1
|
Yin Y, Yang T, Li S, Li X, Wang W, Fan S. Transcriptomic analysis reveals that methyl jasmonate confers salt tolerance in alfalfa by regulating antioxidant activity and ion homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1258498. [PMID: 37780521 PMCID: PMC10536279 DOI: 10.3389/fpls.2023.1258498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Introduction Alfalfa, a globally cultivated forage crop, faces significant challenges due to its vulnerability to salt stress. Jasmonates (JAs) play a pivotal role in modulating both plant growth and response to stressors. Methods In this study, alfalfa plants were subjected to 150 mM NaCl with or without methyl jasmonate (MeJA). The physiological parameters were detected and a transcriptomic analysis was performed to elucidate the mechanisms underlying MeJA-mediated salt tolerance in alfalfa. Results Results showed that exogenous MeJA regulated alfalfa seed germination and primary root growth in a dose-dependent manner, with 5µM MeJA exerting the most efficient in enhancing salt tolerance. MeJA at this concentration elavated the salt tolerance of young alfalfa seedlings by refining plant growth, enhancing antioxidant capacity and ameliorating Na+ overaccumulation. Subsequent transcriptomic analysis identified genes differentially regulated by MeJA+NaCl treatment and NaCl alone. PageMan analysis revealed several significantly enriched categories altered by MeJA+NaCl treatment, compared with NaCl treatment alone, including genes involved in secondary metabolism, glutathione-based redox regulation, cell cycle, transcription factors (TFs), and other signal transductions (such as calcium and ROS). Further weighted gene co-expression network analysis (WGCNA) uncovered that turquoise and yellow gene modules were tightly linked to antioxidant enzymes activity and ion content, respectively. Pyruvate decar-boxylase (PDC) and RNA demethylase (ALKBH10B) were identified as the most central hub genes in these two modules. Also, some TFs-hub genes were identified by WGCNA in these two modules highly positive-related to antioxidant enzymes activity and ion content. Discussion MeJA triggered a large-scale transcriptomic remodeling, which might be mediated by transcriptional regulation through TFs or post-transcriptional regulation through demethylation. Our findings contributed new perspectives for understanding the underneath mechanisms by which JA-mediated salt tolerance in alfalfa.
Collapse
Affiliation(s)
- YanLing Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - TianHui Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shuang Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Xiaoning Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Wei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - ShuGao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
2
|
Yurt MNZ, Ersoy Omeroglu E, Tasbasi BB, Acar EE, Altunbas O, Ozalp VC, Sudagidan M. Bacterial and fungal microbiota of mould‐ripened cheese produced in Konya. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Mediha Nur Zafer Yurt
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Esra Ersoy Omeroglu
- Biology Department, Basic and Industrial Microbiology Section, Faculty of Science Ege University Izmir 35040 Türkiye
| | - Behiye Busra Tasbasi
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Elif Esma Acar
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Osman Altunbas
- SARGEM Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Faculty of Medicine Atilim University Ankara 06830 Türkiye
| | - Mert Sudagidan
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| |
Collapse
|
3
|
Farkas A, Coman C, Szekeres E, Teban-Man A, Carpa R, Butiuc-Keul A. Molecular Typing Reveals Environmental Dispersion of Antibiotic-Resistant Enterococci under Anthropogenic Pressure. Antibiotics (Basel) 2022; 11:antibiotics11091213. [PMID: 36139992 PMCID: PMC9494986 DOI: 10.3390/antibiotics11091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
As a consequence of global demographic challenges, both the artificial and the natural environment are increasingly impacted by contaminants of emerging concern, such as bacterial pathogens and their antibiotic resistance genes (ARGs). The aim of this study was to determine the extent to which anthropogenic contamination contributes to the spread of antibiotic resistant enterococci in aquatic compartments and to explore genetic relationships among Enterococcus strains. Antimicrobial susceptibility testing (ampicillin, imipenem, norfloxacin, gentamycin, vancomycin, erythromycin, tetracycline, trimethoprim-sulfamethoxazole) of 574 isolates showed different rates of phenotypic resistance in bacteria from wastewaters (91.9–94.4%), hospital effluents (73.9%), surface waters (8.2–55.3%) and groundwater (35.1–59.1%). The level of multidrug resistance reached 44.6% in enterococci from hospital effluents. In all samples, except for hospital sewage, the predominant species were E. faecium and E. faecalis. In addition, E. avium, E. durans, E. gallinarum, E. aquimarinus and E. casseliflavus were identified. Enterococcus faecium strains carried the greatest variety of ARGs (blaTEM-1, aac(6′)-Ie-aph(2″), aac(6′)-Im, vanA, vanB, ermB, mefA, tetB, tetC, tetL, tetM, sul1), while E. avium displayed the highest ARG frequency. Molecular typing using the ERIC2 primer revealed substantial genetic heterogeneity, but also clusters of enterococci from different aquatic compartments. Enterococcal migration under anthropogenic pressure leads to the dispersion of clinically relevant strains into the natural environment and water resources. In conclusion, ERIC-PCR fingerprinting in conjunction with ARG profiling is a useful tool for the molecular typing of clinical and environmental Enterococcus species. These results underline the need of safeguarding water quality as a strategy to limit the expansion and progression of the impending antibiotic-resistance crisis.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Adela Teban-Man
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Coliphages and Gastrointestinal Illness in Recreational Waters: Pooled Analysis of Six Coastal Beach Cohorts. Epidemiology 2018; 28:644-652. [PMID: 28489717 PMCID: PMC5538927 DOI: 10.1097/ede.0000000000000681] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between coliphages and gastrointestinal illness and compared it with the association with culturable enterococci. METHODS We pooled data from six prospective cohort studies that enrolled coastal beachgoers in California, Alabama, and Rhode Island. Water samples were collected and gastrointestinal illness within 10 days of the beach visit was recorded. Samples were tested for enterococci and male-specific and somatic coliphages. We estimated cumulative incidence ratios (CIR) for the association between swimming in water with detectable coliphage and gastrointestinal illness when human fecal pollution was likely present, not likely present, and under all conditions combined. The reference group was unexposed swimmers. We defined continuous and threshold-based exposures (coliphage present/absent, enterococci >35 vs. ≤35 CFU/100 ml). RESULTS Under all conditions combined, there was no association between gastrointestinal illness and swimming in water with detectable coliphage or enterococci. When human fecal pollution was likely present, coliphage and enterococci were associated with increased gastrointestinal illness, and there was an association between male-specific coliphage level and illness that was somewhat stronger than the association between enterococci and illness. There were no substantial differences between male-specific and somatic coliphage. CONCLUSIONS Somatic coliphage and enterococci had similar associations with gastrointestinal illness; there was some evidence that male-specific coliphage had a stronger association with illness than enterococci in marine waters with human fecal contamination.
Collapse
|
5
|
Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14080874. [PMID: 28777324 PMCID: PMC5580578 DOI: 10.3390/ijerph14080874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool.
Collapse
|
6
|
Goodwin KD, Schriewer A, Jirik A, Curtis K, Crumpacker A. Consideration of Natural Sources in a Bacteria TMDL-Lines of Evidence, Including Beach Microbial Source Tracking. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017. [PMID: 28633521 DOI: 10.1021/acs.est.6b05886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Total Maximum Daily Load (TMDL) stipulations remained unmet at a southern California beach despite a suite of management actions carried out since 2001, prompting exploration of a Natural Sources Exclusion (NSE) provision within the TMDL. Quantitative Microbial Source Tracking (MST) was employed from 2012 to 2015 to inventory sources of natural and anthropogenic fecal indicator bacteria (FIB). Data suggested FIB exceedances could be traced to gulls based on gull marker prevalence and correlations with FIB concentrations in seawater, sand, and eelgrass. In contrast, human marker concentrations and a tracer dye test did not indicate prevalent human sources. Exponential decay of gull marker in sand amended with live Catellicoccus marimammalium suggested that measured marker reflected fecal inputs versus growth outside the host. Improved water quality was coincident with a 2013 bird exclusion structure, consistent with NSE. However, load allocation needed for TMDL reconsideration was hampered by variable ratios of FIB, MST markers, and pathogens measured in seawater and in gull, cat, and raccoon feces. Quantitative Microbial Risk Assessment is a suggested path forward because such models can incorporate distributions from a combination of FIB sources and communicate criteria in terms of human health risk.
Collapse
Affiliation(s)
- Kelly D Goodwin
- NOAA Atlantic Oceanographic & Meteorological Laboratory , Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, Florida 33149, United States , stationed at NMFS/SWFSC, La Jolla, California
| | - Alexander Schriewer
- Weston Solutions, Inc. , 5817 Dryden Place Suite 101, Carlsbad, California 92008, United States
| | - Andrew Jirik
- Port of Los Angeles , 425 South Palos Verdes Street, San Pedro, California 90731, United States
| | - Kathryn Curtis
- Port of Los Angeles , 425 South Palos Verdes Street, San Pedro, California 90731, United States
| | - Andrea Crumpacker
- Weston Solutions, Inc. , 5817 Dryden Place Suite 101, Carlsbad, California 92008, United States
| |
Collapse
|
7
|
Brown KI, Boehm AB. Transport of Fecal Indicators from Beach Sand to the Surf Zone by Recirculating Seawater: Laboratory Experiments and Numerical Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12840-12847. [PMID: 27783485 DOI: 10.1021/acs.est.6b02534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recirculating seawater is an important component of submarine groundwater discharge, yet its role in transporting microbial contaminants from beach sand to coastal water is unknown. This study investigated the extent to which recirculating seawater carries fecal indicators, Enterococcus and bird-associated Catellicoccus, through the beach subsurface. Laboratory experiments and numerical modeling were performed to characterize the transport of fecal indicators suspended in seawater through medium-grained beach sand under transient and saturated flow conditions. Enterococcus was measured both by culture (cENT) and DNA assay (tENT), and Catellicoccus (CAT) by DNA assay. There were differences between transport of tENT and CAT compared to cENT through laboratory columns containing beach sands. Under transient flow conditions, first-order attachment rate coefficients (katt) of DNA markers were greater (∼10 h-1) than katt of cENT (∼1 h-1), although under saturated conditions katt values were similar (∼1 h-1). First-order detachment rate coefficients, kdet, of DNA markers were greater (∼1 h-1) than kdet of cENT (∼0.1h-1) under both types of flow conditions. Incorporating the rate coefficients into field-scale subsurface transport simulations showed that, in this sand type, the contribution of recirculating seawater to surf zone contamination is likely to be minimal unless bird feces are deposited close to the land-sea interface.
Collapse
Affiliation(s)
- Kendra I Brown
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-4020, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-4020, United States
| |
Collapse
|
8
|
Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico. J Pathog 2016; 2016:3437214. [PMID: 27144029 PMCID: PMC4842068 DOI: 10.1155/2016/3437214] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted.
Collapse
|