1
|
Gupta VVSR, Tiedje JM. Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales. MLIFE 2024; 3:21-41. [PMID: 38827504 PMCID: PMC11139212 DOI: 10.1002/mlf2.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 06/04/2024]
Abstract
The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable. Hence, a substantial portion of the community will not correlate to often measured soil attributes. We suggest that the drivers be ranked on the basis of their importance to the fundamental needs of the microbes: (i) those that supply energy, i.e., organic carbon and electron acceptors; (ii) environmental effectors or stressors, i.e., pH, salt, drought, and toxic chemicals; (iii) macro-organism associations, i.e., plants and their seasonality, animals and their fecal matter, and soil fauna; and (iv) nutrients, in order, N, P, and probably of lesser importance, other micronutrients, and metals. The relevance of drivers also varies with spatial and time scales, for example, aggregate to field to regional, and persistent to dynamic populations to transcripts, and with the extent of phylogenetic difference, hence phenotypic differences in organismal groups. We present a summary matrix to provide guidance on which drivers are important for particular studies, with special emphasis on a wide range of spatial and temporal scales, and illustrate this with genomic and population (rRNA gene) data from selected studies.
Collapse
Affiliation(s)
| | - James M. Tiedje
- Centre for Microbial EcologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Smith AH, Bogar LM, Moeller HV. Fungal Fight Club: phylogeny and growth rate predict competitive outcomes among ectomycorrhizal fungi. FEMS Microbiol Ecol 2023; 99:fiad108. [PMID: 37697652 PMCID: PMC10516346 DOI: 10.1093/femsec/fiad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Ectomycorrhizal fungi are among the most prevalent fungal partners of plants and can constitute up to one-third of forest microbial biomass. As mutualistic partners that supply nutrients, water, and pathogen defense, these fungi impact host plant health and biogeochemical cycling. Ectomycorrhizal fungi are also extremely diverse, and the community of fungal partners on a single plant host can consist of dozens of individuals. However, the factors that govern competition and coexistence within these communities are still poorly understood. In this study, we used in vitro competitive assays between five ectomycorrhizal fungal strains to examine how competition and pH affect fungal growth. We also tested the ability of evolutionary history to predict the outcomes of fungal competition. We found that the effects of pH and competition on fungal performance varied extensively, with changes in growth media pH sometimes reversing competitive outcomes. Furthermore, when comparing the use of phylogenetic distance and growth rate in predicting competitive outcomes, we found that both methods worked equally well. Our study further highlights the complexity of ectomycorrhizal fungal competition and the importance of considering phylogenetic distance, ecologically relevant traits, and environmental conditions in predicting the outcomes of these interactions.
Collapse
Affiliation(s)
- Alexander H Smith
- Department of Integrative Biology, University of Colorado, Denver Auraria Campus Science Building 1150 12th St, Denver CO 80204, USA
| | - Laura M Bogar
- Department of Plant Biology, University of California, Davis, 605 Hutchison Dr Green Hall rm 1002 Davis CA 95616-5720, USA
| | - Holly V Moeller
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara CA 93106-9620, USA
| |
Collapse
|
3
|
Nonthijun P, Mills N, Mills N, Yongsawas R, Sansupa C, Suwannarach N, Jaikang C, Motanated K, Chayapakdee P, Jongjitngam S, Noirungsee N, Disayathanoowat T. Seasonal Variations in Fungal Communities on the Surfaces of Lan Na Sandstone Sculptures and Their Biodeterioration Capacities. J Fungi (Basel) 2023; 9:833. [PMID: 37623604 PMCID: PMC10455195 DOI: 10.3390/jof9080833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
Environmental factors and climate are the primary factors influencing the microbial colonization and deterioration of cultural heritage in outdoor environments. Hence, it is imperative to investigate seasonal variations in microbial communities and the biodeterioration they cause. This study investigated the surfaces of sandstone sculptures at Wat Umong Suan Phutthatham, Chiang Mai, Thailand, during wet and dry seasons using culture-dependent and culture-independent approaches. The fungi isolated from the sandstone sculptures were assessed for biodeterioration attributes including drought tolerance, acid production, calcium crystal formation, and calcium precipitation. The results show that most of the fungal isolates exhibited significant potential for biodeterioration activities. Furthermore, a culture-independent approach was employed to investigate the fungal communities and assess their diversity, interrelationship, and predicted function. The fungal diversity and the communities varied seasonally. The functional prediction indicated that pathotroph-saprotroph fungi comprised the main fungal guild in the dry season, and pathotroph-saprotroph-symbiotroph fungi comprised the dominant guild in the wet season. Remarkably, a network analysis revealed numerous positive correlations among fungal taxa within each season, suggesting a potential synergy that promotes the biodeterioration of sandstone. These findings offer valuable insights into seasonal variations in fungal communities and their impacts on the biodeterioration of sandstone sculptures. This information can be utilized for monitoring, management, and maintenance strategies aimed at preserving this valuable cultural heritage.
Collapse
Affiliation(s)
- Paradha Nonthijun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
| | - Natasha Mills
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
| | - Nantana Mills
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kannipa Motanated
- Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pattarasuda Chayapakdee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surachai Jongjitngam
- Department of Thai Art, Faculty of Fine Arts, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (N.M.); (N.M.); (R.Y.); (C.S.); (N.S.); (P.C.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Vogt-Schilb H, Richard F, Malaval JC, Rapior S, Fons F, Bourgade V, Schatz B, Buentgen U, Moreau PA. Climate-induced long-term changes in the phenology of Mediterranean fungi. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Marčiulynienė D, Marčiulynas A, Mishcherikova V, Lynikienė J, Gedminas A, Franic I, Menkis A. Principal Drivers of Fungal Communities Associated with Needles, Shoots, Roots and Adjacent Soil of Pinus sylvestris. J Fungi (Basel) 2022; 8:1112. [PMID: 36294677 PMCID: PMC9604598 DOI: 10.3390/jof8101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
The plant- and soil-associated microbial communities are critical to plant health and their resilience to stressors, such as drought, pathogens, and pest outbreaks. A better understanding of the structure of microbial communities and how they are affected by different environmental factors is needed to predict and manage ecosystem responses to climate change. In this study, we carried out a country-wide analysis of fungal communities associated with Pinus sylvestris growing under different environmental conditions. Needle, shoot, root, mineral, and organic soil samples were collected at 30 sites. By interconnecting the high-throughput sequencing data, environmental variables, and soil chemical properties, we were able to identify key factors that drive the diversity and composition of fungal communities associated with P. sylvestris. The fungal species richness and community composition were also found to be highly dependent on the site and the substrate they colonize. The results demonstrated that different functional tissues and the rhizosphere soil of P. sylvestris are associated with diverse fungal communities, which are driven by a combination of climatic (temperature and precipitation) and edaphic factors (soil pH), and stand characteristics.
Collapse
Affiliation(s)
- Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas District, Lithuania; (A.M.); (V.M.); (J.L.); (A.G.)
| | - Iva Franic
- Department of Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden;
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden;
| |
Collapse
|
6
|
Chen J, Zeng H. Effects of continuous and rotational cropping practices on soil fungal communities in pineapple cultivation. PeerJ 2022; 10:e13937. [PMID: 36093333 PMCID: PMC9462375 DOI: 10.7717/peerj.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/02/2022] [Indexed: 01/19/2023] Open
Abstract
Background Rotational cropping practices can change the fungal structure and diversity of cropping soil, and these changes can promote crop development. However, only a few studies have explored the effects of rotational cropping of pineapple on soil fungal diversity. Methods In this study, we investigated fungal diversity in continuous and rotational cropping soil of pineapple in Xuwen and Leizhou of China in summer and winter through high throughput sequencing of the fungal internal transcribed spacer region. Results The diversity and richness of the fungal community were observed to be significantly increased after rotational cropping in Xuwen and Leizhou in summer, whereas no changes were observed in winter. Furthermore, Ascomycota, Basidiomycota, Zygomcota, and Chytridiomycota were the dominant phyla, and Chaetomium, Penicillium, Fusarium, Trichoderma, and Cryptococcus were the dominant genera in the continuous and rotational cropping soil of pineapple, respectively, in both summer and winter. Chytridiomycota at phylum level and Gibberella at genus level were observed in rotational cropping soil; however, Ascomycota at the phylum level and Chaetomium at the genus level were the most abundant fungi, and their abundance dramatically decreased in continuous cropping soil. Redundancy analysis revealed that rotational cropping reduced the correlation between environmental parameters and the fungal community in winter. In addition, several fungal biomarkers were found in Xuwen in both continuous and rotational cropping soil samples, including Sporobolomyces, Aspergillus, Corynascus sp JHG 2007, and Corynascus at the genus level, Penicillium and fungal sp p1s11 at the species level in rotational cropping soil, and ales family Incertae sedis and Sordariomycetes at the class level in continuous cropping soil. These results revealed the changes in the structure and diversity of fungal community in continuous and rotational cropping practices for pineapple cultivation, which may be associated with crop yield and quality.
Collapse
Affiliation(s)
- Jing Chen
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China,Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, China
| | - Hui Zeng
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China,Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Guevara-Araya MJ, Escobedo VM, Palma-Onetto V, González-Teuber M. Changes in Diversity and Community Composition of Root Endophytic Fungi Associated with Aristolochia chilensis along an Aridity Gradient in the Atacama Desert. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111511. [PMID: 35684284 PMCID: PMC9182583 DOI: 10.3390/plants11111511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 05/11/2023]
Abstract
Despite the widespread occurrence of fungal endophytes (FE) in plants inhabiting arid ecosystems, the environmental and soil factors that modulate changes in FE diversity and community composition along an aridity gradient have been little explored. We studied three locations along the coast of the Atacama Desert in Chile, in which the plant Aristolochia chilensis naturally grows, and that differ in their aridity gradient from hyper-arid to semi-arid. We evaluated if root-associated FE diversity (frequency, richness and diversity indexes) and community composition vary as a function of aridity. Additionally, we assessed whether edaphic factors co-varying with aridity (soil water potential, soil moisture, pH and nutrients) may structure FE communities. We expected that FE diversity would gradually increase towards the aridity gradient declines, and that those locations that had the most contrasting environments would show more dissimilar FE communities. We found that richness indexes were inversely related to aridity, although this pattern was only partially observed for FE frequency and diversity. FE community composition was dissimilar among contrasting locations, and soil water availability significantly influenced FE community composition across the gradient. The results indicate that FE diversity and community composition associated with A. chilensis relate to differences in the aridity level across the gradient. Overall, our findings reveal the importance of climate-related factors in shaping changes in diversity, structure and distribution of FE in desert ecosystems.
Collapse
Affiliation(s)
- María José Guevara-Araya
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (M.J.G.-A.); (V.P.-O.)
| | - Víctor M. Escobedo
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile;
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, Talca 3460000, Chile
| | - Valeria Palma-Onetto
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (M.J.G.-A.); (V.P.-O.)
| | - Marcia González-Teuber
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (M.J.G.-A.); (V.P.-O.)
- Correspondence:
| |
Collapse
|
8
|
Velez P, Tapia-Torres Y, García-Oliva F, Gasca-Pineda J. Small-scale variation in a pristine montane cloud forest: evidence on high soil fungal diversity and biogeochemical heterogeneity. PeerJ 2021; 9:e11956. [PMID: 34447634 PMCID: PMC8364316 DOI: 10.7717/peerj.11956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
Montane cloud forests are fragile biodiversity hotspots. To attain their conservation, disentangling diversity patterns at all levels of ecosystem organization is mandatory. Biotic communities are regularly structured by environmental factors even at small spatial scales. However, studies at this scale have received less attention with respect to larger macroscale explorations, hampering the robust view of ecosystem functioning. In this sense, fungal small-scale processes remain poorly understood in montane cloud forests, despite their relevance. Herein, we analyzed soil fungal diversity and ecological patterns at the small-scale (within a 10 m triangular transect) in a pristine montane cloud forest of Mexico, using ITS rRNA gene amplicon Illumina sequencing and biogeochemical profiling. We detected a taxonomically and functionally diverse fungal community, dominated by few taxa and a large majority of rare species (81%). Undefined saprotrophs represented the most abundant trophic guild. Moreover, soil biogeochemical data showed an environmentally heterogeneous setting with patchy clustering, where enzymatic activities suggest distinctive small-scale soil patterns. Our results revealed that in this system, deterministic processes largely drive the assemblage of fungal communities at the small-scale, through multifactorial environmental filtering.
Collapse
Affiliation(s)
- Patricia Velez
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yunuen Tapia-Torres
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Jaime Gasca-Pineda
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| |
Collapse
|
9
|
Runte GC, Smith AH, Moeller HV, Bogar LM. Spheres of Influence: Host Tree Proximity and Soil Chemistry Shape rRNA, but Not DNA, Communities of Symbiotic and Free-Living Soil Fungi in a Mixed Hardwood-Conifer Forest. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host and symbiont diversity are inextricably linked across partnerships and ecosystems, with degree of partner reliance governing the strength of this correlation. In many forest soils, symbiotic ectomycorrhizal fungi coexist and compete with free-living saprotrophic fungi, with the outcomes of these interactions shaping resource availability and competitive outcomes for the trees aboveground. Traditional approaches to characterizing these communities rely on DNA sequencing of a ribosomal precursor RNA gene (the internal transcribed spacer region), but directly sequencing the precursor rRNA may provide a more functionally relevant perspective on the potentially active fungal communities. Here, we map ectomycorrhizal and saprotrophic soil fungal communities through a mixed hardwood-conifer forest to assess how above- and belowground diversity linkages compare across these differently adapted guilds. Using highly spatially resolved transects (sampled every 2 m) and well-mapped stands of varying host tree diversity, we sought to understand the relative influence of symbiosis versus environment in predicting fungal diversity measures. Canopy species in this forest included two oaks (Quercus agrifolia and Quercus douglasii) and one pine (Pinus sabiniana). At the scale of our study, spatial turnover in rRNA-based communities was much more predictable from measurable environmental attributes than DNA-based communities. And while turnover of ectomycorrhizal fungi and saprotrophs were predictable by the presence and abundance of different canopy species, they both responded strongly to soil nutrient characteristics, namely pH and nitrogen availability, highlighting the niche overlap of these coexisting guilds and the strong influence of aboveground plants on belowground fungal communities.
Collapse
|