1
|
Carruthers LV, Nordmeyer SC, Anderson TJC, Chevalier FD, Clec’h WL. How should we sample snail microbiomes? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598555. [PMID: 38915569 PMCID: PMC11195231 DOI: 10.1101/2024.06.11.598555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background The microbiome is increasingly recognized to shape many aspects of its host biology and is a key determinant of health and disease. The microbiome may influence transmission of pathogens by their vectors, such as mosquitoes or aquatic snails. We previously sequenced the bacterial 16S V4 ribosomal DNA of the hemolymph (blood) of Biomphalaria spp. snails, one of the vectors of the human blood fluke schistosome. We showed that snail hemolymph harbored an abundant and diverse microbiome. This microbiome is distinct from the water environment and can discriminate snail species and populations. As hemolymph bathes snail organs, we then investigated the heterogeneity of the microbiome in these organs. Results We dissected ten snails for each of two different species (B. alexandrina and B. glabrata) and collected their organs (ovotestis, hepatopancreas, gut, and stomach). We also ground in liquid nitrogen four whole snails of each species. We sampled the water in which the snails were living (environmental controls). Sequencing the 16S V4 rDNA revealed organ-specific microbiomes. These microbiomes harbored a lower diversity than the hemolymph microbiome, and the whole-snail microbiome. The organ microbiomes tend to cluster by physiological function. In addition, we showed that the whole-snail microbiome is more similar to hemolymph microbiome. Conclusions These results are critical for future work on snail microbiomes and show the necessity of sampling individual organ microbiomes to provide a complete description of snail microbiomes.
Collapse
Affiliation(s)
| | | | | | | | - Winka Le Clec’h
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| |
Collapse
|
2
|
Horváthová T, Lafuente E, Bartels J, Wallisch J, Vorburger C. Tolerance to environmental pollution in the freshwater crustacean Asellus aquaticus: A role for the microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13252. [PMID: 38783543 PMCID: PMC11116767 DOI: 10.1111/1758-2229.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Freshwater habitats are frequently contaminated by diverse chemicals of anthropogenic origin, collectively referred to as micropollutants, that can have detrimental effects on aquatic life. The animals' tolerance to micropollutants may be mediated by their microbiome. If polluted aquatic environments select for contaminant-degrading microbes, the acquisition of such microbes by the host may increase its tolerance to pollution. Here we tested for the potential effects of the host microbiome on the growth and survival of juvenile Asellus aquaticus, a widespread freshwater crustacean. Using faecal microbiome transplants, we provided newly hatched juveniles with the microbiome isolated from donor adults reared in either clean or micropollutant-contaminated water and, after transplantation, recipient juveniles were reared in water with and without micropollutants. The experiment revealed a significant negative effect of the micropollutants on the survival of juvenile isopods regardless of the received faecal microbiome. The micropollutants had altered the composition of the bacterial component of the donors' microbiome, which in turn influenced the microbiome of juvenile recipients. Hence, we show that relatively high environmental concentrations of micropollutants reduce survival and alter the microbiome composition of juvenile A. aquaticus, but we have no evidence that tolerance to micropollutants is modulated by their microbiome.
Collapse
Affiliation(s)
- Terézia Horváthová
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Soil Biology and BiochemistryBiology Centre CASČeské BudějoviceCzechia
| | - Elvira Lafuente
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | | | - Christoph Vorburger
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
3
|
Methou P, Cueff‐Gauchard V, Michel LN, Gayet N, Pradillon F, Cambon‐Bonavita M. Symbioses of alvinocaridid shrimps from the South West Pacific: No chemosymbiotic diets but conserved gut microbiomes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:614-630. [PMID: 37752716 PMCID: PMC10667644 DOI: 10.1111/1758-2229.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.-using a combination of electron microscopy, stable isotopes and sequencing approaches. Our observations inside 'head' cavities and on mouthparts showed only a really low coverage of bacterial epibionts. In addition, no clear correlation between isotopic ratios and relative abundance of epibionts on mouthparts could be established among shrimp individuals. Altogether, these results suggest that none of these alvinocaridids rely on chemosynthetic epibionts as their main source of nutrition. Our analyses also revealed a substantial presence of several Firmicutes and Deferribacterota lineages within the foreguts and midguts of these shrimps, which closest known lineages were systematically digestive symbionts associated with alvinocaridids, and more broadly for Firmicutes from digestive systems of other crustaceans from marine and terrestrial ecosystems. Overall, our study opens new perspectives not only about chemosynthetic symbioses of vent shrimps but more largely about digestive microbiomes with potential ancient and evolutionarily conserved bacterial partnerships among crustaceans.
Collapse
Affiliation(s)
- Pierre Methou
- X‐STARJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Valérie Cueff‐Gauchard
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
| | - Loïc N. Michel
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
- Laboratory of Oceanology, Freshwater, and Oceanic Sciences Unit of reSearch (FOCUS)University of LiègeLiègeBelgium
| | - Nicolas Gayet
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
| | - Florence Pradillon
- Univ BrestIfremer, CNRS, Unité Biologie des Environnements Extrêmes marins ProfondsPlouzanéFrance
| | | |
Collapse
|
4
|
Liao A, Hartikainen H, Buser CC. Individual level microbial communities in the digestive system of the freshwater isopod Asellus aquaticus: Complex, robust and prospective. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:188-196. [PMID: 36779263 PMCID: PMC10464695 DOI: 10.1111/1758-2229.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/11/2023] [Indexed: 05/06/2023]
Abstract
The freshwater isopod Asellus aquaticus is an important decomposer of leaf detritus, and its diverse gut microbiome has been depicted as key contributors in lignocellulose degradation as of terrestrial isopods. However, it is not clear whether the individual-level microbiome profiles in the isopod digestive system across different habitats match the implied robust digestion function of the microbiome. Here, we described the bacterial diversity and abundance in the digestive system (hindgut and caeca) of multiple A. aquaticus individuals from two contrasting freshwater habitats. Individuals from a lake and a stream harboured distinct microbiomes, indicating a strong link between the host-associated microbiome and microbes inhabiting the environments. While faeces likely reflected the variations in environmental microbial communities included in the diet, the microbial communities also substantially differed in the hindgut and caeca. Microbes closely related to lignocellulose degradation are found consistently more enriched in the hindgut in each individual. Caeca often associated with taxa implicated in endosymbiotic/parasitic roles (Mycoplasmatales and Rickettsiales), highlighting a complex host-parasite-microbiome interaction. The results highlight the lability of the A. aquaticus microbiome supporting the different functions of the two digestive organs, which may confer particular advantages in freshwater environments characterized by seasonally fluctuating and spatially disparate resource availability.
Collapse
Affiliation(s)
- Aijuan Liao
- ETH Zürich, Institute of Integrative Biology (IBZ)ZürichSwitzerland
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Hanna Hartikainen
- ETH Zürich, Institute of Integrative Biology (IBZ)ZürichSwitzerland
- School of Life SciencesUniversity of Nottingham, University ParkNottinghamUK
- eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Claudia C. Buser
- ETH Zürich, Institute of Integrative Biology (IBZ)ZürichSwitzerland
- eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
5
|
Dittmer J, Bredon M, Moumen B, Raimond M, Grève P, Bouchon D. The terrestrial isopod symbiont 'Candidatus Hepatincola porcellionum' is a potential nutrient scavenger related to Holosporales symbionts of protists. ISME COMMUNICATIONS 2023; 3:18. [PMID: 36882494 PMCID: PMC9992710 DOI: 10.1038/s43705-023-00224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.
Collapse
Affiliation(s)
- Jessica Dittmer
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
- UMR 1345, Université d'Angers, Institut Agro, INRAE, IRHS, SFR Quasav, 42 Rue Georges Morel, 49070, Beaucouzé, France.
| | - Marius Bredon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
- Université Paris-Sorbonne, Centre de Recherche Saint-Antoine, Equipe Microbiote, Intestin et Inflammation, 27 Rue Chaligny, 75012, Paris, France
| | - Bouziane Moumen
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Maryline Raimond
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Pierre Grève
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France
| | - Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, 3 Rue Jacques Fort, 86073, Poitiers, France.
| |
Collapse
|
6
|
Durand S, Lheraud B, Giraud I, Bech N, Grandjean F, Rigaud T, Peccoud J, Cordaux R. Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare. Biol Lett 2023; 19:20220457. [PMID: 36628964 PMCID: PMC9832340 DOI: 10.1098/rsbl.2022.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.
Collapse
Affiliation(s)
- Sylvine Durand
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Baptiste Lheraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Nicolas Bech
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Thierry Rigaud
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
7
|
Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, Du Y, Xing D, Li C, Zhao T, Jiang Y, Dong Y, Guo X, Zhao T. Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China. Front Cell Infect Microbiol 2022; 12:1082809. [PMID: 36530420 PMCID: PMC9748079 DOI: 10.3389/fcimb.2022.1082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China. Methods A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied. Results 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%. Conclusions Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - XiaoXia Guo
- *Correspondence: XiaoXia Guo, ; TongYan Zhao,
| | | |
Collapse
|
8
|
Guts Bacterial Communities of Porcellio dilatatus: Symbionts Predominance, Functional Significance and Putative Biotechnological Potential. Microorganisms 2022; 10:microorganisms10112230. [PMID: 36422301 PMCID: PMC9692603 DOI: 10.3390/microorganisms10112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Terrestrial isopods are effective herbivorous scavengers with an important ecological role in organic matter cycling. Their guts are considered to be a natural enrichment environment for lignocellulosic biomass (LCB)-degrading bacteria. The main goal of this work was to assess the structural diversity of Porcellio dilatatus gut bacterial communities using NGS technologies, and to predict their functional potential using PICRUSt2 software. Pseudomonadota, Actinomycetota, Bacillota, Cyanobacteria, Mycoplasmatota, Bacteroidota, Candidatus Patescibacteria and Chloroflexota were the most abundant phyla found in P. dilatatus gut bacterial communities. At a family level, we identified the presence of eleven common bacterial families. Functionally, the P. dilatatus gut bacterial communities exhibited enrichment in KEGG pathways related to the functional module of metabolism. With the predicted functional profile of P. dilatatus metagenomes, it was possible to envision putative symbiotic relationships between P. dilatatus gut bacterial communities and their hosts. It was also possible to foresee the presence of a well-adapted bacterial community responsible for nutrient uptake for the host and for maintaining host homeostasis. Genes encoding LCB-degrading enzymes were also predicted in all samples. Therefore, the P. dilatatus digestive tract may be considered a potential source of LCB-degrading enzymes that is not to be neglected.
Collapse
|
9
|
Li J, Wei X, Huang D, Xiao J. The Phylosymbiosis Pattern Between the Fig Wasps of the Same Genus and Their Associated Microbiota. Front Microbiol 2022; 12:800190. [PMID: 35237241 PMCID: PMC8882959 DOI: 10.3389/fmicb.2021.800190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities can be critical for many metazoans, which can lead to the observation of phylosymbiosis with phylogenetically related species sharing similar microbial communities. Most of the previous studies on phylosymbiosis were conducted across the host families or genera. However, it is unclear whether the phylosymbiosis signal is still prevalent at lower taxonomic levels. In this study, 54 individuals from six species of the fig wasp genus Ceratosolen (Hymenoptera: Agaonidae) collected from nine natural populations and their associated microbiota were investigated. The fig wasp species were morphologically identified and further determined by mitochondrial CO1 gene fragments and nuclear ITS2 sequences, and the V4 region of 16S rRNA gene was sequenced to analyze the bacterial communities. The results suggest a significant positive correlation between host genetic characteristics and microbial diversity characteristics, indicating the phylosymbiosis signal between the phylogeny of insect hosts and the associated microbiota in the lower classification level within a genus. Moreover, we found that the endosymbiotic Wolbachia carried by fig wasps led to a decrease in bacterial diversity of host-associated microbial communities. This study contributes to our understanding of the role of host phylogeny, as well as the role of endosymbionts in shaping the host-associated microbial community.
Collapse
|
10
|
Oliveira JMM, Henriques I, Read DS, Gweon HS, Morgado RG, Peixoto S, Correia A, Soares AMVM, Loureiro S. Gut and faecal bacterial community of the terrestrial isopod Porcellionides pruinosus: potential use for monitoring exposure scenarios. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2096-2108. [PMID: 34553289 DOI: 10.1007/s10646-021-02477-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to characterize the gut and faeces bacterial communities (BC) of Porcellionides pruinosus using high-throughput sequencing. Isopods were collected from the field and kept in laboratory conditions similar to those normally applied in ecotoxicology tests. Faeces and purged guts of isopods (n = 3 × 30) were analysed by pyrosequencing the V3-V4 region of 16 S rRNA encoding gene. Results showed that gut and faecal BCs were dominated by Proteobacteria, particularly by an OTU (Operational Taxonomic Unit) affiliated to genus Coxiella. Diversity and richness values were statistically higher for faecal BC, mainly due to the occurrence of several low-abundance phylotypes. These results may reflect faecal carriage of bacterial groups that cannot settle in the gut. BCs of P. pruinosus comprised: (1) common members of the soil microbiota, (2) bacterial symbionts, (3) bacteria related to host metabolic/ecological features, and (4) bacterial etiological agents. Comparison of BC of this isopod species with the BC from other invertebrates revealed common bacterial groups across taxa. The baseline information provided by this work will assist the design and data interpretation of future ecotoxicological or biomonitoring assays where the analysis of P. pruinosus BC should be included as an additional indicator. CAPSULE: Terrestrial isopods bacterial communities might support ecotoxicological assays and biomonitoring processes as a valuable tool.
Collapse
Affiliation(s)
- Jacinta M M Oliveira
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- University of Coimbra, CESAM & Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal.
| | - Daniel S Read
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Hyun S Gweon
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH, UK
| | - Rui G Morgado
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sara Peixoto
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - António Correia
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
11
|
Schapheer C, Pellens R, Scherson R. Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation. Front Microbiol 2021; 12:702763. [PMID: 34408733 PMCID: PMC8365148 DOI: 10.3389/fmicb.2021.702763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Recent reports indicate that the health of our planet is getting worse and that genuine transformative changes are pressing. So far, efforts to ameliorate Earth's ecosystem crises have been insufficient, as these often depart from current knowledge of the underlying ecological processes. Nowadays, biodiversity loss and the alterations in biogeochemical cycles are reaching thresholds that put the survival of our species at risk. Biological interactions are fundamental for achieving biological conservation and restoration of ecological processes, especially those that contribute to nutrient cycles. Microorganism are recognized as key players in ecological interactions and nutrient cycling, both free-living and in symbiotic associations with multicellular organisms. This latter assemblage work as a functional ecological unit called "holobiont." Here, we review the emergent ecosystem properties derived from holobionts, with special emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms. We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin and cellulose). Finally, based on the interconnection between biodiversity and nutrient cycling, we propose that a multicellular organism and its associates constitute an Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out key ecosystem processes. We emphasize that in order to meet the challenge to restore the health of our planet it is critical to reduce anthropic pressures that may threaten not only individual entities (known as "bionts") but also the stability of the associations that give rise to EH and their ecological functions.
Collapse
Affiliation(s)
- Constanza Schapheer
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Roseli Pellens
- UMR 7205, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Ecole Pratique de Hautes Etudes, Institut de Systématique, Évolution, Biodiversité, Sorbonne Université, Université des Antilles, Paris, France
| | - Rosa Scherson
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
García Hernández E, Berg MP, Van Oosten AR, Smit C, Falcão Salles J. Linking Bacterial Communities Associated with the Environment and the Ecosystem Engineer Orchestia gammarellus at Contrasting Salt Marsh Elevations. MICROBIAL ECOLOGY 2021; 82:537-548. [PMID: 33420910 PMCID: PMC8384807 DOI: 10.1007/s00248-020-01656-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The digestive tract of animals harbors microbiota important for the host's fitness and performance. The interaction between digestive tract bacteria and soil animal hosts is still poorly explored despite the importance of soil fauna for ecosystem processes. In this study, we investigated the interactions between the bacterial communities from the digestive tract of the litter-feeding, semi-terrestrial crustacean Orchestia gammarellus and those obtained from the environment; these organisms thrive in, i.e., soil and plant litter from salt marshes. We hypothesized that elevation is an important driver of soil and litter bacterial communities, which indirectly (via ingested soil and litter bacteria) influences the bacterial communities in the digestive tract of O. gammarellus. Indeed, our results revealed that elevation modulated soil and litter bacterial community composition along with soil organic matter content and the C:N ratio. Soil and plant litter differed in alpha diversity indexes (richness and diversity), and in the case of plant litter, both indexes increased with elevation. In contrast, elevation did not affect the composition of bacterial communities associated with O. gammarellus' digestive tract, suggesting selection by the host, despite the fact that a large component of the bacterial community was also detected in external sources. Importantly, Ca. Bacilloplasma and Vibrio were highly prevalent and abundant in the host. The taxonomic comparison of Ca. Bacilloplasma amplicon sequence variants across the host at different elevations suggested a phylogenetic divergence due to host habitat (i.e., marine or semi-terrestrial), thus supporting their potential functional role in the animal physiology. Our study sheds light on the influence of the environment on soil animal-bacteria interactions and provides insights into the resilience of the O. gammarellus-associated bacteria to increased flooding frequency.
Collapse
Affiliation(s)
- Edisa García Hernández
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Matty P Berg
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - A Raoul Van Oosten
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
13
|
Zimmermann BL, Cardoso GM, Bouchon D, Pezzi PH, Palaoro AV, Araujo PB. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites? Evol Ecol 2021; 35:165-182. [PMID: 33500597 PMCID: PMC7819146 DOI: 10.1007/s10682-021-10101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Horizontal transmission between distantly related species has been used to explain how Wolbachia infect multiple species at astonishing rates despite the selection for resistance. Recently, a terrestrial isopod species was found to be infected by an unusual strain of supergroup F Wolbachia. However, only Wolbachia of supergroup B is typically found in isopods. One possibility is that these isopods acquired the infection because of their recurrent contact with termites—a group with strong evidence of infection by supergroup F Wolbachia. Thus, our goals were: (1) check if the infection was an isolated case in isopods, or if it revealed a broader pattern; (2) search for Wolbachia infection in the termites within Brazil; and (3) look for evidence consistent with horizontal transmission between isopods and termites. We collected Neotroponiscus terrestrial isopods and termites along the Brazilian coastal Atlantic forest. We sequenced and identified the Wolbachia strains found in these groups using coxA, dnaA, and fpbA genes. We constructed phylogenies for both bacteria and host taxa and tested for coevolution. We found the supergroup F Wolbachia in other species and populations of Neotroponiscus, and also in Nasutitermes and Procornitermes termites. The phylogenies showed that, despite the phylogenetic distance between isopods and termites, the Wolbachia strains clustered together. Furthermore, cophylogenetic analyses showed significant jumps of Wolbachia between terrestrial isopods and termites. Thus, our study suggests that the horizontal transmission of supergroup F Wolbachia between termites and terrestrial isopods is likely. Our study also helps understanding the success and worldwide distribution of this symbiont.
Collapse
Affiliation(s)
- Bianca Laís Zimmermann
- Instituto Federal de Ciências e Tecnologia do Rio Grande Do Sul. Rua Nelsi Ribas Fritsch, 1111, Bairro Esperança, Ibirubá, Rio Grande Do Sul CEP 98200-000 Brazil
| | - Giovanna M Cardoso
- Centro de Estudos em Biologia Subterrânea, Departamento de Biologia, Programa de Pós-Graduação em Ecologia Aplicada, Universidade Federal de Lavras, Campus Universitário, CP 3037, Lavras, Minas Gerais CEP 37200-900 Brazil
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie Et Biologie Des Interactions, Université de Poitiers, 5 Rue Albert Turpain, Batiment B8-B35, TSA 51106, 86073 Poitiers, France
| | - Pedro H Pezzi
- Departamento de Zoologia, Laboratório de Carcinologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande Do Sul CEP 91501-970 Brazil
| | - Alexandre V Palaoro
- LUTA do, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275, Bairro Eldorado, Diadema, São Paulo CEP 09972-270 Brazil
| | - Paula B Araujo
- Departamento de Zoologia, Laboratório de Carcinologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande Do Sul CEP 91501-970 Brazil
| |
Collapse
|
14
|
Bredon M, Depuydt E, Brisson L, Moulin L, Charles C, Haenn S, Moumen B, Bouchon D. Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod. Microorganisms 2021; 9:microorganisms9010148. [PMID: 33440837 PMCID: PMC7826753 DOI: 10.3390/microorganisms9010148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.
Collapse
Affiliation(s)
- Marius Bredon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Elisabeth Depuydt
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Lucas Brisson
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Laurent Moulin
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
| | - Ciriac Charles
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
- Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, F-94700 Maisons-Alfort, France
| | - Sophie Haenn
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
| | - Bouziane Moumen
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
- Correspondence: ; Tel.: +33-(0)5-49-45-38-95; Fax: +33-(0)5-49-45-40-15
| |
Collapse
|
15
|
Des Marteaux LE, Kullik SA, Habash M, Schmidt JM. Terrestrial Isopods Porcellio scaber and Oniscus asellus (Crustacea: Isopoda) Increase Bacterial Abundance and Modify Microbial Community Structure in Leaf Litter Microcosms: a Short-Term Decomposition Study. MICROBIAL ECOLOGY 2020; 80:690-702. [PMID: 32440700 DOI: 10.1007/s00248-020-01527-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Invasive terrestrial isopods are likely to have altered leaf litter decomposition processes in North American forests, but the mechanisms underlying these alterations and the degree to which they differ among isopod species are poorly characterized. Using mixed-deciduous leaf litter microcosms, we quantified the effects of two common, invasive isopods (Oniscus asellus and Porcellio scaber) on short-term leaf litter decomposition and microbial community structure and function. Microcosms containing ground litter and a microbial inoculant were exposed to one of the two isopod species or no isopods for 21 days. Mass loss was then quantified as the change in litter dry mass after leaching, and microbial respiration was quantified as the mass of CO2 absorbed by soda lime. Litter leachates were plated on agar to quantify culturable bacterial and fungal abundance, and denaturing gradient gel electrophoresis of amplified leachate microbial DNA was used to characterize shifts in microbial community structure. Isopod presence increased litter mass loss by a modest ~ 6%, but did not affect litter microbial respiration. Bacterial abundance increased significantly in the presence of isopods, while fungal abundance was either unchanged or reduced. Overall litter microbial species richness was reduced by isopods, with O. asellus specifically reducing fungal abundance and diversity. Isopods modified the microbial community structure by suppressing four bacterial and one fungal species, while promoting growth of four other bacterial species (two unique to each isopod species) and two fungal species (one which was unique to O. asellus).
Collapse
Affiliation(s)
- Lauren E Des Marteaux
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
- Graduate School of Science, Osaka City University, Osaka, Japan.
| | - Sigrun A Kullik
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Marc Habash
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Jonathan M Schmidt
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Delhoumi M, Catania V, Zaabar W, Tolone M, Quatrini P, Achouri MS. The gut microbiota structure of the terrestrial isopod Porcellionides pruinosus (Isopoda: Oniscidea). EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1781269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Delhoumi
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - V. Catania
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - W. Zaabar
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
| | - M. Tolone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| | - P. Quatrini
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - M. S. Achouri
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
| |
Collapse
|
17
|
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett 2020; 366:5637388. [PMID: 31750894 DOI: 10.1093/femsle/fnz232] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation and antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here, we review both environmental and biological factors modulating Wolbachia titers in arthropods.
Collapse
Affiliation(s)
| | - Elves H Duarte
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande, 6. 2780-156 Oeiras, Portugal.,Departamento de Ciências e Tecnologia, Universidade de Cabo Verde. Palmarejo, CP 279 - Praia, Cabo Verde
| |
Collapse
|
18
|
Bredon M, Herran B, Bertaux J, Grève P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:49. [PMID: 32190114 PMCID: PMC7071664 DOI: 10.1186/s13068-020-01683-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
19
|
Chouaia B, Goda N, Mazza G, Alali S, Florian F, Gionechetti F, Callegari M, Gonella E, Magoga G, Fusi M, Crotti E, Daffonchio D, Alma A, Paoli F, Roversi PF, Marianelli L, Montagna M. Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). Environ Microbiol 2019; 21:4343-4359. [PMID: 31502415 DOI: 10.1111/1462-2920.14797] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.
Collapse
Affiliation(s)
- Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Nizar Goda
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Giuseppe Mazza
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Sumer Alali
- Dipartimento di Scienze e politiche ambientali (DESP), Università degli Studi di Milano, 20133, Milan, Italy
| | - Fiorella Florian
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Fabrizia Gionechetti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Matteo Callegari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Giulia Magoga
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, 10095, Grugliasco, Italy
| | - Francesco Paoli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Pio Federico Roversi
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Leonardo Marianelli
- CREA-DC, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Research Centre for Plant Protection and Certification, via di Lanciola 12/A, 50125, Cascine del Riccio, Florence, Italy
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
20
|
Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefèvre C, Hervé V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol Lett 2019; 365:4904115. [PMID: 29579215 DOI: 10.1093/femsle/fny046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
There are multiple forms of interactions between termites and bacteria. In addition to their gut microbiota, which has been intensively studied, termites host intracellular symbionts such as Wolbachia. These distinct symbioses have been so far approached independently and mostly in adult termites. We addressed the dynamics of Wolbachia and the microbiota of the eggs and gut for various life stages and castes of the wood-feeding termite, Nasutitermes arborum, using deep-sequencing of the 16S rRNA gene. Wolbachia was dominant in eggs as expected. Unexpectedly, it persisted in the gut of nearly all stages and castes, indicating a wide somatic distribution in termites. Wolbachia-related sequences clustered into few operational taxonomic units, but these were within the same genotype, acquired maternally. Wolbachia was largely dominant in DNA extracts from the guts of larvae and pre-soldiers (59.1%-99.1% of reads) where gut-resident lineages were less represented and less diverse. The reverse was true for the adult castes. This is the first study reporting the age-dependency of the relative abundance of Wolbachia in the termite gut and its negative correlation with the diversity of the microbiota. The possible mechanisms underlying this negative interaction are discussed.
Collapse
Affiliation(s)
- Michel Diouf
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Edouard Miambi
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Philippe Mora
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Sophie Frechault
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Alain Robert
- Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). Centre IRD France Nord, 32 Avenue Henri Varagnat, 93143 Bondy, France
| | - Corinne Rouland-Lefèvre
- Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (IEES, Paris). Centre IRD France Nord, 32 Avenue Henri Varagnat, 93143 Bondy, France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| |
Collapse
|
21
|
Parlapani F, Michailidou S, Anagnostopoulos D, Koromilas S, Kios K, Pasentsis K, Psomopoulos F, Argiriou A, Haroutounian S, Boziaris I. Bacterial communities and potential spoilage markers of whole blue crab (Callinectes sapidus) stored under commercial simulated conditions. Food Microbiol 2019; 82:325-333. [DOI: 10.1016/j.fm.2019.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 11/30/2022]
|
22
|
Agamennone V, Le NG, van Straalen NM, Brouwer A, Roelofs D. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci Rep 2019; 9:7308. [PMID: 31086216 PMCID: PMC6513849 DOI: 10.1038/s41598-019-43828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiome associated with an animal's gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate Folsomia candida, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to F. candida genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by Folsomia's metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.
Collapse
Affiliation(s)
- Valeria Agamennone
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Systems Biology, TNO, Zeist, The Netherlands.
| | - Ngoc Giang Le
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nico M van Straalen
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Dick Roelofs
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Horváthová T, Babik W, Kozłowski J, Bauchinger U. Vanishing benefits - The loss of actinobacterial symbionts at elevated temperatures. J Therm Biol 2019; 82:222-228. [PMID: 31128651 DOI: 10.1016/j.jtherbio.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Only a few insect species are known to engage in symbiotic associations with antibiotic-producing Actinobacteria and profit from this kind of protection against pathogens. However, it still remains elusive how widespread the symbiotic interactions with Actinobacteria in other organisms are and how these partnerships benefit the hosts in terms of the growth and survival. We characterized a drastic temperature-induced change in the occurrence of Actinobacteria in the gut of the terrestrial isopod Porcellio scaber reared under two different temperature (15 °C and 22 °C) and oxygen conditions (10% and 22% O2) using 16S rRNA gene sequencing. We show that the relative abundance of actinobacterial gut symbionts correlates with increased host growth at lower temperature. Actinobacterial symbionts were almost completely absent at 22 °C under both high and low oxygen conditions. In addition, we identified members of nearly half of the known actinobacterial families in the isopod microbiome, and most of these include members that are known to produce antibiotics. Our study suggests that hosting diverse actinobacterial symbionts may provide conditions favorable for host growth. These findings show how a temperature-driven decline in microbiome diversity may cause a loss of beneficial functions with negative effects on ectotherms.
Collapse
Affiliation(s)
- Terézia Horváthová
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland; Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, České Budějovice, Czech Republic.
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Jan Kozłowski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Delhoumi M, Zaabar W, Bouslama MF, Achouri MS. Effect of symbiont acquisition on growth, survival and fertility of the terrestrial isopod Porcellionides pruinosus (Crustacea, Oniscidea). INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2018.1544174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Majed Delhoumi
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Manar II, Tunisia
| | - Wahiba Zaabar
- Ministry of education, Ben Arous regional directorate, Ben Arous, Tunisia
| | | | - Mohamed Sghaier Achouri
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Manar II, Tunisia
| |
Collapse
|
25
|
Clarke LJ, Suter L, King R, Bissett A, Deagle BE. Antarctic Krill Are Reservoirs for Distinct Southern Ocean Microbial Communities. Front Microbiol 2019; 9:3226. [PMID: 30697197 PMCID: PMC6340936 DOI: 10.3389/fmicb.2018.03226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Host-associated bacterial communities have received limited attention in polar habitats, but are likely to represent distinct nutrient-rich niches compared to the surrounding environment. Antarctic krill (Euphausia superba) are a super-abundant species with a circumpolar distribution, and the krill microbiome may make a substantial contribution to marine bacterial diversity in the Southern Ocean. We used high-throughput sequencing of the bacterial 16S ribosomal RNA gene to characterize bacterial diversity in seawater and krill tissue samples from four locations south of the Kerguelen Plateau, one of the most productive regions in the Indian Sector of the Southern Ocean. Krill-associated bacterial communities were distinct from those of the surrounding seawater, with different communities inhabiting the moults, digestive tract and faecal pellets, including several phyla not detected in the surrounding seawater. Digestive tissues from many individuals contained a potential gut symbiont (order: Mycoplasmoidales) shown to improve survival on a low quality diet in other crustaceans. Antarctic krill swarms thus influence Southern Ocean microbial communities not only through top-down grazing of eukaryotic cells and release of nutrients into the water column, but also by transporting distinct microbial assemblages horizontally via migration and vertically via sinking faecal pellets and moulted exuviae. Changes to Antarctic krill demographics or distribution through fishing pressure or climate-induced range shifts will also influence the composition and dispersal of Southern Ocean microbial communities.
Collapse
Affiliation(s)
- Laurence J Clarke
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
| | - Léonie Suter
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Robert King
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | | |
Collapse
|
26
|
Zimmermann BL, Palaoro AV, Bouchon D, Almerão MP, Araujo PB. How coexistence may influence life history: the reproductive strategies of sympatric congeneric terrestrial isopods (Crustacea, Oniscidea). CAN J ZOOL 2018. [DOI: 10.1139/cjz-2018-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterns of allocation between reproduction, survival, and maintenance are what we call life history. By investigating the life-history strategy of sympatric species, we may understand how they are able to coexist, as different strategies are expected to evolve in species that occupy similar niche space. Terrestrial isopods are a group in which multiple species frequently inhabit the same area. Notably, they are usually infected by Wolbachia Hertig, 1936, a notorious manipulator of the hosts’ reproductive processes. Thus, the aim of this study was to analyze the investment in reproduction in three sympatric and closely related species of terrestrial isopods: Atlantoscia floridana (Van Name, 1940), Atlantoscia inflata Campos-Filho and Araujo, 2015, and Atlantoscia petronioi Campos-Filho, Contreira and Lopes-Leitzke, 2012, only the latter being infected with Wolbachia. We showed that the presence of the bacteria seems not to affect the fitness of A. petronioi, because there was no clear difference in the reproductive output of infected and noninfected individuals. On the other hand, we observed that the three species possess alternative life-history strategies; that is, they differ in how much they invest in maintenance (body size) and reproductive effort. Such differences probably facilitate the species coexistence, reducing the competition among them.
Collapse
Affiliation(s)
- Bianca Laís Zimmermann
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Bairro Camobi, 97105-900, Santa Maria, RS, Brazil
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bairro Agronomia, 91501-970, Porto Alegre, Brazil
| | - Alexandre Varaschin Palaoro
- LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 321 - Trav. 14, Cid. Universitária, 05508-090, São Paulo, Brazil
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, Université de Poitiers, Batiment B8-B35, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | | | - Paula Beatriz Araujo
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bairro Agronomia, 91501-970, Porto Alegre, Brazil
| |
Collapse
|
27
|
Duron O, Doublet P, Vavre F, Bouchon D. The Importance of Revisiting Legionellales Diversity. Trends Parasitol 2018; 34:1027-1037. [PMID: 30322750 DOI: 10.1016/j.pt.2018.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Bacteria of the order Legionellales, such as Legionella pneumophila, the agent of Legionnaires' disease, and Coxiella burnetii, the agent of Q fever, are widely recognized as human pathogens. While our view of the Legionellales is often limited to clinical isolates, ecological surveys are continually uncovering new members of the Legionellales that do not fall into the recognized pathogenic species. Here we emphasize that most of these Legionellales are nonpathogenic forms that have evolved symbiotic lifestyles with nonvertebrate hosts. The diversity of nonpathogenic forms remains, however, largely underexplored. We conjecture that its characterization, once contrasted with the data on pathogenic species, will reveal novel highlights on the mechanisms underlying lifestyle transitions of intracellular bacteria, including the emergence of pathogenesis and mutualism, transmission routes, and host specificity.
Collapse
Affiliation(s)
- Olivier Duron
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), 911 Avenue Agropolis, F-34394 Montpellier, France.
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon, F-69100 Villeurbanne, France
| | - Fabrice Vavre
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Didier Bouchon
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, F-86073 Poitiers, France
| |
Collapse
|
28
|
Bredon M, Dittmer J, Noël C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. MICROBIOME 2018; 6:162. [PMID: 30223906 PMCID: PMC6142342 DOI: 10.1186/s40168-018-0536-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts. RESULTS To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare. CONCLUSIONS Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Jessica Dittmer
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cyril Noël
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Equipe Ecologie Evolution Symbiose-Batiment B8-B35, Université de Poitiers, 5 rue Albert Turpain, TSA 51106, F-86073 Poitiers Cedex 9, France
| |
Collapse
|
29
|
Wenzel MA, Douglas A, Piertney SB. Microbiome composition within a sympatric species complex of intertidal isopods (Jaera albifrons). PLoS One 2018; 13:e0202212. [PMID: 30157257 PMCID: PMC6114722 DOI: 10.1371/journal.pone.0202212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023] Open
Abstract
The increasingly recognised effects of microbiomes on the eco-evolutionary dynamics of their hosts are promoting a view of the "hologenome" as an integral host-symbiont evolutionary entity. For example, sex-ratio distorting reproductive parasites such as Wolbachia are well-studied pivotal drivers of invertebrate reproductive processes, and more recent work is highlighting novel effects of microbiome assemblages on host mating behaviour and developmental incompatibilities that underpin or reinforce reproductive isolation processes. However, examining the hologenome and its eco-evolutionary effects in natural populations is challenging because microbiome composition is considerably influenced by environmental factors. Here we illustrate these challenges in a sympatric species complex of intertidal isopods (Jaera albifrons spp.) with pervasive sex-ratio distortion and ecological and behavioural reproductive isolation mechanisms. We deep-sequence the bacterial 16S rRNA gene among males and females collected in spring and summer from two coasts in north-east Scotland, and examine microbiome composition with a particular focus on reproductive parasites. Microbiomes of all species were diverse (overall 3,317 unique sequences among 3.8 million reads) and comprised mainly Proteobacteria and Bacteroidetes taxa typical of the marine intertidal zone, in particular Vibrio spp. However, we found little evidence of the reproductive parasites Wolbachia, Rickettsia, Spiroplasma and Cardinium, suggesting alternative causes of sex-ratio distortion. Notwithstanding, a significant proportion of the variance in microbiome composition among samples was explained by sex (14.1 %), nested within geographic (26.9 %) and seasonal (39.6 %) variance components. The functional relevance of this sex signal was difficult to ascertain given the absence of reproductive parasites, the ephemeral nature of the species assemblages and substantial environmental variability. These results establish the Jaera albifrons species complex as an intriguing system for examining the effects of microbiomes on reproductive processes and speciation, and highlight the difficulties associated with snapshot assays of microbiome composition in dynamic and complex environments.
Collapse
Affiliation(s)
- Marius A. Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Stuart B. Piertney
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
30
|
Dittmer J, Bouchon D. Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Sci Rep 2018; 8:6998. [PMID: 29725059 PMCID: PMC5934373 DOI: 10.1038/s41598-018-25450-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
Wolbachia are widespread heritable endosymbionts of arthropods notorious for their profound effects on host fitness as well as for providing protection against viruses and eukaryotic parasites, indicating that they can interact with other microorganisms sharing the same host environment. Using the terrestrial isopod crustacean Armadillidium vulgare, its highly diverse microbiota (>200 bacterial genera) and its three feminizing Wolbachia strains (wVulC, wVulM, wVulP) as a model system, the present study demonstrates that Wolbachia can even influence the composition of a diverse bacterial community under both laboratory and natural conditions. While host origin is the major determinant of the taxonomic composition of the microbiota in A. vulgare, Wolbachia infection affected both the presence and, more importantly, the abundance of many bacterial taxa within each host population, possibly due to competitive interactions. Moreover, different Wolbachia strains had different impacts on microbiota composition. As such, infection with wVulC affected a higher number of taxa than infection with wVulM, possibly due to intrinsic differences in virulence and titer between these two strains. In conclusion, this study shows that heritable endosymbionts such as Wolbachia can act as biotic factors shaping the microbiota of arthropods, with as yet unknown consequences on host fitness.
Collapse
Affiliation(s)
- Jessica Dittmer
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, 5 rue Albert Turpin, 86073, Poitiers, France
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, 5 rue Albert Turpin, 86073, Poitiers, France.
| |
Collapse
|
31
|
Aires T, Serebryakova A, Viard F, Serrão EA, Engelen AH. Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency. PeerJ 2018; 6:e4377. [PMID: 29610702 PMCID: PMC5880178 DOI: 10.7717/peerj.4377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/26/2018] [Indexed: 01/28/2023] Open
Abstract
Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased seaweeds, suggesting that acidification may facilitate opportunistic/pathogenic bacteria. In the gut of S. nadejda, the bacterial genus Planctomycetia increased abundance under elevated CO2. This shift might be associated to changes in food (S. muticum) quality under acidification. Planctomycetia are slow-acting decomposers of algal polymers that could be providing the isopod with an elevated algal digestion and availability of inorganic compounds to compensate the shifted C/N ratio under acidification in their food. In conclusion, our results indicate that even after only three weeks of acidified conditions, bacterial communities associated to ungrazed seaweed and to an isopod grazer show specific, differential shifts in associated bacterial community. These have potential consequences for seaweed health (as shown in corals) and isopod food digestion. The observed changes in the gut microbiome of the grazer seem to reflect changes in the seaweed chemistry rather than its microbial composition.
Collapse
Affiliation(s)
- Tania Aires
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Alexandra Serebryakova
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal.,Sorbonne Université, CNRS, Lab Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU), Station Biologique de Roscoff, Roscoff, France
| | - Frédérique Viard
- Sorbonne Université, CNRS, Lab Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU), Station Biologique de Roscoff, Roscoff, France.,CNRS, UMR 7144, Divco Team, Station Biologique de Roscoff, Roscoff, France
| | - Ester A Serrão
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Aschwin H Engelen
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
32
|
Le Clec'h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in Wolbachia virulence towards its native host across serial horizontal passages. Proc Biol Sci 2018; 284:rspb.2017.1076. [PMID: 28724736 DOI: 10.1098/rspb.2017.1076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Vertical transmission mode is predicted to decrease the virulence of symbionts. However, Wolbachia, a widespread vertically transmitted endosymbiont, exhibits both negative and beneficial effects on arthropod fitness. This 'Jekyll and Hyde' behaviour, as well as its ability to live transiently outside host cells and to establish new infections via horizontal transmission, may reflect the capacity of Wolbachia to exhibit various phenotypes depending on the prevailing environmental constraints. To study the ability of Wolbachia to readily cope with new constraints, we forced this endosymbiont to spread only via horizontal transmission. To achieve this, we performed serial horizontal transfers of haemolymph from Wolbachia-infected to naive individuals of the isopod Armadillidium vulgare. Across passages, we observed phenotypic changes in the symbiotic relationship: (i) The Wolbachia titre increased in both haemolymph and nerve cord but remained stable in ovaries; (ii) Wolbachia infection was benign at the beginning of the experiment, but highly virulent, killing most hosts after only a few passages. Such a phenotypic shift after recurrent horizontal passages demonstrates that Wolbachia can rapidly change its virulence when facing new environmental constraints. We thoroughly discuss the potential mechanism(s) underlying this phenotypic change, which are likely to be crucial for the ongoing radiation of Wolbachia in arthropods.
Collapse
Affiliation(s)
- Winka Le Clec'h
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, 78245 San Antonio, TX, USA.,CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Jessica Dittmer
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA.,CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Maryline Raimond
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Mathieu Sicard
- CNRS UMR 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, 5 rue Albert Turpain, 86073 Poitiers, France .,Institut des Sciences de l'Evolution de Montpellier (UMR CNRS-IRD-UM 5554), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
33
|
Majed D, Wahiba Z, Fadhel BM, Sghaier AM. Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S rDNA Analysis by PCR-DGGE. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/oje.2018.89030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wang Y, Chandler C. Candidate pathogenicity islands in the genome of ' Candidatus Rickettsiella isopodorum', an intracellular bacterium infecting terrestrial isopod crustaceans. PeerJ 2016; 4:e2806. [PMID: 28028472 PMCID: PMC5181103 DOI: 10.7717/peerj.2806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/20/2016] [Indexed: 01/31/2023] Open
Abstract
The bacterial genus Rickettsiellabelongs to the order Legionellales in the Gammaproteobacteria, and consists of several described species and pathotypes, most of which are considered to be intracellular pathogens infecting arthropods. Two members of this genus, R. grylliand R. isopodorum, are known to infect terrestrial isopod crustaceans. In this study, we assembled a draft genomic sequence for R. isopodorum, and performed a comparative genomic analysis with R. grylli. We found evidence for several candidate genomic island regions in R. isopodorum, none of which appear in the previously available R. grylli genome sequence.Furthermore, one of these genomic island candidates in R. isopodorum contained a gene that encodes a cytotoxin partially homologous to those found in Photorhabdus luminescensand Xenorhabdus nematophilus (Enterobacteriaceae), suggesting that horizontal gene transfer may have played a role in the evolution of pathogenicity in Rickettsiella. These results lay the groundwork for future studies on the mechanisms underlying pathogenesis in R. isopodorum, and this system may provide a good model for studying the evolution of host-microbe interactions in nature.
Collapse
Affiliation(s)
- YaDong Wang
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher Chandler
- Department of Biological Sciences, State University of New York at Oswego , Oswego , NY , United States
| |
Collapse
|
35
|
Dittmer J, van Opstal EJ, Shropshire JD, Bordenstein SR, Hurst GDD, Brucker RM. Disentangling a Holobiont - Recent Advances and Perspectives in Nasonia Wasps. Front Microbiol 2016; 7:1478. [PMID: 27721807 PMCID: PMC5033955 DOI: 10.3389/fmicb.2016.01478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022] Open
Abstract
The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis. The host-microbiota assemblage which constitutes the Nasonia holobiont (a host together with all of its associated microbes) consists of viruses, two heritable bacterial symbionts and a bacterial community dominated in abundance by a few taxa in the gut. In the wild, all four Nasonia species are systematically infected with the obligate intracellular bacterium Wolbachia and can additionally be co-infected with Arsenophonus nasoniae. These two reproductive parasites have different transmission modes and host manipulations (cytoplasmic incompatibility vs. male-killing, respectively). Pioneering studies on Wolbachia in Nasonia demonstrated that closely related Nasonia species harbor multiple and mutually incompatible Wolbachia strains, resulting in strong symbiont-mediated reproductive barriers that evolved early in the speciation process. Moreover, research on host-symbiont interactions and speciation has recently broadened from its historical focus on heritable symbionts to the entire microbial community. In this context, each Nasonia species hosts a distinguishable community of gut bacteria that experiences a temporal succession during host development and members of this bacterial community cause strong hybrid lethality during larval development. In this review, we present the Nasonia species complex as a model system to experimentally investigate questions regarding: (i) the impact of different microbes, including (but not limited to) heritable endosymbionts, on the extended phenotype of the holobiont, (ii) the establishment and regulation of a species-specific microbiota, (iii) the role of the microbiota in speciation, and (iv) the resilience and adaptability of the microbiota in wild populations subjected to different environmental pressures. We discuss the potential for easy microbiota manipulations in Nasonia as a promising experimental approach to address these fundamental aspects.
Collapse
Affiliation(s)
- Jessica Dittmer
- Rowland Institute at Harvard, Harvard University, Cambridge MA, USA
| | | | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, NashvilleTN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, NashvilleTN, USA
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Robert M Brucker
- Rowland Institute at Harvard, Harvard University, Cambridge MA, USA
| |
Collapse
|
36
|
Bouchon D, Zimmer M, Dittmer J. The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal-Microbe Interactions of Ecological Relevance. Front Microbiol 2016; 7:1472. [PMID: 27721806 PMCID: PMC5033963 DOI: 10.3389/fmicb.2016.01472] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host–microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis), while others are well-known intracellular pathogens (Rickettsiella spp.) or reproductive parasites (Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations, suggesting an important share of environmental microbes in the host-associated microbiota. In this review, we synthesize our current knowledge on the terrestrial isopod microbiome and identify future directions to (i) fully understand the functional roles of particular bacteria (both intracellular or intestinal symbionts and environmental gut passengers), and (ii) whether and how the host-associated microbiota could influence the performance of terrestrial isopods as keystone species in soil ecosystems.
Collapse
Affiliation(s)
- Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers Poitiers, France
| | - Martin Zimmer
- Leibniz Center for Tropical Marine Ecology Bremen, Germany
| | - Jessica Dittmer
- Rowland Institute at Harvard, Harvard University, Cambridge MA, USA
| |
Collapse
|