites and their benefits for seed biology, especially under stress. It also addresses the mechanisms underlying fungal effects on seed physiology and their potential use to improve crop seed performance.'
Collapse
Affiliation(s)
- Félix Rétif
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| | - Caroline Kunz
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, Paris, France
| | - Kevin Calabro
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | - Clémence Duval
- Seedlab, Novalliance, Zone Anjou Actiparc, Longué-Jumelles, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | - Christophe Bailly
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| | - Emmanuel Baudouin
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| |
Collapse
|
2
|
Franić I, Allan E, Prospero S, Adamson K, Attorre F, Auger-Rozenberg MA, Augustin S, Avtzis D, Baert W, Barta M, Bauters K, Bellahirech A, Boroń P, Bragança H, Brestovanská T, Brurberg MB, Burgess T, Burokienė D, Cleary M, Corley J, Coyle DR, Csóka G, Černý K, Davydenko K, de Groot M, Diez JJ, Doğmuş Lehtijärvi HT, Drenkhan R, Edwards J, Elsafy M, Eötvös CB, Falko R, Fan J, Feddern N, Fürjes-Mikó Á, Gossner MM, Grad B, Hartmann M, Havrdova L, Kádasi Horáková M, Hrabětová M, Justesen MJ, Kacprzyk M, Kenis M, Kirichenko N, Kovač M, Kramarets V, Lacković N, Lantschner MV, Lazarević J, Leskiv M, Li H, Madsen CL, Malumphy C, Matošević D, Matsiakh I, May TW, Meffert J, Migliorini D, Nikolov C, O'Hanlon R, Oskay F, Paap T, Parpan T, Piškur B, Ravn HP, Richard J, Ronse A, Roques A, Ruffner B, Santini A, Sivickis K, Soliani C, Talgø V, Tomoshevich M, Uimari A, Ulyshen M, Vettraino AM, Villari C, Wang Y, Witzell J, Zlatković M, Eschen R. Climate, host and geography shape insect and fungal communities of trees. Sci Rep 2023; 13:11570. [PMID: 37463904 DOI: 10.1038/s41598-023-36795-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.
Collapse
Affiliation(s)
- Iva Franić
- CABI, Delémont, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Fabio Attorre
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | | | - Dimitrios Avtzis
- Forest Research Institute, Hellenic Agricultural Organization-Demeter, Thessaloniki, Greece
| | - Wim Baert
- Meise Botanic Garden, Meise, Belgium
| | - Marek Barta
- Institute of Forest Ecology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Amani Bellahirech
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), Ariana, Tunisia
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Helena Bragança
- Instituto Nacional de Investigação Agrária e Veterinária I. P. (INIAV I. P.), Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Tereza Brestovanská
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - May Bente Brurberg
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
- NMBU-Norwegian University of Life Sciences, Ås, Norway
| | | | - Daiva Burokienė
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Juan Corley
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - György Csóka
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Karel Černý
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration, Kharkiv, Ukraine
| | | | - Julio Javier Diez
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain
- Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
| | | | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Melbourne, Vic, Australia
- Agriculture Victoria Research, Agribio Centre, Bundoora, Vic, Australia
| | - Mohammed Elsafy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Csaba Béla Eötvös
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Roman Falko
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | - Jianting Fan
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Nina Feddern
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ágnes Fürjes-Mikó
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Bartłomiej Grad
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ludmila Havrdova
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | | | - Markéta Hrabětová
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Mathias Just Justesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Kacprzyk
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | | | - Natalia Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Marta Kovač
- Croatian Forest Research Institute, Jastrebarsko, Croatia
| | | | | | - Maria Victoria Lantschner
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Jelena Lazarević
- Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro
| | | | | | - Corrie Lynne Madsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Chris Malumphy
- Fera Science Ltd, National Agri-food Innovation Campus, York, UK
| | | | - Iryna Matsiakh
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Ukrainian National Forestry University, Lviv, Ukraine
| | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, Vic, Australia
| | - Johan Meffert
- National Plant Protection Organisation, Netherlands Food and Consumers Product Safety Authority, Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Duccio Migliorini
- National Research Council C.N.R., Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Italy
| | - Christo Nikolov
- National Forest Centre, Forest Research Institute, Zvolen, Slovakia
| | | | - Funda Oskay
- Faculty of Forestry, Çankırı Karatekin University, Cankiri, Turkey
| | - Trudy Paap
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Taras Parpan
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | | | - Hans Peter Ravn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - John Richard
- Tanzania Forestry Research Institute (TAFORI), Lushoto, Tanzania
| | | | | | - Beat Ruffner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alberto Santini
- National Research Council C.N.R., Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Italy
| | - Karolis Sivickis
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Venche Talgø
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Maria Tomoshevich
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anne Uimari
- Natural Resources Institute Finland, Suonenjoki, Finland
| | - Michael Ulyshen
- USDA Forest Service, Southern Research Station, Athens, GA, USA
| | | | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Johanna Witzell
- Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
3
|
Xu F, Zhu L, Wang J, Xue Y, Liu K, Zhang F, Zhang T. Nonpoint Source Pollution (NPSP) Induces Structural and Functional Variation in the Fungal Community of Sediments in the Jialing River, China. MICROBIAL ECOLOGY 2023; 85:1308-1322. [PMID: 35419656 DOI: 10.1007/s00248-022-02009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/05/2022] [Indexed: 05/10/2023]
Abstract
Nonpoint source pollution (NPSP) from human production and life activities causes severe destruction in river basin environments. In this study, three types of sediment samples (A, NPSP tributary samples; B, non-NPSP mainstream samples; C, NPSP mainstream samples) were collected at the estuary of the NPSP tributaries of the Jialing River. High-throughput sequencing of the fungal-specific internal transcribed spacer (ITS) gene region was used to identify fungal taxa. The impact of NPSP on the aquatic environment of the Jialing River was revealed by analysing the community structure, community diversity, and functions of sediment fungi. The results showed that the dominant phylum of sediment fungi was Rozellomycota, followed by Ascomycota and Basidiomycota (relative abundance > 5%). NPSP caused a significant increase in the relative abundances of Exosporium, Phialosimplex, Candida, Inocybe, Tausonia, and Slooffia, and caused a significant decrease in the relative abundances of Cercospora, Cladosporium, Dokmaia, Setophaeosphaeria, Paraphoma, Neosetophoma, Periconia, Plectosphaerella, Claviceps, Botrytis, and Papiliotrema. These fungal communities therefore have a certain indicator role. In addition, NPSP caused significant changes in the physicochemical properties of Jialing River sediments, such as pH and available nitrogen (AN), which significantly increased the species richness of fungi and caused significant changes in the fungal community β-diversity (P < 0.05). pH, total phosphorus (TP), and AN were the main environmental factors affecting fungal communities in sediments of Jialing River. The functions of sediment fungi mainly involved three types of nutrient metabolism (symbiotrophic, pathotrophic, and saprotrophic) and 75 metabolic circulation pathways. NPSP significantly improved the pentose phosphate pathway, pentose phosphate pathway, and fatty acid beta-oxidation V metabolic circulation pathway functions (P < 0.05) and inhibited the chitin degradation to ethanol, super pathway of heme biosynthesis from glycine, and adenine and adenosine salvage III metabolic circulation pathway functions (P < 0.05). Hence, NPSP causes changes in the community structure and functions of sediment fungi in Jialing River and has adversely affected for the stability of the Jialing River Basin ecosystem.
Collapse
Affiliation(s)
- Fei Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Lanping Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Jiaying Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Yuqin Xue
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Kunhe Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Fubin Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China.
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
- College of Environment Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China.
| |
Collapse
|