1
|
Huang ZY, Liu ZJ, Wang XY, Zhang ZL, Lu W, Zheng XL. Electroantennographic and olfactory responses of Quadrastichus mendeli to eucalyptus volatiles induced by the gall-forming insect Leptocybe invasa. PEST MANAGEMENT SCIENCE 2022; 78:2405-2416. [PMID: 35289069 DOI: 10.1002/ps.6869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although parasitoids can precisely locate hidden gall-inducing insects, the host location mechanism is unknown. In this study, our aim was to clarify the olfactory responses of the parasitoid Quadrastichus mendeli to eucalyptus volatiles induced by the gall wasp Leptocybe invasa. RESULTS Q. mendeli preferred volatiles from gall-damaged plants compared with those produced by mechanically damaged and undamaged plants. Coupled gas chromatographic-electroantennographic detection results demonstrated that 3-carene, decanal, d-limonene, ethanone,1-(4-ethylphenyl)-, p-cymene and benzene,1-methyl-4-(1-methylpropyl)- from DH 201-2 (Eucalyptus grandis × Eucalyptus tereticornis) elicited significant antennal responses in Q. mendeli in all treatments. Q. mendeli was repelled by decanal and d-limonene and was attracted to 3-carene, benzene,1-methyl-4-(1-methylpropyl)-, ethanone,1-(4-ethylphenyl) and p-cymene. Quaternary blends containing 3-carene, p-cymene, benzene,1-methyl-4-(1-methylpropyl)- and ethanone,1-(4-ethylphenyl)- at a ratio of 1:1:1:1 were attractive to Q. mendeli. However, quaternary blends with added decanal and d-limonene alone or both together induced significant repellence in Q. mendeli. CONCLUSION Our report is the first to demonstrate that volatiles produced by galls induced by L. invasa are attractive to Q. mendeli, which suggests that this parasitoid could utilize herbivore-induced plant volatiles to locate its host. The results are beneficial for understanding the function of plant volatiles in host searching by parasitoids of gall-forming insect pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-You Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zuo-Jun Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zhi-Lin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Liu Y, Xu L, Zhang Z, Huang Z, Fang D, Zheng X, Yang Z, Lu M. Isolation, Identification, and Analysis of Potential Functions of Culturable Bacteria Associated with an Invasive Gall Wasp, Leptocybe invasa. MICROBIAL ECOLOGY 2022; 83:151-166. [PMID: 33758980 DOI: 10.1007/s00248-021-01715-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/07/2021] [Indexed: 05/17/2023]
Abstract
Symbioses between invasive insects and bacteria are one of the key drivers of insect invasion success. Gall-inducing insects stimulate host plants to produce galls, which affects the normal growth of plants. Leptocybe invasa Fisher et La Salle, an invasive gall-inducing wasp, mainly damages Eucalyptus plantations in Southern China, but little is known about its associated bacteria. The aim of this study was to assess the diversity of bacterial communities at different developmental stages of L. invasa and to identify possible ecological functions of the associated bacteria. Bacteria associated with L. invasa were isolated using culture-dependent methods and their taxonomic statuses were determined by sequencing the 16S rRNA gene. A total of 88 species belonging to four phyla, 27 families, and 44 genera were identified by phylogenetic analysis. The four phyla were Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, mainly from the genera Pantoea, Enterobacter, Pseudomonas, Bacillus, Acinetobacter, Curtobacterium, Sphingobium, Klebsiella, and Rhizobium. Among them, 72 species were isolated in the insect gall stage and 46 species were isolated from the adult stage. The most abundant bacterial species were γ-Proteobacteria. We found significant differences in total bacterial counts and community compositions at different developmental stages, and identified possible ecological roles of L. invasa-associated bacteria. This study is the first to systematically investigate the associated bacteria of L. invasa using culture-dependent methods, and provides a reference for other gall-inducing insects and associated bacteria.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhouqiong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zongyou Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Dongxue Fang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Zhende Yang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Guo C, Peng X, Wang H, Zheng X, Hu P, Zhou J, Ding Z, Wang X, Yang Z. Bacterial diversity of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from different geographical conditions in China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21847. [PMID: 34596262 DOI: 10.1002/arch.21847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Insects harbor numerous endosymbionts, including bacteria, fungi, yeast, and viruses, which could affect the ecology and behavior of their hosts. However, data regarding the effect of environmental factors on endosymbiotic bacteria of Leptocybe invasa (Hymenoptera: Eulophidae) are quite rare. In this study, we assessed the diversity of endosymbiotic bacteria of L. invasa from 10 different geographic populations collected across China through the Illumina MiSeq platform. A total of 547 OTUs were generated, which were annotated into 19 phyla, 33 classes, 75 orders, 137 families, and 274 genera. The dominant bacteria detected in L. invasa were Rickettsia, and Pantoea, Enterobacter, Pseudomonas, Acinetobacter, and Bacillus were also annotated among each population. Nevertheless, the endosymbiotic bacterial abundance and diversity varied among different populations, which was related to the local climate (annual mean high temperature). The bacterial function prediction analysis showed that these endosymbiotic bacteria were concentrated in metabolism, such as carbohydrate, amino acid, and energy metabolism. Overall, the results provide a comprehensive description of the endosymbiotic bacteria in 10 different populations of an important eucalyptus pest L. invasa, and help to understand the endosymbiotic bacterial diversity and adaptation of various conditions.
Collapse
Affiliation(s)
- Chunhui Guo
- College of Forestry, Guangxi University, Nanning, China
| | - Xin Peng
- College of Forestry, Guangxi University, Nanning, China
| | - Hantang Wang
- College of Forestry, Guangxi University, Nanning, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ping Hu
- College of Forestry, Guangxi University, Nanning, China
| | - Jing Zhou
- College of Forestry, Guangxi University, Nanning, China
| | - Zhirou Ding
- College of Forestry, Guangxi University, Nanning, China
| | - Xue Wang
- College of Forestry, Guangxi University, Nanning, China
| | - Zhende Yang
- College of Forestry, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Rothman JA, Loope KJ, McFrederick QS, Wilson Rankin EE. Microbiome of the wasp Vespula pensylvanica in native and invasive populations, and associations with Moku virus. PLoS One 2021; 16:e0255463. [PMID: 34324610 PMCID: PMC8321129 DOI: 10.1371/journal.pone.0255463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California: Irvine, Irvine, CA, United States of America
| | - Kevin J. Loope
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Quinn S. McFrederick
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| | - Erin E. Wilson Rankin
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| |
Collapse
|
5
|
Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, Ratnasingham S, deWaard JR, Macadam CR, Smith MA, Hurst GDD. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience 2021; 10:giab021. [PMID: 33764469 PMCID: PMC7992394 DOI: 10.1093/gigascience/giab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 03/05/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia. RESULTS This study describes the serendipitous discovery of Rickettsia amplicons in the Barcode of Life Data System (BOLD), a sequence database specifically designed for the curation of mitochondrial DNA barcodes. Of 184,585 barcode sequences analysed, Rickettsia is observed in ∼0.41% of barcode submissions and is more likely to be found than Wolbachia (0.17%). The Torix group of Rickettsia are shown to account for 95% of all unintended amplifications from the genus. A further targeted PCR screen of 1,612 individuals from 169 terrestrial and aquatic invertebrate species identified mostly Torix strains and supports the "aquatic hot spot" hypothesis for Torix infection. Furthermore, the analysis of 1,341 SRA deposits indicates that Torix infections represent a significant proportion of all Rickettsia symbioses found in arthropod genome projects. CONCLUSIONS This study supports a previous hypothesis that suggests that Torix Rickettsia are overrepresented in aquatic insects. In addition, multiple methods reveal further putative hot spots of Torix Rickettsia infection, including in phloem-feeding bugs, parasitoid wasps, spiders, and vectors of disease. The unknown host effects and transmission strategies of these endosymbionts make these newly discovered associations important to inform future directions of investigation involving the understudied Torix Rickettsia.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Sujeevan Ratnasingham
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Craig R Macadam
- Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK
| | - M Alex Smith
- Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| |
Collapse
|
6
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I. Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E. Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F. Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M. Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R. Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F. Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J. Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
7
|
Park E, Poulin R. Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences. Sci Rep 2020; 10:16842. [PMID: 33033309 PMCID: PMC7546637 DOI: 10.1038/s41598-020-73986-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022] Open
Abstract
Endosymbionts and intracellular parasites are common in arthropod hosts. As a consequence, (co)amplification of untargeted bacterial sequences has been occasionally reported as a common problem in DNA barcoding. While identifying amphipod species with universal COI primers, we unexpectedly detected rickettsial endosymbionts belonging to the Torix group. To map the distribution and diversity of Rickettsia species among amphipod hosts, we conducted a nationwide molecular screening of seven families of New Zealand freshwater amphipods. In addition to uncovering a diversity of Torix Rickettsia species across multiple amphipod populations from three different families, our research indicates that: (1) detecting Torix Rickettsia with universal primers is not uncommon, (2) obtaining 'Rickettsia COI sequences' from many host individuals is highly likely when a population is infected, and (3) obtaining 'host COI' may not be possible with a conventional PCR if an individual is infected. Because Rickettsia COI is highly conserved across diverse host taxa, we were able to design blocking primers that can be used in a wide range of host species infected with Torix Rickettsia. We propose the use of blocking primers to circumvent problems caused by unwanted amplification of Rickettsia and to obtain targeted host COI sequences for DNA barcoding, population genetics, and phylogeographic studies.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
8
|
Semiatizki A, Weiss B, Bagim S, Rohkin-Shalom S, Kaltenpoth M, Chiel E. Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius. MICROBIAL ECOLOGY 2020; 80:718-728. [PMID: 32488484 DOI: 10.1007/s00248-020-01520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Many insect species harbor facultative microbial symbionts that affect their biology in diverse ways. Here, we studied the effects, interactions, and localization of two bacterial symbionts-Wolbachia and Rickettsia-in the parasitoid Spalangia endius. We crossed between four S. endius colonies-Wolbachia only (W), Rickettsia only (R), both (WR), and none (aposymbiotic, APS) (16 possible crosses) and found that Wolbachia induces incomplete cytoplasmic incompatibility (CI), both when the males are W or WR. Rickettsia did not cause reproductive manipulations and did not rescue the Wolbachia-induced CI. However, when R females were crossed with W or WR males, significantly less offspring were produced compared with that of control crosses. In non-CI crosses, the presence of Wolbachia in males caused a significant reduction in offspring numbers. Females' developmental time was significantly prolonged in the R colony, with adults starting to emerge one day later than the other colonies. Other fitness parameters did not differ significantly between the colonies. Using fluorescence in situ hybridization microscopy in females, we found that Wolbachia is localized alongside Rickettsia inside oocytes, follicle cells, and nurse cells in the ovaries. However, Rickettsia is distributed also in muscle cells all over the body, in ganglia, and even in the brain.
Collapse
Affiliation(s)
- Amit Semiatizki
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Benjamin Weiss
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Shir Bagim
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Sarit Rohkin-Shalom
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel.
| |
Collapse
|
9
|
Bubici G, Prigigallo MI, Garganese F, Nugnes F, Jansen M, Porcelli F. First Report of Aleurocanthus spiniferus on Ailanthus altissima: Profiling of the Insect Microbiome and MicroRNAs. INSECTS 2020; 11:E161. [PMID: 32138145 PMCID: PMC7142546 DOI: 10.3390/insects11030161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
We report the first occurrence of the orange spiny whitefly (Aleurocanthus spiniferus; OSW) on the tree of heaven (Ailanthus altissima) in Bari, Apulia region, Italy. After our first observation in 2016, the infestation recurred regularly during the following years and expanded to the neighboring trees. Since then, we have also found the insect on numerous patches of the tree of heaven and other plant species in the Bari province. Nevertheless, the tree of heaven was not particularly threatened by the insect, so that a possible contribution by OSW for the control of such an invasive plant cannot be hypothesized hitherto. This work was also aimed at profiling the microbiome of OSW feeding on A. altissima. For this purpose, we used the denaturing gradient gel electrophoresis (DGGE) and the deep sequencing of small RNAs (sRNAs). Both techniques unveiled the presence of "Candidatus Portiera" (primary endosymbiont), Wolbachia sp. and Rickettsia sp., endosymbionts already reported for other Aleyrodidae. Deep sequencing data were analyzed by four computational pipelines in order to understand the reliability of the detection of fungi, bacteria, and viruses: Kraken, Kaiju, Velvet, and VelvetOptimiser. Some contigs assembled by Velvet or VelvetOptimiser were associated with insects, but not necessarily in the Aleurocanthus genus or Aleyrodidae family, suggesting the non-specificity of sRNAs or possible traces of parasitoids in the sample (e.g., Eretmocerus sp.). Finally, deep sequencing data were used to describe the microtranscriptome of OSW: 56 canonical and at least four high-confidence novel microRNAs (miRNAs) were identified. The overall miRNA abundance in OSW was in agreement with previous works on Bemisia tabaci, and bantam-3p, miR-276a-3p, miR-317-3p, miR-750-3p, and mir-8-3p were the most represented miRNAs.
Collapse
Affiliation(s)
- Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy;
| | - Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy;
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; (F.G.); (F.P.)
| | - Francesco Nugnes
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy;
| | - Maurice Jansen
- Ministry of Agriculture, Nature and Food Quality, Laboratories Division, Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, The Netherlands;
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; (F.G.); (F.P.)
| |
Collapse
|
10
|
Zélé F, Santos I, Olivieri I, Weill M, Duron O, Magalhães S. Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol 2019; 94:4830074. [PMID: 29390142 DOI: 10.1093/femsec/fiy015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial endosymbionts are known as important players of the evolutionary ecology of their hosts. However, their distribution, prevalence and diversity are still largely unexplored. To this aim, we investigated infections by the most common bacterial reproductive manipulators in herbivorous spider mites of South-Western Europe. Across 16 populations belonging to three Tetranychus species, Wolbachia was the most prevalent (ca. 61%), followed by Cardinium (12%-15%), while only few individuals were infected by Rickettsia (0.9%-3%), and none carried Arsenophonus or Spiroplasma. These endosymbionts are here reported for the first time in Tetranychus evansi and Tetranychus ludeni, and showed variable infection frequencies between and within species, with several cases of coinfections. Moreover, Cardinium was more prevalent in Wolbachia-infected individuals, which suggests facilitation between these symbionts. Finally, sequence comparisons revealed no variation of the Wolbachia wsp and Rickettsia gtlA genes, but some diversity of the Cardinium 16S rRNA, both between and within populations of the three mite species. Some of the Cardinium sequences identified belonged to distantly-related clades, and the lack of association between these sequences and spider mite mitotypes suggests repeated host switching of Cardinium. Overall, our results reveal a complex community of symbionts in this system, opening the path for future studies.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749016 Lisbon, Portugal
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749016 Lisbon, Portugal
| | - Isabelle Olivieri
- Institut des Sciences de l'Evolution (CNRS-Université de Montpellier-IRD-EPHE), 34095 Montpellier, CEDEX 5, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution (CNRS-Université de Montpellier-IRD-EPHE), 34095 Montpellier, CEDEX 5, France
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (CNRS-Université de Montpellier-IRD), Centre de Recherche IRD, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749016 Lisbon, Portugal
| |
Collapse
|
11
|
Sangtongpraow B, Charernsom K. Biological traits of Quadrastichus mendeli (Hymenoptera, Eulophidae), parasitoid of the eucalyptus gall wasp Leptocybe invasa (Hymenoptera, Eulophidae) in Thailand. Parasite 2019; 26:8. [PMID: 30794147 PMCID: PMC6385613 DOI: 10.1051/parasite/2019008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/11/2019] [Indexed: 11/14/2022] Open
Abstract
Quadrastichus mendeli Kim & La Salle, a parasitoid of Leptocybe invasa Fisher & La Salle, is a uniparental species. This study assessed the biological traits of Q. mendeli in the laboratory at a temperature of 27 ± 1 °C. Diets had a highly significant effect on the mean longevity of female Q. mendeli. Feeding honey solution prolonged the mean longevity of the parasitoid to 4.80 days. The estimated 50% survival period was 3 days. The mean potential fecundity in all ages was 8.85 eggs per female. Age had a highly significant effect on the mean egg load. There was a positive relationship between egg load and female size. The mean of realized fecundity throughout the life span was 2.47 progenies per female. The mean developmental time of Q. mendeli from the egg to adult stage was 27.06 days. The shorter developmental time of Q. mendeli in comparison to its host can be considered a reason for the successful control of L. invasa in Thailand.
Collapse
Affiliation(s)
- Benjakhun Sangtongpraow
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kosol Charernsom
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Gillespie JJ, Driscoll TP, Verhoeve VI, Rahman MS, Macaluso KR, Azad AF. A Tangled Web: Origins of Reproductive Parasitism. Genome Biol Evol 2018; 10:2292-2309. [PMID: 30060072 PMCID: PMC6133264 DOI: 10.1093/gbe/evy159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
While typically a flea parasite and opportunistic human pathogen, the presence of Rickettsia felis (strain LSU-Lb) in the non-blood-feeding, parthenogenetically reproducing booklouse, Liposcelis bostrychophila, provides a system to ascertain factors governing not only host transitions but also obligate reproductive parasitism (RP). Analysis of plasmid pLbAR, unique to R. felis str. LSU-Lb, revealed a toxin–antitoxin module with similar features to prophage-encoded toxin–antitoxin modules utilized by parasitic Wolbachia strains to induce another form of RP, cytoplasmic incompatibility, in their arthropod hosts. Curiously, multiple deubiquitinase and nuclease domains of the large (3,841 aa) pLbAR toxin, as well the entire antitoxin, facilitated the detection of an assortment of related proteins from diverse intracellular bacteria, including other reproductive parasites. Our description of these remarkable components of the intracellular mobilome, including their presence in certain arthropod genomes, lends insight on the evolution of RP, while invigorating research on parasite-mediated biocontrol of arthropod-borne viral and bacterial pathogens.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| | | | | | | | - Kevin R Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| |
Collapse
|