1
|
Jahn LV, Carrino-Kyker SR, Burke DJ. Interannual variation in spring weather conditions as a driver of spring wildflower coverage: a 15-year perspective from an old-growth temperate forest. AOB PLANTS 2023; 15:plad078. [PMID: 38111607 PMCID: PMC10727473 DOI: 10.1093/aobpla/plad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Spring ephemerals are wildflowers found in temperate deciduous forests that typically display aboveground shoots for a period of 2 months or less. Early spring, before the canopy leaves out, marks the beginning of the aboveground growth period where ephemerals acquire nutrients and resources via aboveground tissues. Several studies have shown that spring ephemeral reproduction is affected by spring temperature, but few have looked at how weather conditions of the current and previous seasons, including precipitation and temperature, influence aboveground growth. Here, we examine the response of a spring ephemeral community in a temperate hardwood forest to weather conditions during their current and previous growing seasons. For 15 years we estimated percent cover of each species within our community. We highlighted five dominant spring ephemerals within this community: wild leek (Allium tricoccum), cutleaf toothwort (Cardamine concatenata), spring beauty (Claytonia virginica), squirrel corn (Dicentra canadensis) and trout lily (Erythronium americanum). We compared changes in cover on both a community and species level from 1 year to the next with average precipitation and temperature of the year of measurement as well as the year prior. We found precipitation and temperature influence a change in cover at the community and species level, but the strength of that influence varies by species. There were few significant correlations between plant cover in the current year and temperature and precipitation in the 30 days preceding measurement. However, we found significant correlations between plant cover and precipitation and temperature during the previous spring; precipitation and cover change were positively correlated, whereas temperature and cover change were negatively correlated. Overall, cooler, wetter springs lead to an increase in aboveground cover the next year. Learning how individual species within a forest plant community respond to weather conditions is a crucial part of understanding how plant communities will respond to climate change.
Collapse
Affiliation(s)
- Lydia V Jahn
- The Holden Arboretum, 9500 Sperry Road, Kirtland OH, USA
| | | | - David J Burke
- The Holden Arboretum, 9500 Sperry Road, Kirtland OH, USA
| |
Collapse
|
2
|
Paolucci A, Rauschert ESJ, Carrino-Kyker S, Burke D. Root fungal communities associated with better performance of an invasive spring ephemeral. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02364-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
R. Carrino-Kyker S, P. Coyle K, A. Kluber L, J. Burke D. Fungal and Bacterial Communities Exhibit Consistent Responses to Reversal of Soil Acidification and Phosphorus Limitation over Time. Microorganisms 2019; 8:E1. [PMID: 31861322 PMCID: PMC7022789 DOI: 10.3390/microorganisms8010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/16/2023] Open
Abstract
Chronic acid deposition affects many temperate hardwood forests of the northeastern United States, reduces soil pH and phosphorus (P) availability, and can alter the structure and function of soil microbial communities. The strategies that microorganisms possess for survival in acidic, low P soil come at a carbon (C) cost. Thus, how microbial communities respond to soil acidification in forests may be influenced by plant phenological stage as C allocation belowground varies; however, this remains largely unexplored. In this study, we examined microbial communities in an ecosystem level manipulative experiment where pH and/or P availability were elevated in three separate forests in Northeastern Ohio. Tag-encoded pyrosequencing was used to examine bacterial and fungal community structure at five time points across one year corresponding to plant phenological stages. We found significant effects of pH treatment and time on fungal and bacterial communities in soil. However, we found no interaction between pH treatment and time of sampling for fungal communities and only a weak interaction between pH elevation and time for bacterial communities, suggesting that microbial community responses to soil pH are largely independent of plant phenological stage. In addition, fungal communities were structured largely by site, suggesting that fungi were responding to differences between the forests, such as plant community differences.
Collapse
Affiliation(s)
- Sarah R. Carrino-Kyker
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kaitlin P. Coyle
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laurel A. Kluber
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - David J. Burke
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
4
|
Burke DJ, Carrino‐Kyker SR, Burns JH. Is it climate or chemistry? Soil fungal communities respond to soil nutrients in a multi‐year high‐resolution analysis. Ecosphere 2019. [DOI: 10.1002/ecs2.2896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- David J. Burke
- The Holden Arboretum Kirtland Ohio 44094 USA
- The Department of Biology Case Western Reserve University Cleveland Ohio 44106 USA
| | | | - Jean H. Burns
- The Department of Biology Case Western Reserve University Cleveland Ohio 44106 USA
| |
Collapse
|
5
|
Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol 2018; 9:1006. [PMID: 29922245 PMCID: PMC5996133 DOI: 10.3389/fmicb.2018.01006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Department of Crop Protection, Agencia Estatal Consejo Superior de Investigaciones Científicas, Institute for Sustainable Agriculture, Córdoba, Spain
| | - Isabel Abrantes
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | | | - Annamaria Bevivino
- Department for Sustainability of Production and Territorial Systems, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council, Bari, Italy
| | - Paola Grenni
- Water Research Institute (CNR-IRSA), National Research Council, Rome, Italy
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Diogo N. Proença
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE) and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Yang Y, Dou Y, An S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:48-58. [PMID: 29335174 DOI: 10.1016/j.scitotenv.2018.01.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Bacteria are widely distributed and play an important role in soil carbon (C) cycling. The impact of soil bacterial diversity on soil C storage has been well established, yet little is known about the underlying mechanisms and the interactions among them. Here, we examined the association between soil bacterial diversity and soil C storage in relation to vegetation restoration on the Loess Plateau. The dominant phyla among land use types (artificial forest, Af; natural shrubland, Ns; artificial grassland, Ag; natural grassland, Ng; slope cropland, Sc) were Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria, which transited from Acidobacteria-dominant to Actinobacteria-dominant community due to vegetation restoration. Soil C storage and the Shannon diversity index of soil bacterial community (HBacteria) showed the order Ns > Ng > Af > Ag > Sc, whereas no significant difference was found in Good's coverage (p > .05). Further, a strong relationship was observed between the relative abundance of dominant bacterial groups and soil C storage (p < .05). Additionally, soil bacterial diversity was closely related to soil C storage based on the structural equation model (SEM) and generalized additive models (GAMs). Specifically, soil C storage had the largest deterministic effects, explaining >70% of the variation and suggesting a strong association between soil C storage and soil bacterial diversity. Overall, we propose that further studies are necessary with a focus on the soil bacterial groups with specific functions in relation to soil C storage on the Loess Plateau.
Collapse
Affiliation(s)
- Yang Yang
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanxing Dou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Shaoshan An
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|