1
|
Binte Mohamed Yakob Adil SS, Tucci J, Irving H, Cianciarulo C, Kabwe M. Evaluation of effectiveness of bacteriophage purification methods. Virol J 2024; 21:318. [PMID: 39702256 DOI: 10.1186/s12985-024-02580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
The use of bacteriophages for therapy has increased over the last decade. While there is need for clear regulatory pathways for bacteriophage approval for mainstream use in clinical practice, practitioners and patients have been able to access bacteriophage therapy under compassionate grounds and through magistral preparations. However, there is currently no standard for purifying these bacteriophages to ensure safety, and good manufacturing practice certification may not be achieved in these emergency uses. In this study, we employed an Interleukin Receptor Associated Kinase (IRAK) 3 knockout monocyte-based assay to evaluate the endotoxin removal efficacy of three common bacteriophage purification methods: Triton X-100 exposure, CsCl density gradient ultracentrifugation, and Pierce™ High-Capacity Endotoxin Removal Resin spin columns. In our experiments we tested these purification methods on three different bacteriophage morphotypes: siphovirus, podovirus and myovirus. We showed that the lowest endotoxin levels and immune responses were achieved when purifying bacteriophages with Triton-X treatment. The results from purifying with CsCl density gradient ultracentrifugation were comparable, and these were both significantly better than purification with Pierce™ High-Capacity Endotoxin Removal Resin spin columns. We also showed that Triton X-100 purification resulted in the lowest loss of bacteriophage titres. Finally, of the bacteriophages tested here, it did not appear that virus morphology affected efficacy of endotoxin removal.
Collapse
Affiliation(s)
- Siti Saleha Binte Mohamed Yakob Adil
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
- La Trobe Institute of Molecular Science, La Trobe University, P.O Box 199, Bendigo, VIC, 3550, Australia
- Holsworth Initiative for Medical Research, Rural People, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
- La Trobe Institute of Molecular Science, La Trobe University, P.O Box 199, Bendigo, VIC, 3550, Australia
- Holsworth Initiative for Medical Research, Rural People, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
- La Trobe Institute of Molecular Science, La Trobe University, P.O Box 199, Bendigo, VIC, 3550, Australia
- Holsworth Initiative for Medical Research, Rural People, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
| | - Cassandra Cianciarulo
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
- La Trobe Institute of Molecular Science, La Trobe University, P.O Box 199, Bendigo, VIC, 3550, Australia
- Holsworth Initiative for Medical Research, Rural People, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia
| | - Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia.
- La Trobe Institute of Molecular Science, La Trobe University, P.O Box 199, Bendigo, VIC, 3550, Australia.
- Holsworth Initiative for Medical Research, Rural People, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, 3550, Australia.
| |
Collapse
|
2
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
3
|
Schüler MA, Daniel R, Poehlein A. Novel insights into phage biology of the pathogen Clostridioides difficile based on the active virome. Front Microbiol 2024; 15:1374708. [PMID: 38577680 PMCID: PMC10993401 DOI: 10.3389/fmicb.2024.1374708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
The global pathogen Clostridioides difficile is a well-studied organism, and researchers work on unraveling its fundamental virulence mechanisms and biology. Prophages have been demonstrated to influence C. difficile toxin expression and contribute to the distribution of advantageous genes. All these underline the importance of prophages in C. difficile virulence. Although several C. difficile prophages were sequenced and characterized, investigations on the entire active virome of a strain are still missing. Phages were mainly isolated after mitomycin C-induction, which does not resemble a natural stressor for C. difficile. We examined active prophages from different C. difficile strains after cultivation in the absence of mitomycin C by sequencing and characterization of particle-protected DNA. Phage particles were collected after standard cultivation, or after cultivation in the presence of the secondary bile salt deoxycholate (DCA). DCA is a natural stressor for C. difficile and a potential prophage-inducing agent. We also investigated differences in prophage activity between clinical and non-clinical C. difficile strains. Our experiments demonstrated that spontaneous prophage release is common in C. difficile and that DCA presence induces prophages. Fourteen different, active phages were identified by this experimental procedure. We could not identify a definitive connection between clinical background and phage activity. However, one phage exhibited distinctively higher activity upon DCA induction in the clinical strain than in the corresponding non-clinical strain, although the phage is identical in both strains. We recorded that enveloped DNA mapped to genome regions with characteristics of mobile genetic elements other than prophages. This pointed to mechanisms of DNA mobility that are not well-studied in C. difficile so far. We also detected phage-mediated lateral transduction of bacterial DNA, which is the first described case in C. difficile. This study significantly contributes to our knowledge of prophage activity in C. difficile and reveals novel aspects of C. difficile (phage) biology.
Collapse
Affiliation(s)
| | | | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Synergistic Effects of Bacteriophage vB_Eco4-M7 and Selected Antibiotics on the Biofilm Formed by Shiga Toxin-Producing Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11060712. [PMID: 35740119 PMCID: PMC9219966 DOI: 10.3390/antibiotics11060712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Apart from antibiotic resistance of pathogenic bacteria, the formation of biofilms is a feature that makes bacterial infections especially difficulty to treat. Shiga toxin-producing Escherichia coli (STEC) strains are dangerous pathogens, causing severe infections in humans, and capable of biofilm production. We have reported previously the identification and characterization of the vB_Eco4-M7 bacteriophage, infecting various STEC strains. It was suggested that this phage might be potentially used in phage therapy against these bacteria. Here, we tested the effects of vB_Eco4-M7 alone or in a phage cocktail with another STEC-infecting phage, and/or in a combination with different antibiotics (ciprofloxacin and rifampicin) on biofilm formed by a model STEC strain, named E. coli O157:H7 (ST2-8624). The vB_Eco4-M7 phage appeared effective in anti-biofilm action in all these experimental conditions (2–3-fold reduction of the biofilm density, and 2–3 orders of magnitude reduction of the number of bacterial cells). However, the highest efficiency in reducing a biofilm’s density and number of bacterial cells was observed when phage infection preceded antibiotic treatment (6-fold reduction of the biofilm density, and 5–6 orders of magnitude reduction of the number of bacterial cells). Previous reports indicated that the use of antibiotics to treat STEC-caused infections might be dangerous due to the induction of Shiga toxin-converting prophages from bacterial genomes under stress conditions caused by antibacterial agents. We found that ciprofloxacin was almost as efficient in inducing prophages from the E. coli O15:H7 (ST2-8624) genome as a classical inducer, mitomycin C, while no detectable prophage induction could be observed in rifampicin-treated STEC cells. Therefore, we conclude the latter antibiotic or similarly acting compounds might be candidate(s) as effective and safe drug(s) when used in combination with phage therapy to combat STEC-mediated infections.
Collapse
|
5
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
6
|
Kirsch JM, Brzozowski RS, Faith D, Round JL, Secor PR, Duerkop BA. Bacteriophage-Bacteria Interactions in the Gut: From Invertebrates to Mammals. Annu Rev Virol 2021; 8:95-113. [PMID: 34255542 DOI: 10.1146/annurev-virology-091919-101238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| | - Robert S Brzozowski
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Dominick Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84113, USA;
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|
7
|
Jia K, Yang N, Zhang X, Cai R, Zhang Y, Tian J, Raza SHA, Kang Y, Qian A, Li Y, Sun W, Shen J, Yao J, Shan X, Zhang L, Wang G. Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8 Targeting Citrobacter freundii. Front Microbiol 2020; 11:585261. [PMID: 33329451 PMCID: PMC7717962 DOI: 10.3389/fmicb.2020.585261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/30/2020] [Indexed: 01/01/2023] Open
Abstract
Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30–40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4–10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.
Collapse
Affiliation(s)
- Kaixiang Jia
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nuo Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiuwen Zhang
- Research Management Office, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ruopeng Cai
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yang Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | | | - Yuanhuan Kang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying Li
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wuwen Sun
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jinyu Shen
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Zhong Z, Emond-Rheault JG, Bhandare S, Lévesque R, Goodridge L. Bacteriophage-Induced Lipopolysaccharide Mutations in Escherichia coli Lead to Hypersensitivity to Food Grade Surfactant Sodium Dodecyl Sulfate. Antibiotics (Basel) 2020; 9:E552. [PMID: 32872188 PMCID: PMC7558818 DOI: 10.3390/antibiotics9090552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
Bacteriophages (phages) are considered as one of the most promising antibiotic alternatives in combatting bacterial infectious diseases. However, one concern of employing phage application is the emergence of bacteriophage-insensitive mutants (BIMs). Here, we isolated six BIMs from E. coli B in the presence of phage T4 and characterized them using genomic and phenotypic methods. Of all six BIMs, a six-amino acid deletion in glucosyltransferase WaaG likely conferred phage resistance by deactivating the addition of T4 receptor glucose to the lipopolysaccharide (LPS). This finding was further supported by the impaired phage adsorption to BIMs and glycosyl composition analysis which quantitatively confirmed the absence of glucose in the LPS of BIMs. Since LPSs actively maintain outer membrane (OM) permeability, phage-induced truncations of LPSs destabilized the OM and sensitized BIMs to various substrates, especially to the food-grade surfactant sodium dodecyl sulfate (SDS). This hypersensitivity to SDS was exploited to design a T4-SDS combination which successfully prevented the generation of BIMs and eliminated the inoculated bacteria. Collectively, phage-driven modifications of LPSs immunized BIMs from T4 predation but increased their susceptibilities as a fitness cost. The findings of this study suggest a novel strategy to enhance the effectiveness of phage-based food safety interventions.
Collapse
Affiliation(s)
- Zeyan Zhong
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H3X 3V9 Canada;
| | - Jean-Guillaume Emond-Rheault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (J.-G.E.-R.); (R.L.)
| | - Sudhakar Bhandare
- Operations Branch, Canadian Food Inspection Agency (CFIA), Charlottetown, PE C1E 1E3, Canada;
| | - Roger Lévesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (J.-G.E.-R.); (R.L.)
| | - Lawrence Goodridge
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Kim SG, Giri SS, Yun S, Kim HJ, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Jun JW, Park SC. Synergistic phage-surfactant combination clears IgE-promoted Staphylococcus aureus aggregation in vitro and enhances the effect in vivo. Int J Antimicrob Agents 2020; 56:105997. [PMID: 32335278 DOI: 10.1016/j.ijantimicag.2020.105997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
Currently, topical antibiotic treatment is a major strategy for decolonisation of Staphylococcus aureus, although it may result in antibiotic resistance or recolonisation of the organism. Recently, application of bacteriophages in the treatment of S. aureus infection has attracted attention. However, a single administration of bacteriophages did not effectively decolonise S. aureus in our first trial in vivo. Using a bacteriophage (pSa-3) and surfactant combination in vitro, we showed an increased (>8%) adsorption rate of the bacteriophage on the host. Moreover, the combination increased the eradication of immunoglobulin E (IgE)-stimulated aggregation, as the surfactant promoted the dissociation of S. aureus aggregates by decreasing the size by 75% and 50% in the absence and presence of IgE, respectively. Furthermore, the combined treatment significantly decolonised the pathogen with an efficacy double that of the phage-only treatment, and decreased the expression of pro-inflammatory cytokine genes (IL-1β, IL-12 and IFNγ) for 5 days in the second in vivo trial. These results suggest that the bacteriophage-surfactant combination could act as an alternative to antibiotics for S. aureus decolonisation in patients with dermatitis.
Collapse
Affiliation(s)
- Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jeong Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju-si, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Bacteriophage Therapy: Developments and Directions. Antibiotics (Basel) 2020; 9:antibiotics9030135. [PMID: 32213955 PMCID: PMC7148498 DOI: 10.3390/antibiotics9030135] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In an era of proliferating multidrug resistant bacterial infections that are exhausting the capacity of existing chemical antibiotics and in which the development of new antibiotics is significantly rarer, Western medicine must seek additional therapeutic options that can be employed to treat these infections. Among the potential antibacterial solutions are bacteriophage therapeutics, which possess very different properties from broad spectrum antibiotics that are currently the standard of care, and which can be used in combination with them and often provide synergies. In this review we summarize the state of the development of bacteriophage therapeutics and discuss potential paths to the implementation of phage therapies in contemporary medicine, focused on fixed phage cocktail therapeutics since these are likely to be the first bacteriophage products licensed for broad use in Western countries.
Collapse
|
11
|
Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. INFECTION GENETICS AND EVOLUTION 2019; 73:425-432. [DOI: 10.1016/j.meegid.2019.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
12
|
Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther 2019; 17:583-606. [PMID: 31322022 DOI: 10.1080/14787210.2019.1646126] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Norbert Łodej
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Dominika Kula
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Barbara Owczarek
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Filip Orwat
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Ryszard Międzybrodzki
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Joanna Neuberg
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Natalia Bagińska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Beata Weber-Dąbrowska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Andrzej Górski
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
13
|
Torres-Barceló C, Gurney J, Gougat-Barberá C, Vasse M, Hochberg ME. Transient negative effects of antibiotics on phages do not jeopardise the advantages of combination therapies. FEMS Microbiol Ecol 2019; 94:5033398. [PMID: 29878184 DOI: 10.1093/femsec/fiy107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/01/2018] [Indexed: 11/14/2022] Open
Abstract
Phages, the viruses of bacteria, have been proposed as antibacterial agents to complement or replace antibiotics due to the growing problem of resistance. In nature and in the clinic, antibiotics are ubiquitous and may affect phages indirectly via impacts on bacterial hosts. Even if the synergistic association of phages and antibiotics has been shown in several studies, the focus is often on bacteria with little known about the impact on phages. Evolutionary studies have demonstrated that time scale is an important factor in understanding the consequences of antimicrobial strategies, but this perspective is generally overlooked in phage-antibiotic combination studies. Here, we explore the effects of antibiotics on phages targeting the opportunistic pathogen Pseudomonas aeruginosa. We go beyond previous studies by testing the interaction between several types of antibiotics and phages, and evaluate the effects on several important phage parameters during 8 days of experimental co-evolution with bacteria. Our study reveals that antibiotics had a negative effect on phage density and efficacy early on, but not in the later stages of the experiment. The results indicate that antibiotics can affect phage adaptation, but that phages can nevertheless contribute to managing antibiotic resistance levels.
Collapse
Affiliation(s)
- Clara Torres-Barceló
- University of Reunion Island, UMR PVBMT, 7 chemin de l'Irat, F-97410 Saint-Pierre, La Réunion, France.,Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - James Gurney
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - Claire Gougat-Barberá
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - Marie Vasse
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
14
|
Koskella B, Taylor TB. Multifaceted Impacts of Bacteriophages in the Plant Microbiome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:361-380. [PMID: 29958076 DOI: 10.1146/annurev-phyto-080417-045858] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant-associated bacteria face multiple selection pressures within their environments and have evolved countless adaptations that both depend on and shape bacterial phenotype and their interaction with plant hosts. Explaining bacterial adaptation and evolution therefore requires considering each of these forces independently as well as their interactions. In this review, we examine how bacteriophage viruses (phages) can alter the ecology and evolution of plant-associated bacterial populations and communities. This includes influencing a bacterial population's response to both abiotic and biotic selection pressures and altering ecological interactions within the microbiome and between the bacteria and host plant. We outline specific ways in which phages can alter bacterial phenotype and discuss when and how this might impact plant-microbe interactions, including for plant pathogens. Finally, we highlight key open questions in phage-bacteria-plant research and offer suggestions for future study.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720, USA;
| | - Tiffany B Taylor
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| |
Collapse
|
15
|
Cieplak T, Soffer N, Sulakvelidze A, Nielsen DS. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes 2018; 9. [PMID: 29517960 PMCID: PMC6219645 DOI: 10.1080/19490976.2018.1447291] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibiotics offer an efficient means for managing diseases caused by bacterial pathogens. However, antibiotics are typically broad spectrum and they can indiscriminately kill beneficial microbes in body habitats such as the gut, deleteriously affecting the commensal gut microbiota. In addition, many bacteria have developed or are developing resistance to antibiotics, which complicates treatment and creates significant challenges in clinical medicine. Therefore, there is a real and urgent medical need to develop alternative antimicrobial approaches that will kill specific problem-causing bacteria without disturbing a normal, and often beneficial, gut microbiota. One such potential alternative approach is the use of lytic bacteriophages for managing bacterial infections, including those caused by multidrug-resistant pathogens. In the present study, we comparatively analysed the efficacy of a bacteriophage cocktail targeting Escherichia coli with that of a broad-spectrum antibiotic (ciprofloxacin) using an in vitro model of the small intestine. The parameters examined included (i) the impact on a specific, pre-chosen targeted E. coli strain, and (ii) the impact on a selected non-targeted bacterial population, which was chosen to represent a defined microbial consortium typical of a healthy small intestine. During these studies, we also examined stability of bacteriophages against various pH and bile concentrations commonly found in the intestinal tract of humans. The bacteriophage cocktail was slightly more stable in the simulated duodenum conditions compared to the simulated ileum (0.12 vs. 0.58 log decrease in phage titers, respectively). It was equally effective as ciprofloxacin in reducing E. coli in the simulated gut conditions (2-3 log reduction), but had much milder (none) impact on the commensal, non-targeted bacteria compared to the antibiotic.
Collapse
Affiliation(s)
- Tomasz Cieplak
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark, Rolighedsvej 26, Frederiksberg C, Denmark,CONTACT Tomasz Cieplak Department of Food Science, University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Nitzan Soffer
- Intralytix, Inc., Baltimore, Maryland, USA, The Columbus Center, 701 E. Pratt Street, Baltimore, MD , USA
| | - Alexander Sulakvelidze
- Intralytix, Inc., Baltimore, Maryland, USA, The Columbus Center, 701 E. Pratt Street, Baltimore, MD , USA
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark, Rolighedsvej 26, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Pimchan T, Cooper C, Eumkeb G, Nilsson A. In vitroactivity of a combination of bacteriophages and antimicrobial plant extracts. Lett Appl Microbiol 2018; 66:182-187. [DOI: 10.1111/lam.12838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. Pimchan
- Institute of Science; Suranaree University of Technology; Nakhon-Ratchasima Thailand
| | - C.J. Cooper
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - G. Eumkeb
- Institute of Science; Suranaree University of Technology; Nakhon-Ratchasima Thailand
| | - A.S. Nilsson
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|