1
|
Wan Y, Myall AC, Boonyasiri A, Bolt F, Ledda A, Mookerjee S, Weiße AY, Getino M, Turton JF, Abbas H, Prakapaite R, Sabnis A, Abdolrasouli A, Malpartida-Cardenas K, Miglietta L, Donaldson H, Gilchrist M, Hopkins KL, Ellington MJ, Otter JA, Larrouy-Maumus G, Edwards AM, Rodriguez-Manzano J, Didelot X, Barahona M, Holmes AH, Jauneikaite E, Davies F. Integrated Analysis of Patient Networks and Plasmid Genomes to Investigate a Regional, Multispecies Outbreak of Carbapenemase-Producing Enterobacterales Carrying Both blaIMP and mcr-9 Genes. J Infect Dis 2024; 230:e159-e170. [PMID: 39052705 PMCID: PMC11272044 DOI: 10.1093/infdis/jiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of imipenemase (IMP)-encoding CPE among diverse Enterobacterales species between 2016 and 2019 across a London regional network. METHODS We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE-positive patients. Genomes of IMP-encoding CPE isolates were overlaid with patient contacts to imply potential transmission events. RESULTS Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, and Escherichia coli); 86% (72 of 84) harbored an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68 of 72). Phylogenetic analysis of IncHI2 plasmids identified 3 lineages showing significant association with patient contacts and movements between 4 hospital sites and across medical specialties, which was missed in initial investigations. CONCLUSIONS Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multimodal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.SummaryThis was an investigation, using integrated pathway networks and genomics methods, of the emergence of imipenemase-encoding carbapenemase-producing Enterobacterales among diverse Enterobacterales species between 2016 and 2019 in patients across a London regional hospital network, which was missed on routine investigations.
Collapse
Affiliation(s)
- Yu Wan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ashleigh C Myall
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Adhiratha Boonyasiri
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Frances Bolt
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Alice Ledda
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, United Kingdom
| | - Siddharth Mookerjee
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Andrea Y Weiße
- School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
- School of Informatics, University of Edinburgh, Scotland, United Kingdom
| | - Maria Getino
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jane F Turton
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, United Kingdom
| | - Hala Abbas
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Microbiology, North West London Pathology, London, United Kingdom
| | - Ruta Prakapaite
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alireza Abdolrasouli
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kenny Malpartida-Cardenas
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Luca Miglietta
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Hugo Donaldson
- Department of Microbiology, North West London Pathology, London, United Kingdom
| | - Mark Gilchrist
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Katie L Hopkins
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, United Kingdom
| | - Matthew J Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Reference Services Division, UK Health Security Agency, London, United Kingdom
| | - Jonathan A Otter
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jesus Rodriguez-Manzano
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, London, United Kingdom
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Alison H Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Microbiology, North West London Pathology, London, United Kingdom
| |
Collapse
|
2
|
Liu Y, Cheng D, Xue J, Feng Y, Wakelin SA, Weaver L, Shehata E, Li Z. Fate of bacterial community, antibiotic resistance genes and gentamicin residues in soil after three-year amendment using gentamicin fermentation waste. CHEMOSPHERE 2022; 291:132734. [PMID: 34743798 DOI: 10.1016/j.chemosphere.2021.132734] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Over a three-year field trial, the impacts of composted and raw gentamicin fermentation waste (GFW) application to land on residual soil gentamicin levels, physicochemical properties, bacterial community composition, and antibiotic resistance genes (ARGs) were assessed. In the saline-alkali soil tested, GFW application decreased electrical conductivity (EC) and pH. Importantly, there was no measurable long-term accumulation of gentamicin as a result of GFW addition. Changes in the abundance of Bacillus was primarily associated with degradation of gentamicin in soil, whereas wider (i.e. more general) shifts in bacterial communities over the treatments was linked to alteration of soil physicochemical properties, particularly pH, total nitrogen, dissolved organic carbon, EC, NO3--N and NH4+-N. Compared with other treatments, soils receiving composted GFW harbored more types of ARGs and significantly higher (P < 0.05) abundances of mobile genes elements (MGEs) (especially IncQ and Int1) and aminoglycoside ARGs (especially aminoglycoside phosphotransferases genes, APH). Finally, the abundances of ARGs in soils receiving raw and composted GFW were 59.60% and 50.26% higher than that in soils only receiving chemical fertilizer, respectively. Specifically, the abundances of APH, especially strB, were significantly higher than other kinds of ARGs (P < 0.05). The results of linear regression and partial least squares path model showed that MGEs, including plasmids, integrons, and transposons, along with soil properties (EC and NH4+-N) were the main factors associated with change in ARGs. Furthermore, different MGEs were involved in different transfer mechanisms of specific ARGs. Our findings demonstrated the potential risks of using raw and composted GFW as fertilizer, and suggest potential solutions to this problem.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Scion, Private Bag, 29237, Christchurch, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | | | - Louise Weaver
- Institute of Environmental Science and Research Ltd, Christchurch, 8041, New Zealand
| | - Ebrahim Shehata
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Institute of Animal science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
3
|
Duedu KO, Mends JQ, Ayivor-Djanie R, Essandoh PE, Nattah EM, Gyamfi J, Kpeli GS. Plasmidome AMR screening (PAMRS) workflow: a rapid screening workflow for phenotypic characterization of antibiotic resistance in plasmidomes. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13111.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Phenotypic characterization of antimicrobial resistance (AMR) in bacteria has remained the gold standard for investigation and monitoring of what resistance is present in an organism. However, the process is laborious and not attractive for screening multiple plasmids from a microbial community (plasmidomes). Instead, genomic tools are used, but a major bottle neck that presence of genes does not always translate into phenotypes. Methods: We designed the plasmidome AMR screening (PAMRS) workflow to investigate the presence of antibiotic resistant phenotypes in a plasmidome using Escherichia coli as a host organism. Plasmidomes were extracted from the faecal matter of chicken, cattle and humans using commercial plasmid extraction kits. Competent E. coli cells were transformed and evaluated using disk diffusion. Thirteen antibiotic resistant phenotypes were screened. Results: Here, we show that multiple antibiotic resistant phenotypes encoded by plasmids can be rapidly screened simultaneously using the PAMRS workflow. E. coli was able to pick up to 7, 5 or 8 resistant phenotypes from a single plasmidome from chicken, cattle or humans, respectively. Resistance to ceftazidime was the most frequently picked up phenotype in humans (52.6%) and cattle (90.5%), whereas in chickens, the most picked up resistant phenotype was resistance to co-trimoxazole, ceftriaxone and ampicillin (18.4% each). Conclusions: This workflow is a novel tool that could facilitate studies to evaluate the occurrence and expression of plasmid-encoded antibiotic resistance in microbial communities and their associated plasmid-host ranges. It could find application in the screening of plasmid-encoded virulence genes.
Collapse
|
4
|
Shintani M, Nour E, Elsayed T, Blau K, Wall I, Jechalke S, Spröer C, Bunk B, Overmann J, Smalla K. Plant Species-Dependent Increased Abundance and Diversity of IncP-1 Plasmids in the Rhizosphere: New Insights Into Their Role and Ecology. Front Microbiol 2020; 11:590776. [PMID: 33329469 PMCID: PMC7728920 DOI: 10.3389/fmicb.2020.590776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Eman Nour
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Tarek Elsayed
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Inessa Wall
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Cathrin Spröer
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
5
|
Cunningham CJ, Kuyukina MS, Ivshina IB, Konev AI, Peshkur TA, Knapp CW. Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1110-1124. [PMID: 32236187 DOI: 10.1039/c9em00606k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes.
Collapse
Affiliation(s)
- Colin J Cunningham
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
6
|
Werner J, Nour E, Bunk B, Spröer C, Smalla K, Springael D, Öztürk B. PromA Plasmids Are Instrumental in the Dissemination of Linuron Catabolic Genes Between Different Genera. Front Microbiol 2020; 11:149. [PMID: 32132980 PMCID: PMC7039861 DOI: 10.3389/fmicb.2020.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/22/2020] [Indexed: 01/31/2023] Open
Abstract
PromA plasmids are broad host range (BHR) plasmids, which are often cryptic and hence have an uncertain ecological role. We present three novel PromA γ plasmids which carry genes associated with degradation of the phenylurea herbicide linuron, two of which originated from unrelated Hydrogenophaga hosts isolated from different environments (pPBL-H3-2 and pBPS33-2), and one (pEN1) which was exogenously captured from an on-farm biopurification system (BPS). Hydrogenophaga sp. plasmid pBPS33-2 carries all three necessary gene clusters (hylA, dca, ccd) determining the three main steps for conversion of linuron to Krebs cycle intermediates, while pEN1 only determines the initial linuron hydrolysis step. Hydrogenophaga sp. plasmid pPBL-H3-2 exists as two variants, both containing ccd but with the hylA and dca gene modules interchanged between each other at exactly the same location. Linuron catabolic gene clusters that determine the same step were identical on all plasmids, encompassed in differently arranged constellations and characterized by the presence of multiple IS1071 elements. In all plasmids except pEN1, the insertion spot of the catabolic genes in the PromA γ plasmids was the same. Highly similar PromA plasmids carrying the linuron degrading gene cargo at the same insertion spot were previously identified in linuron degrading Variovorax sp. Interestingly, in both Hydrogenophaga populations not every PromA plasmid copy carries catabolic genes. The results indicate that PromA plasmids are important vehicles of linuron catabolic gene dissemination, rather than being cryptic and only important for the mobilization of other plasmids.
Collapse
Affiliation(s)
- Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Eman Nour
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Boyke Bunk
- Bioinformatics Department, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Central Services, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
7
|
López-Ochoa AJ, Sánchez-Alonso P, Vázquez-Cruz C, Horta-Valerdi G, Negrete-Abascal E, Vaca-Pacheco S, Mejía R, Pérez-Márquez M. Molecular and genetic characterization of the pOV plasmid from Pasteurella multocida and construction of an integration vector for Gallibacterium anatis. Plasmid 2019; 103:45-52. [PMID: 31022414 DOI: 10.1016/j.plasmid.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pOV plasmid isolated from the Pasteurella multocida strain PMOV is a new plasmid, and its molecular characterization is important for determining its gene content and its replicative properties in Pasteurellaceae family bacteria. METHODS Antimicrobial resistance mediated by the pOV plasmid was tested in bacteria. Purified pOV plasmid DNA was used to transform E. coli DH5α and Gallibacterium anatis 12656-12, including the pBluescript II KS(-) plasmid DNA as a control for genetic transformation. The pOV plasmid was digested with EcoRI for cloning fragments into the pBluescript II KS(-) vector to obtain constructs and to determine the full DNA sequence of pOV. RESULTS The pOV plasmid is 13.5 kb in size; confers sulfonamide, streptomycin and ampicillin resistance to P. multocida PMOV; and can transform E. coli DH5α and G. anatis 12656-12. The pOV plasmid was digested for the preparation of chimeric constructs and used to transform E. coli DH5α, conferring resistance to streptomycin (plasmid pSEP3), ampicillin (pSEP4) and sulfonamide (pSEP5) on the bacteria; however, similar to pBluescript II KS(-), the chimeric plasmids did not transform G. anatis 12656-12. A 1.4 kb fragment of the streptomycin cassette from pSEP3 was amplified by PCR and used to construct pSEP7, which in turn was used to interrupt a chromosomal DNA locus of G. anatis by double homologous recombination, introducing strA-strB into the G. anatis chromosome. CONCLUSION The pOV plasmid is a wide-range, low-copy-number plasmid that is able to replicate in some gamma-proteobacteria. Part of this plasmid was integrated into the G. anatis 12656-12 chromosome. This construct may prove to be a useful tool for genetic studies of G. anatis.
Collapse
Affiliation(s)
- Ana Jaqueline López-Ochoa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México.
| | - Guillermo Horta-Valerdi
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Sergio Vaca-Pacheco
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Ricardo Mejía
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | | |
Collapse
|
8
|
Liu Y, Feng Y, Cheng D, Xue J, Wakelin S, Li Z. Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue. BIORESOURCE TECHNOLOGY 2018; 261:249-256. [PMID: 29673993 DOI: 10.1016/j.biortech.2018.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Dynamics in bacterial community composition, along with 13 antibiotic resistance genes (ARGs) and eight mobile genetic elements (MGEs), were assessed during co-composting with gentamicin and lovastatin fermentation residue (GFR and LFR, respectively). Using next generation sequencing, the key bacterial taxa associated with the different stages of composting were identified. Most importantly, Bacillus, belonging to Phylum Firmicutes, was associated with enhanced degradation of gentamicin, decomposition of organic matter (OM) and dissolved organic carbon (DOC), and also extension of the thermophilic phase of the composting cycle. During the course of composting, the patterns of different ARGs/MGEs varied. However, the total and the normalized (to bacterial numbers) copies both remained high. The abundance of various ARGs was related to bacterial abundance and community composition, and the changing pattern of individual ARGs was influenced by the selectivity of MGEs and bacteria.
Collapse
Affiliation(s)
- Yuanwang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| | - Dengmiao Cheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Scion, Private Bag 29237, Christchurch, New Zealand
| | | | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
9
|
Gillings MR. Class 1 integrons as invasive species. Curr Opin Microbiol 2017; 38:10-15. [DOI: 10.1016/j.mib.2017.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023]
|
10
|
Smalla K, Simonet P, Tiedje J, Topp E. Editorial: Special section of FEMS Microbiology Ecology on the environmental dimension of antibiotic resistance. FEMS Microbiol Ecol 2016; 92:fiw172. [DOI: 10.1093/femsec/fiw172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 12/11/2022] Open
|