1
|
Beghin M, Ambroise V, Lambert J, Garigliany MM, Cornet V, Kestemont P. Environmental exposure to single and combined ZnO and TiO 2 nanoparticles: Implications for rainbow trout gill immune functions and microbiota. CHEMOSPHERE 2025; 373:144148. [PMID: 39864124 DOI: 10.1016/j.chemosphere.2025.144148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
ZnO and TiO2 nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L-1) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO2 NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition. Changes in the relative abundance of potential pathogenic genera such as Candidatus Piscichlamydia and Flavobacterium were observed. Additionally, while the expression of the pro-inflammatory cytokine il1β, and antibacterial compounds (c3) was downregulated by TiO2 NPs and the mixture, ZnO NPs affected immune (mpo) and tight junction proteins (zo1). These results highlight the differences in the toxicity mechanisms existing between the single NPs and their combination, which showed higher toxicity to the gill bacterial community, but not to immune mechanisms. Furthermore, they suggest that exposure to environmental concentrations of NPs could potentially affect fish mucosal immunity and associated microbiota, highlighting the need for further research on the toxicity of NP mixtures.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| | | | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Mutien-Marie Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, FARAH Research Centre, University of Liège, Liege, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| |
Collapse
|
2
|
Zhang JM, Han H, Fu B, Li YC, Li K, Liu JW, Yu EM, Liu LP. Identification of potential geosmin-binding proteins in grass carp gill based on affinity responsive target stability and tandem mass tag proteomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117832. [PMID: 39904256 DOI: 10.1016/j.ecoenv.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The escalating issue of water pollution, especially the accumulation of organic off-flavor pollutants, poses significant challenges. Geosmin, a typical off-flavor compound in aquatic environments, not only compromises the quality of aquatic products but also deters consumers. Its impact extends to aquatic organisms, with current research focusing on dose-response and ecotoxicity, while neglecting the molecular-level study of geosmin-binding proteins. This study employs an integrated approach combing affinity-responsive target stability in vitro, tandem mass tag proteomics in vivo, and molecular docking to identify geosmin-binding proteins in the gill tissue of grass carp (Ctenopharyngodon idella). ARTS analysis identified 56 proteins, predominantly membrane-associated proteins, such as catenin beta-1, annexin, and integrin beta. Proteomic analysis revealed 256 differentially expressed proteins in geosmin-exposure group, with 18 common proteins screened by in vivo and in vitro methods. Among these, annexin, cathepsin D, and interleukin-1 receptors were highlighted as potential geosmin targets, with annexin demonstrating the highest binding affinity in silico. This study provides a robust protocol integrating in vivo, in vitro, and in silico approaches to elucidate geosmin's target proteins in grass carp gill tissue, advancing our understanding of pollutant-biological interactions and enhancing environmental risk assessment accuracy.
Collapse
Affiliation(s)
- Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
| | - Yi-Chao Li
- Guangxi Academy of Marine Sciences, Nanning, 530000, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China.
| | - Jing-Wei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Er-Meng Yu
- Guangxi Academy of Marine Sciences, Nanning, 530000, China
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Diner RE, Allard SM, Gilbert JA. Host-associated microbes mitigate the negative impacts of aquatic pollution. mSystems 2024; 9:e0086824. [PMID: 39207151 PMCID: PMC11495061 DOI: 10.1128/msystems.00868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.
Collapse
Affiliation(s)
- Rachel E. Diner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Sarah M. Allard
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Zarantonello G, Cuenca A. Nanopore-Enabled Microbiome Analysis: Investigating Environmental and Host-Associated Samples in Rainbow Trout Aquaculture. Curr Protoc 2024; 4:e1069. [PMID: 38865207 DOI: 10.1002/cpz1.1069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Microbiome sequencing is at the forefront of health management development, and as such, it is becoming of great interest to monitor the microbiome in the aquaculture industry as well. Oxford Nanopore Technologies (ONT) platforms are gaining popularity to study microbial communities, enabling faster sequencing, extended read length, and therefore, improved taxonomic resolution. Despite this, there is a lack of clear guidelines to perform a metabarcoding study, especially when dealing with samples from non-mammalian species, such as aquaculture-related samples. In this article, we provide general guidelines for sampling, nucleic acid extraction, and ONT-based library preparation for both environmental (water, sediment) and host-associated (gill or skin mucus, skin, gut content, or gut mucosa) microbiome analysis. Our procedures focus specifically on rainbow trout (Oncorhynchus mykiss) reared in experimental facilities. However, these protocols can also be transferred to alternative types of samples, such as environmental DNA (eDNA) monitoring from alternative water sources, or to different fish species. The additional challenge posed by the low biomass and limited bacterial diversity inherent in fish-associated microbiomes is addressed through the implementation of troubleshooting solutions. Furthermore, we describe a bioinformatic pipeline starting from raw reads and leading to taxonomic abundance tables using currently available tools and software. Finally, we provide a set of specific guidelines and considerations related to the strategic planning of a microbiome study within the context of aquaculture. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Environmental sample collection Basic Protocol 2: Host-associated sample collection Alternate Protocol: Host-associated sample collection: Alternative sample types Basic Protocol 3: Sample pre-treatment and nucleic acid extraction Basic Protocol 4: Quality control and preparation for 16S rRNA gene sequencing Support Protocol 1: Assessment of inhibition by quantitative PCR Support Protocol 2: Bioinformatic analysis from raw files to taxonomic abundance tables.
Collapse
Affiliation(s)
- Giulia Zarantonello
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Wu H, Yuan X, He Y, Gao J, Xie M, Xie Z, Song R, Ou D. Niclosamide subacute exposure alters the immune response and microbiota of the gill and gut in black carp larvae, Mylopharyngodon piceus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116512. [PMID: 38805826 DOI: 10.1016/j.ecoenv.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Niclosamide (NIC) is a commonly used insecticide and molluscicide in the prevention and treatment of parasitic diseases in fish. The utilization of NIC has the potential to disrupt the microbial community present on the mucosal tissue of fish, leading to localized inflammatory responses. The objective of this study was to evaluate the impact of NIC on the immune system and bacterial populations within the gill and gut of Mylopharyngodon piceus. Fish were subjected to varying concentrations of NIC, including a control group (0 μg/L), a low NIC group (15% 96 h LC50, LNG, 9.8 μg/L), and a high NIC group (80% 96 h LC50, HNG, 52.5 μg/L). Gill and gut samples were collected 28 days post-exposure for analysis. The findings revealed that the 96-h LC50 for NIC was determined to be 65.7 μg/L, and histopathological examination demonstrated that exposure to NIC resulted in gill filament subepithelial edema, exfoliation, degeneration, and a decrease in gill filament length. Furthermore, the gut exhibited apical enterocyte degeneration and leucocyte infiltration following NIC exposure. Additionally, NIC exposure led to a significant elevation in the levels of immunoglobulin M (IgM), complement component 3 (C3), and complement component 4 (C4) in both gill and gut tissues. Moreover, the activity of lysozyme (LYZ) was enhanced in the gill, while the activities of peroxidase (POD) and immunoglobulin T (IgT) were increased in gut tissue. The exposure to NIC resulted in enhanced mRNA expression of c3, c9, tnfα, il6, il8, and il11 in the gill tissue, while decreasing c3 and il8 expression in the gut tissue. Furthermore, the natural resistance-associated macrophage protein (nramp) mRNA increased, and liver-expressed antimicrobial peptide 2 (leap2) mRNA decreased in gill and gut tissues. And hepcidin (hepc) mRNA levels rose in gill but fell in gut tissue. NIC exposure also led to a decrease in gill bacterial richness and diversity, which significantly differed from the control group, although this separation was not significant in the gut tissue. In conclusion, the administration of NIC resulted in alterations in both the immune response and mucosal microbiota of fish. Furthermore, it was noted that gills displayed a heightened vulnerability to sublethal effects of NIC in comparison to gut tissues.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Yong He
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China
| |
Collapse
|
6
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Blewett TA, Ackerly KL, Schlenker LS, Martin S, Nielsen KM. Implications of biotic factors for toxicity testing in laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168220. [PMID: 37924878 DOI: 10.1016/j.scitotenv.2023.168220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
There is an emerging call from scientists globally to advance the environmental relevance of laboratory studies, particularly within the field of ecotoxicology. To answer this call, we must carefully examine and elucidate the shortcomings of standardized toxicity testing methods that are used in the derivation of toxicity values and regulatory criteria. As a consequence of rapidly accelerating climate change, the inclusion of abiotic co-stressors are increasingly being incorporated into toxicity studies, with the goal of improving the representativeness of laboratory-derived toxicity values used in ecological risk assessments. However, much less attention has been paid to the influence of biotic factors that may just as meaningfully impact our capacity to evaluate and predict risks within impacted ecosystems. Therefore, the overarching goal is to highlight key biotic factors that should be taken into consideration during the experimental design and model selection phase. SYNOPSIS: Scientists are increasingly finding that lab reared results in toxicology might not be reflective of the external wild environment, we highlight in this review some key considerations when working between the lab and field.
Collapse
Affiliation(s)
- Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Canada.
| | - Kerri Lynn Ackerly
- The University of Texas at Austin, Marine Science Institute, United States of America
| | - Lela S Schlenker
- East Carolina University, Department of Biology, United States of America
| | - Sidney Martin
- University of Alberta, Department of Biological Sciences, Canada
| | - Kristin M Nielsen
- The University of Texas at Austin, Marine Science Institute, United States of America
| |
Collapse
|
8
|
Lu J, Zhang C, Xu W, Chen W, Tao L, Li Z, Cheng J, Zhang Y. Developmental toxicity and estrogenicity of glyphosate in zebrafish in vivo and in silico studies. CHEMOSPHERE 2023; 343:140275. [PMID: 37758082 DOI: 10.1016/j.chemosphere.2023.140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
As the most heavily used herbicide globally, glyphosate (GLY) has been detected in a variety of environments and has raised concerns about its ecological and health effects. There is debate as to whether GLY may disrupt the endocrine system. Here, we investigated the developmental toxicity of GLY in zebrafish based on deep learning-enabled morphometric analysis (DLMA). In addition, the estrogenic activity of GLY was assessed by endocrine disruption prediction, docking study and in vivo experiments. Results showed that exposure to environmental concentrations of GLY negatively impacted zebrafish development, causing yolk edema and pericardial edema. Endocrine disruption prediction suggested that GLY may target estrogen receptors (ER). Molecular docking analysis revealed binding of GLY to three zebrafish ER. In vivo zebrafish experiment, GLY enhanced the protein levels of ERα and the mRNA levels of cyp19a, HSD17b1, vtg1, vtg2, esr1, esr2a and esr2b. These results suggest that GLY may act as an endocrine disruptor by targeting ER, which warrants further attention for its potential toxicity to aquatic animals.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|