1
|
Veseli I, DeMers MA, Cooper ZS, Schechter MS, Miller S, Weber L, Smith CB, Rodriguez LT, Schroer WF, McIlvin MR, Lopez PZ, Saito M, Dyhrman S, Eren AM, Moran MA, Braakman R. Digital Microbe: a genome-informed data integration framework for team science on emerging model organisms. Sci Data 2024; 11:967. [PMID: 39232008 PMCID: PMC11374999 DOI: 10.1038/s41597-024-03778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
The remarkable pace of genomic data generation is rapidly transforming our understanding of life at the micron scale. Yet this data stream also creates challenges for team science. A single microbe can have multiple versions of genome architecture, functional gene annotations, and gene identifiers; additionally, the lack of mechanisms for collating and preserving advances in this knowledge raises barriers to community coalescence around shared datasets. "Digital Microbes" are frameworks for interoperable and reproducible collaborative science through open source, community-curated data packages built on a (pan)genomic foundation. Housed within an integrative software environment, Digital Microbes ensure real-time alignment of research efforts for collaborative teams and facilitate novel scientific insights as new layers of data are added. Here we describe two Digital Microbes: 1) the heterotrophic marine bacterium Ruegeria pomeroyi DSS-3 with > 100 transcriptomic datasets from lab and field studies, and 2) the pangenome of the cosmopolitan marine heterotroph Alteromonas containing 339 genomes. Examples demonstrate how an integrated framework collating public (pan)genome-informed data can generate novel and reproducible findings.
Collapse
Affiliation(s)
- Iva Veseli
- Helmholtz Institute for Functional Marine Biodiversity, 26129, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Michelle A DeMers
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary S Cooper
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Matthew S Schechter
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Samuel Miller
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Laura Weber
- Woods Hole Oceanographic Institution, Falmouth, MA, 02543, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Lidimarie T Rodriguez
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0180, USA
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Paloma Z Lopez
- Woods Hole Oceanographic Institution, Falmouth, MA, 02543, USA
| | - Makoto Saito
- Woods Hole Oceanographic Institution, Falmouth, MA, 02543, USA
| | - Sonya Dyhrman
- Lamont-Doherty Earth Observatory, and the Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10032, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany.
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Marine 'Omics Bridging Group, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Rogier Braakman
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Ferrer-González FX, Hamilton M, Smith CB, Schreier JE, Olofsson M, Moran MA. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME COMMUNICATIONS 2023; 3:5. [PMID: 36690682 PMCID: PMC9870897 DOI: 10.1038/s43705-023-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
Collapse
Affiliation(s)
| | - Maria Hamilton
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Bell E, Rattray JE, Sloan K, Sherry A, Pilloni G, Hubert CRJ. Hyperthermophilic endospores germinate and metabolize organic carbon in sediments heated to 80°C. Environ Microbiol 2022; 24:5534-5545. [PMID: 36100999 PMCID: PMC9826295 DOI: 10.1111/1462-2920.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
Cold surface sediments host a seedbank of functionally diverse thermophilic bacteria. These thermophiles are present as endospores, which are widely dispersed in aquatic environments. Here, we investigated the functional potential of endospore populations in cold surface sediments heated to 80°C. Microbial production of acetate was observed at 80°C and could be enhanced by supplying additional organic carbon substrates. Comparison of 16S rRNA gene amplicon libraries from 80°C enrichments to sediments heated to lower temperatures (50-70°C) showed that temperature selects for distinct populations of endospore-forming bacteria. Whereas sulfate-reducing thermophiles were enriched in 50-70°C incubations, 80°C exceeds their thermal tolerance and selects for hyperthermophilic organotrophic bacteria that are similarly detected in amplicon libraries from sediments heated to 90°C. Genome-resolved metagenomics revealed novel carbon cycling members of Symbiobacteriales, Thermosediminibacteraceae, Thermanaeromonas and Calditerricola with the genomic potential for the degradation of carbohydrates, sugars, amino acids and nucleotides. Endospores of thermophilic bacteria are deposited on seabed sediments worldwide where they remain dormant as they are buried in the accumulating sediments. Our results suggest that endospore populations could be activated by temperature increases encountered during burial and show the potential for organotrophic metabolic activity contributing to acetate generation in deep hot sediments.
Collapse
Affiliation(s)
- Emma Bell
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada,School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Kathryn Sloan
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Giovanni Pilloni
- ExxonMobil Technology and Engineering CompanyAnnandaleNew JerseyUSA
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada,School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. THE ISME JOURNAL 2022; 16:1306-1317. [PMID: 34921302 PMCID: PMC9038784 DOI: 10.1038/s41396-021-01172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022]
Abstract
Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbon flux.
Collapse
Affiliation(s)
- Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
| | - William Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden
| | - Arthur S Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US.
| |
Collapse
|
5
|
Damashek J, Okotie-Oyekan AO, Gifford SM, Vorobev A, Moran MA, Hollibaugh JT. Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean. ISME COMMUNICATIONS 2021; 1:5. [PMID: 37938231 PMCID: PMC9723583 DOI: 10.1038/s43705-021-00002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2023]
Abstract
Marine Group II Euryarchaeota (Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca. Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca. Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
- Department of Biology, Utica College, Utica, NY, USA.
| | - Aimee Oyinlade Okotie-Oyekan
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | | | - Alexey Vorobev
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
6
|
He J, Dai Q, Qi Y, Wu Z, Fang Q, Su P, Huang M, Burgess JG, Ke C, Feng D. Aggregation Pheromone for an Invasive Mussel Consists of a Precise Combination of Three Common Purines. iScience 2019; 19:691-702. [PMID: 31473589 PMCID: PMC6728611 DOI: 10.1016/j.isci.2019.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
Most marine benthic invertebrates have a pelagic larval phase, after which they settle preferentially on or near conspecific adults, forming aggregations. Although settlement pheromones from conspecific adults have been implicated as critical drivers of aggregation for more than 30 years, surprisingly few have been unambiguously identified. Here we show that in the invasive dreissenid mussel Mytilopsis sallei (an ecological and economic pest), three common purines (adenosine, inosine, and hypoxanthine) released from adults in a synergistic and precise ratio (1:1.125:3.25) serve as an aggregation pheromone by inducing conspecific larval settlement and metamorphosis. Our results demonstrate that simple common metabolites can function as species-specific pheromones when present in precise combinations. This study provides important insights into our understanding of the ecology and communication processes of invasive organisms and indicates that the combination and ratio of purines might be critical for purine-based signaling systems that are fundamental and widespread in nature.
Collapse
Affiliation(s)
- Jian He
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qi Dai
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yuxuan Qi
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qianyun Fang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Miaoqin Huang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Caihuan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Bacterial Nucleobases Synergistically Induce Larval Settlement and Metamorphosis in the Invasive Mussel Mytilopsis sallei. Appl Environ Microbiol 2019; 85:AEM.01039-19. [PMID: 31227552 DOI: 10.1128/aem.01039-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022] Open
Abstract
Marine bacterial biofilms have long been recognized as potential inducers of larval settlement and metamorphosis in marine invertebrates, but few chemical cues from bacteria have been identified. Here, we show that larval settlement and metamorphosis of an invasive fouling mussel, Mytilopsis sallei, could be induced by biofilms of bacteria isolated from its adult shells and other substrates from the natural environment. One of the strains isolated, Vibrio owensii MS-9, showed strong inducing activity which was attributed to the release of a mixture of nucleobases including uracil, thymine, xanthine, hypoxanthine, and guanine into seawater. In particular, the synergistic effect of hypoxanthine and guanine was sufficient for the inducing activity of V. owensii MS-9. The presence of two or three other nucleobases could enhance, to some extent, the activity of the mixture of hypoxanthine and guanine. Furthermore, we determined that bacteria producing higher concentrations of nucleobases were more likely to induce larval settlement and metamorphosis of M. sallei than were bacteria producing lower concentrations of nucleobases. The present study demonstrates that bacterial nucleobases play an important role in larval settlement and metamorphosis of marine invertebrates. This provides new insights into our understanding of the role of environmental bacteria in the colonization and aggregation of invasive fouling organisms and of the metabolites used as chemical mediators in cross-kingdom communication within aquatic systems.IMPORTANCE Invasive species are an increasingly serious problem globally. In aquatic ecosystems, invasive dreissenid mussels are well-known ecological and economic pests because they appear to effortlessly invade new environments and foul submerged structures with high-density aggregations. To efficiently control exotic mussel recruitment and colonization, the need to investigate the mechanisms of substrate selection for larval settlement and metamorphosis is apparent. Our work is one of very few to experimentally demonstrate that compounds produced by environmental bacteria play an important role in larval settlement and metamorphosis in marine invertebrates. Additionally, this study demonstrates that bacterial nucleobases can be used as chemical mediators in cross-kingdom communication within aquatic systems, which will enhance our understanding of how microbes induce larval settlement and metamorphosis of dreissenid mussels, and it furthermore may allow the development of new methods for application in antifouling.
Collapse
|
8
|
Taylor JD, Bird KE, Widdicome CE, Cunliffe M. Active bacterioplankton community response to dissolved 'free' deoxyribonucleic acid (dDNA) in surface coastal marine waters. FEMS Microbiol Ecol 2018; 94:5053802. [PMID: 30010743 DOI: 10.1093/femsec/fiy132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 11/14/2022] Open
Abstract
Seawater contains dissolved 'free' DNA (dDNA) that is part of a larger <0.2 µm pool of DNA (D-DNA) including viruses and uncharacterised bound DNA. Previous studies have shown that bacterioplankton readily degrade dDNA, and culture-based approaches have identified several potential dDNA-utilising taxa. This study characterised the seasonal variation in D-DNA concentrations at Station L4, a coastal marine observatory in the Western English Channel, and linked changes in concentration to cognate physicochemical and biological factors. The impact of dDNA addition on active bacterioplankton communities at Station L4 was then determined using 16S rRNA high-throughput sequencing and RNA Stable Isotope Probing (RNA SIP) with 13C-labelled diatom-derived dDNA. Compared to other major bacterioplankton orders, the Rhodobacterales actively responded to dDNA additions in amended microcosms and RNA SIP identified two Rhodobacterales populations most closely associated with the genera Halocynthiibacter and Sulfitobacter that assimilated the 13C-labelled dDNA. Here we demonstrate that dDNA is a source of dissolved organic carbon for some members of the major bacterioplankton group the Marine Roseobacter Clade. This study enhances our understanding of roles of specific bacterioplankton taxa in dissolved organic matter cycling in coastal waters with potential implications for nitrogen and phosphorus regeneration processes.
Collapse
Affiliation(s)
- Joe D Taylor
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK.,School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Kimberley E Bird
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK.,Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, UK
| | | | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK.,Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, UK
| |
Collapse
|
9
|
Cunliffe M, Hollingsworth A, Bain C, Sharma V, Taylor JD. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME JOURNAL 2017; 11:2677-2690. [PMID: 28731474 DOI: 10.1038/ismej.2017.117] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
In their role as primary producers, marine phytoplankton modulate heterotrophic bacterial activities through differences in the types and amounts of organic matter they release. This study investigates the transcriptional response of bacterium Ruegeria pomeroyi, a member of the Roseobacter clade known to affiliate with diverse phytoplankton groups in the ocean, during a shift in phytoplankton taxonomy. The bacterium was initially introduced into a culture of the dinoflagellate Alexandrium tamarense, and then experienced a change in phytoplankton community composition as the diatom Thalassiosira pseudonana gradually outcompeted the dinoflagellate. Samples were taken throughout the 30-day experiment to track shifts in bacterial gene expression informative of metabolic and ecological interactions. Transcriptome data indicate fundamental differences in the exometabolites released by the two phytoplankton. During growth with the dinoflagellate, gene expression patterns indicated that the main sources of carbon and energy for R. pomeroyi were dimethysulfoniopropionate (DMSP), taurine, methylated amines, and polyamines. During growth with the diatom, dihydroxypropanesulfonate (DHPS), xylose, ectoine, and glycolate instead appeared to fuel the bulk of bacterial metabolism. Expression patterns of genes for quorum sensing, gene transfer agent, and motility suggest that bacterial processes related to cell communication and signaling differed depending on which phytoplankton species dominated the co-culture. A remodeling of the R. pomeroyi transcriptome implicating more than a quarter of the genome occurred through the change in phytoplankton regime.
Collapse
Affiliation(s)
- Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Andrew S Burns
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Selena J Roth
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|