1
|
Gonzálvez M, Muñoz-Hernández C. R programming environment in wildlife: Are Veterinary Sciences at the same level than other research areas? Res Vet Sci 2024; 166:105079. [PMID: 37963421 DOI: 10.1016/j.rvsc.2023.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
The computing environment has revolutionized the management and analysis of data in sciences during the last decades. This study aimed to evaluate the use of R software in research articles addressing the study of wildlife worldwide, particularly focusing on the research area "Veterinary Sciences". For this purpose, a systematic review mainly performed in the Web of Science database was conducted. Out of a total of 509 articles reviewed, our results show an increasing trend of the number of publications using the R software over time, as well as a wide geographical distribution at a global scale, particularly in North America, Europe, Australia and China. Most publications were categorized in research areas related to "Biological Sciences", while a minority of them was included in "Veterinary Sciences" (5.9%; 30/509). About the species groups assessed, many articles evaluated a single species group (96.5%), being mammals (50.7%) and birds (14.8%) the most studied ones. The present study showed a high variety of R-packages used in the publications reviewed, all of them related to data analysis, the study of genetic/phylogenetic information and graphical representation. Interestingly, the common use of packages between different research areas is indicative of the high interest of using R software in scientific articles. Our study points the R software as an open-source programming language that allows to support research addressing the study of wildlife, becoming a key software for many research areas, including "Veterinary Sciences". However, an in-depth methodological description about the use of R software in publications to improve the tracking, reproducibility and transparency is encouraged.
Collapse
Affiliation(s)
- Moisés Gonzálvez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain; Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Universidad de Córdoba, 14014 Córdoba, Spain.
| | - Clara Muñoz-Hernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain; Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), 13005 Ciudad Real, Spain
| |
Collapse
|
2
|
Zhu L, Wang J. Editorial: Community series in the wildlife gut microbiome and its implication for conservation biology, volume II. Front Microbiol 2023; 14:1329928. [PMID: 38173679 PMCID: PMC10761474 DOI: 10.3389/fmicb.2023.1329928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Lifeng Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
3
|
Taxonomic, Genomic, and Functional Variation in the Gut Microbiomes of Wild Spotted Hyenas Across 2 Decades of Study. mSystems 2023; 8:e0096522. [PMID: 36533929 PMCID: PMC9948708 DOI: 10.1128/msystems.00965-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas (Crocuta crocuta) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas' guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host's life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis.
Collapse
|
4
|
Qin W, Li S, Wu N, Wen Z, Xie J, Ma H, Zhang S. Main Factors Influencing the Gut Microbiota of Datong Yaks in Mixed Group. Animals (Basel) 2022; 12:ani12141777. [PMID: 35883324 PMCID: PMC9312300 DOI: 10.3390/ani12141777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study examined the differences and similarities in gut microbial diversity and ecological assembly processes of Datong yaks, including domestic males and females and wild males, which were fed together on the Qinghai-Tibet Plateau in a mixed group. The results revealed that mixed grouping could influence the gut microbiota of these three groups of yaks and improve the gut microbial diversity of domestic females. The findings of this study can help to understand the effects of mixed grouping on the gut microbiota of livestock on the Qinghai-Tibet Plateau and improve the production of Datong yaks. Abstract The Datong yak (Bos grunniens) is the first artificial breed of yaks in the world and has played an important role in the improvement of domestic yak quality on the Qinghai-Tibet Plateau. The Datong yak breeding farm in the Qinghai province of China is the main place for the breeding and feeding of Datong yaks. It hosts domestic Datong yaks and wild male yaks, mainly in mixed groups. Different managements have different effects on livestock. The gut microbiota is closely related to the health and immunity of Datong yaks, and mixed grouping can affect the composition and diversity of the gut microbiota of Datong yaks. To reveal the effects of mixed grouping on the gut microbiota of Datong yaks and wild yaks and identify the main dominant factors, we compared the gut microbial diversities of domestic males and females and wild males based on 16S rRNA V3–V4 regions using fresh fecal samples. The data showed significant differences in the gut microbial diversity of these three groups, and the α-diversity was the highest in wild males. Different factors influence the gut microbiota, and the main influencing factors were different in different groups, including sex differences, host genetics, and physical interactions. We also compared ecological assembly processes in the three groups. The results showed that mixed grouping contributed to the improvement of gut microbial diversity in domestic females. Our study provides effective and feasible suggestions for the feeding and management of the Datong yaks.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Shuang Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Nan Wu
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Zhouxuan Wen
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Jiuxiang Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Hongyi Ma
- Forestry and Grassland Comprehensive Service Center of Yushu Prefecture, Yushu 815000, China;
| | - Shoudong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
- Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Perry T, West E, Eisenhofer R, Stenhouse A, Wilson I, Laming B, Rismiller P, Shaw M, Grützner F. Characterising the Gut Microbiomes in Wild and Captive Short-Beaked Echidnas Reveals Diet-Associated Changes. Front Microbiol 2022; 13:687115. [PMID: 35847103 PMCID: PMC9279566 DOI: 10.3389/fmicb.2022.687115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome plays a vital role in health and wellbeing of animals, and an increasing number of studies are investigating microbiome changes in wild and managed populations to improve conservation and welfare. The short-beaked echidna (Tachyglossus aculeatus) is an iconic Australian species, the most widespread native mammal, and commonly held in zoos. Echidnas are cryptic animals, and much is still unknown about many aspects of their biology. Furthermore, some wild echidna populations are under threat, while echidnas held in captivity can have severe gastric health problems. Here, we used citizen science and zoos to collect echidna scats from across Australia to perform the largest gut microbiome study on any native Australian animal. Using 16S rRNA gene metabarcoding of scat samples, we characterised and compared the gut microbiomes of echidnas in wild (n = 159) and managed (n = 44) populations, which were fed four different diets. Wild echidna samples were highly variable, yet commonly dominated by soil and plant-fermenting bacteria, while echidnas in captivity were dominated by gut commensals and plant-fermenting bacteria, suggesting plant matter may play a significant role in echidna diet. This work demonstrates significant differences between zoo held and wild echidnas, as well as managed animals on different diets, revealing that diet is important in shaping the gut microbiomes in echidnas. This first analysis of echidna gut microbiome highlights extensive microbial diversity in wild echidnas and changes in microbiome composition in managed populations. This is a first step towards using microbiome analysis to better understand diet, gastrointestinal biology, and improve management in these iconic animals.
Collapse
Affiliation(s)
- Tahlia Perry
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, SA, Australia
| | - Ella West
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Raphael Eisenhofer
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, SA, Australia
| | - Alan Stenhouse
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Isabella Wilson
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Peggy Rismiller
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Pelican Lagoon Research and Wildlife Centre, Penneshaw, SA, Australia
| | - Michelle Shaw
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Taronga Wildlife Nutrition Centre, Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Frank Grützner
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Littleford-Colquhoun BL, Weyrich LS, Hohwieler K, Cristescu R, Frère CH. How microbiomes can help inform conservation: landscape characterisation of gut microbiota helps shed light on additional population structure in a specialist folivore. Anim Microbiome 2022; 4:12. [PMID: 35101152 PMCID: PMC8802476 DOI: 10.1186/s42523-021-00122-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The koala (Phascolarctos cinereus), an iconic yet endangered specialised folivore experiencing widespread decline across Australia, is the focus of many conservation programs. Whilst animal translocation and progressive conservation strategies such as faecal inoculations may be required to bring this species back from the brink of extinction, insight into the variation of host-associated gut microbiota and the factors that shape this variation are fundamental for their success. Despite this, very little is known about the landscape variability and factors affecting koala gut microbial community dynamics. We used large scale field surveys to evaluate the variation and diversity of koala gut microbiotas and compared these diversity patterns to those detected using a population genetics approach. Scat samples were collected from five locations across South East Queensland with microbiota analysed using 16S rRNA gene amplicon sequencing. RESULTS Across the landscape koala gut microbial profiles showed large variability, with location having a large effect on bacterial community composition and bacterial diversity. Certain bacteria were found to be significantly differentially abundant amongst locations; koalas from Noosa showed a depletion in two bacterial orders (Gastranaerophilales and Bacteroidales) which have been shown to provide beneficial properties to their host. Koala gut microbial patterns were also not found to mirror population genetic patterns, a molecular tool often used to design conservation initiatives. CONCLUSIONS Our data shows that koala gut microbiotas are extremely variable across the landscape, displaying complex micro- and macro- spatial variation. By detecting locations which lack certain bacteria we identified koala populations that may be under threat from future microbial imbalance or dysbiosis. Additionally, the mismatching of gut microbiota and host population genetic patterns exposed important population structure that has previously gone undetected across South East Queensland. Overall, this baseline data highlights the importance of integrating microbiota research into conservation biology in order to guide successful conservation programs such as species translocation and the implementation of faecal inoculations.
Collapse
Affiliation(s)
- B. L. Littleford-Colquhoun
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
- Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA
| | - L. S. Weyrich
- Department of Anthropology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - K. Hohwieler
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - R. Cristescu
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - C. H. Frère
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| |
Collapse
|
7
|
Adams NE, Becker MA, Edmands S. Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox. Front Microbiol 2021; 12:748323. [PMID: 34925262 PMCID: PMC8672056 DOI: 10.3389/fmicb.2021.748323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
With developing understanding that host-associated microbiota play significant roles in individual health and fitness, taking an interdisciplinary approach combining microbiome research with conservation science is increasingly favored. Here we establish the scat microbiome of the imperiled Channel Island fox (Urocyon littoralis) and examine the effects of geography and captivity on the variation in bacterial communities. Using high throughput 16S rRNA gene amplicon sequencing, we discovered distinct bacterial communities in each island fox subspecies. Weight, timing of the sample collection, and sex contributed to the geographic patterns. We uncovered significant taxonomic differences and an overall decrease in bacterial diversity in captive versus wild foxes. Understanding the drivers of microbial variation in this system provides a valuable lens through which to evaluate the health and conservation of these genetically depauperate foxes. The island-specific bacterial community baselines established in this study can make monitoring island fox health easier and understanding the implications of inter-island translocation clearer. The decrease in bacterial diversity within captive foxes could lead to losses in the functional services normally provided by commensal microbes and suggests that zoos and captive breeding programs would benefit from maintaining microbial diversity.
Collapse
Affiliation(s)
- Nicole E Adams
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Madeleine A Becker
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Zhu L, Wang J, Bahrndorff S. Editorial: The Wildlife Gut Microbiome and Its Implication for Conservation Biology. Front Microbiol 2021; 12:697499. [PMID: 34234768 PMCID: PMC8256134 DOI: 10.3389/fmicb.2021.697499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lifeng Zhu
- Colleges of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Pilla R, Suchodolski JS. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet Clin North Am Small Anim Pract 2021; 51:605-621. [PMID: 33653538 DOI: 10.1016/j.cvsm.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome is a functional organ, and responds metabolically to the nutrient composition within the diet. Fiber, starch, and protein content have strong effects on the microbiome composition, and changes in these nutrient profiles can induce rapid shifts. Due to functional redundancy of bacteria within microbial communities, important metabolites for health can be produced by different bacteria. Microbiome alterations associated with disease are of greater magnitude than those seen in healthy dogs on different diets. Dietary changes, addition of prebiotics, and probiotics, can be beneficial to improve microbial diversity and to normalize metabolite production in diseased dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|
10
|
Schmiedová L, Kreisinger J, Požgayová M, Honza M, Martin JF, Procházka P. Gut microbiota in a host-brood parasite system: insights from common cuckoos raised by two warbler species. FEMS Microbiol Ecol 2020; 96:5872480. [PMID: 32672792 DOI: 10.1093/femsec/fiaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
An animal's gut microbiota (GM) is shaped by a range of environmental factors affecting the bacterial sources invading the host. At the same time, animal hosts are equipped with intrinsic mechanisms enabling regulation of GM. However, there is limited knowledge on the relative importance of these forces. To assess the significance of host-intrinsic vs environmental factors, we studied GM in nestlings of an obligate brood parasite, the common cuckoo (Cuculus canorus), raised by two foster species, great reed warblers (Acrocephalus arundinaceus) and Eurasian reed warblers (A. scirpaceus), and compared these with GM of the fosterers' own nestlings. We show that fecal GM varied between cuckoo and warbler nestlings when accounting for the effect of foster/parent species, highlighting the importance of host-intrinsic regulatory mechanisms. In addition to feces, cuckoos also expel a deterrent secretion, which provides protection against olfactory predators. We observed an increased abundance of bacterial genera capable of producing repulsive volatile molecules in the deterrent secretion. Consequently, our results support the hypothesis that microbiota play a role in this antipredator mechanism. Interestingly, fosterer/parent identity affected only cuckoo deterrent secretion and warbler feces microbiota, but not that of cuckoo feces, suggesting a strong selection of bacterial strains in the GM by cuckoo nestlings.
Collapse
Affiliation(s)
- Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12800 Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12800 Prague, Czech Republic
| | - Milica Požgayová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, CZ-60365 Brno, Czech Republic
| | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, CZ-60365 Brno, Czech Republic
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, CZ-60365 Brno, Czech Republic
| |
Collapse
|
11
|
Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area. SUSTAINABILITY 2020. [DOI: 10.3390/su12104160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The composition of gut microbiota is closely related to health and nutrition of livestock. Research on the interaction between gut microbiota in livestock and grazing management strategies is unfortunately sparse. By studying the compositions of gut microbiota in sheep and goats in a single, mixed grazing population under the control of herdsman, as well as those of free-range camels in the same area of Qaidam Basin, we found that the composition of gut microbiota between sheep and goats showed no significant difference. However, there were significant differences between mixed group and camels at α- and β-diversities. We speculate that grazing management can shape gut microbial diversity indirectly. Mixed grazing under the control of herdsman lead to similarities in the diversity of gut microbiota among different species and limit their diversities of gut microbiota, which is not conducive to healthy growth of the host. On the contrary, free-range grazing is better for the diversity of gut microbiota. In order to sustainably manage populations of livestock, gut microbiota analysis may prove to be an important indicator for evaluating the merits of different grazing management strategies. Our results lay a foundation to improve the health of livestock and grazing management.
Collapse
|
12
|
Rojas CA, Holekamp KE, Winters AD, Theis KR. Body site-specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol Ecol 2020; 96:5700710. [PMID: 31926016 DOI: 10.1093/femsec/fiaa007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Host-associated microbial communities, henceforth 'microbiota', can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.
Collapse
Affiliation(s)
- Connie A Rojas
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| |
Collapse
|
13
|
Pereira AC, Bandeira V, Fonseca C, Cunha MV. Egyptian Mongoose ( Herpestes ichneumon) Gut Microbiota: Taxonomical and Functional Differences across Sex and Age Classes. Microorganisms 2020; 8:microorganisms8030392. [PMID: 32168965 PMCID: PMC7143146 DOI: 10.3390/microorganisms8030392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The Egyptian mongoose (Herpestes ichneumon) is a medium-size carnivore that, in Europe, is restricted to Iberia. The bio-ecology of this species remains to be elucidated in several dimensions, including gut microbiota that is nowadays recognized as a fundamental component of mammals. In this work, we investigated the gut microbiota of this herpestid by single-molecule real-time sequencing of twenty paired male (n = 10) and female (n = 10) intestinal samples. This culture-independent approach enabled microbial profiling based on 16S rDNA and investigation of taxonomical and functional features. The core gut microbiome of the adult subpopulation was dominated by Firmicutes, Fusobacteria, Actinobacteria, and Proteobacteria. Eight genera were uniquely found in adults and five in non-adults. When comparing gut bacterial communities across sex, four genera were exclusive of females and six uniquely found in males. Despite these compositional distinctions, alpha- and beta-diversity analyses showed no statistically significant differences across sex or between adult and non-adult specimens. However, when function was inferred, males presented a significantly higher abundance of amino acid and citrate cycle metabolic pathways, compared to the significant overrepresentation in females of galactose metabolic pathways. Additionally, adults exhibited a significantly higher abundance of cationic antimicrobial peptide resistance pathways, while non-adults bared a significant overrepresentation of two-component systems associated with antibiotic synthesis, flagellin and biofilm production, and chemotaxis control. This study adds new insights into the mongoose bio-ecology palette, highlighting taxonomical and functional microbiome dissimilarities across sex and age classes, possibly related to primary production resources and life-history traits that impact on behavior and diet.
Collapse
Affiliation(s)
- André C. Pereira
- INIAV, IP- National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Victor Bandeira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (V.B.)
| | - Carlos Fonseca
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (V.B.)
| | - Mónica V. Cunha
- INIAV, IP- National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-214-403-500
| |
Collapse
|
14
|
Pilla R, Suchodolski JS. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front Vet Sci 2020; 6:498. [PMID: 31993446 PMCID: PMC6971114 DOI: 10.3389/fvets.2019.00498] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome contributes to host metabolism, protects against pathogens, educates the immune system, and, through these basic functions, affects directly or indirectly most physiologic functions of its host. Molecular techniques have allowed us to expand our knowledge by unveiling a wide range of unculturable bacteria that were previously unknown. Most bacterial sequences identified in the canine gastrointestinal (GI) tract fall into five phyla: Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria. While there are variations in the microbiome composition along the GI tract, most clinical studies concentrate on fecal microbiota. Age, diet, and many other environmental factors may play a significant role in the maintenance of a healthy microbiome, however, the alterations they cause pale in comparison with the alterations found in diseased animals. GI dysfunctions are the most obvious association with gut dysbiosis. In dogs, intestinal inflammation, whether chronic or acute, is associated with significant differences in the composition of the intestinal microbiota. Gut dysbiosis happens when such alterations result in functional changes in the microbial transcriptome, proteome, or metabolome. Commonly affected metabolites include short-chain fatty acids, and amino acids, including tryptophan and its catabolites. A recently developed PCR-based algorithm termed “Dysbiosis Index” is a tool that allows veterinarians to quantify gut dysbiosis and can be used to monitor disease progression and response to treatment. Alterations or imbalances in the microbiota affect immune function, and strategies to manipulate the gut microbiome may be useful for GI related diseases. Antibiotic usage induces a rapid and significant drop in taxonomic richness, diversity, and evenness. For that reason, a renewed interest has been put on probiotics, prebiotics, and fecal microbiota transplantation (FMT). Although probiotics are typically unable to colonize the gut, the metabolites they produce during their transit through the GI tract can ameliorate clinical signs and modify microbiome composition. Another interesting development is FMT, which may be a promising tool to aid recovery from dysbiosis, but further studies are needed to evaluate its potential and limitations.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Stothart MR, Palme R, Newman AEM. It's what's on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc Biol Sci 2019; 286:20192111. [PMID: 31640519 DOI: 10.1098/rspb.2019.2111] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbiome's capacity to shape the host phenotype and its mutability underlie theorization that the microbiome might facilitate host acclimation to rapid environmental change. However, when environmental change occurs, it is unclear whether resultant microbiome restructuring is proximately driven by this changing external environment or by the host's physiological response to this change. We leveraged urbanization to compare the ability of host environment (urban or forest) versus multi-scale biological measures of host hypothalamic-pituitary-adrenal (HPA) axis physiology (neutrophil : lymphocyte ratio, faecal glucocorticoid metabolites, hair cortisol) to explain variation in the eastern grey squirrel (Sciurus carolinensis) faecal microbiome. Urban and forest squirrels differed across all three of the interpretations of HPA axis activity we measured. Direct consideration of these physiological measures better explained greater phylogenetic turnover between squirrels than environment. This pattern was strongly driven by trade-offs between bacteria which specialize on metabolizing digesta versus host-derived nutrient sources. Drawing on ecological theory to explain patterns in intestinal bacterial communities, we conclude that although environmental change can affect the microbiome, it might primarily do so indirectly by altering host physiology. We demonstrate that the inclusion and careful consideration of dynamic, rather than fixed (e.g. sex), dimensions of host physiology are essential for the study of host-microbe symbioses at the micro-evolutionary scale.
Collapse
Affiliation(s)
- Mason R Stothart
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1.,Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada T2N 4Z6
| | - Rupert Palme
- Department of Biomedical Sciences/Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Amy E M Newman
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1
| |
Collapse
|
16
|
Extensive variability in the gut microbiome of a highly‐specialized and critically endangered lemur species across sites. Am J Primatol 2019; 81:e23046. [DOI: 10.1002/ajp.23046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 02/03/2023]
|
17
|
Mallott EK, Malhi RS, Amato KR. Assessing the comparability of different DNA extraction and amplification methods in gut microbial community profiling. Access Microbiol 2019; 1:e000060. [PMID: 32974545 PMCID: PMC7481737 DOI: 10.1099/acmi.0.000060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Automated, high-throughput technologies are becoming increasingly common in microbiome studies to decrease costs and increase efficiency. However, in microbiome studies, small differences in methodology – including storage conditions, wet lab methods, sequencing platforms and data analysis – can influence the reproducibility and comparability of data across studies. There has been limited testing of the effects of high-throughput methods, including microfluidic PCR technologies. In this paper, we compare two extraction methods (the QIAamp DNA Stool Mini Kit and the MoBio PowerSoil DNA Isolation kit), two taq polymerase enzymes (MyTaq HS Red Mix and Accustart II PCR ToughMix), two primer sets (V3–V4 and V4–V5) and two amplification methods (a common two-step PCR protocol and amplicon library preparation on the Fluidigm Access Array system that allows automated multiplexing of primers). Gut microbial community profiles were significantly affected by all variables. While there were no significant differences in alpha diversity measured between the two extraction methods, there was an effect of extraction method on community composition measured by unweighted UniFrac distances. Both amplification method and primers had a significant effect on both alpha diversity and community composition. The relative abundance of Actinobacteria was significantly lower when using the MoBio kit or Fluidigm amplification method, and the relative abundance of Firmicutes was lower when using the Qiagen kit. Microbial community profiles based on Fluidigm-generated amplicon libraries were not comparable to those generated with more commonly used methods. Researchers should carefully consider the limitations and biases that different extraction and amplification methods can introduce into their results. Additionally, more thorough benchmarking of automated and multiplexing methods is necessary to determine the magnitude of the potential trade-off between the quality and the quantity of data.
Collapse
Affiliation(s)
- Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- *Correspondence: Elizabeth K. Mallott,
| | - Ripan S. Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
18
|
Stalder GL, Pinior B, Zwirzitz B, Loncaric I, Jakupović D, Vetter SG, Smith S, Posautz A, Hoelzl F, Wagner M, Hoffmann D, Kübber-Heiss A, Mann E. Gut microbiota of the European Brown Hare (Lepus europaeus). Sci Rep 2019; 9:2738. [PMID: 30804494 PMCID: PMC6390100 DOI: 10.1038/s41598-019-39638-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases of the gastrointestinal tract due to changes in the bacterial flora have been described with increasing incidence in the European brown hare. Despite extensive demographic and phylogeographic research, little is known about the composition of its gut microbiota and how it might vary based on potential environmental or host factors. We analysed the intestinal and faecal microbiota of 3 hare populations by Illumina MiSeq 16S rRNA gene amplicon sequencing. The phyla and OTU abundance composition differed significantly between intestinal and faecal samples (PERMANOVA: P = 0.002 and P = 0.031, respectively), but in both sample types Firmicutes and Bacteroidetes dominated the microbial community composition (45.51% and 19.30% relative abundance). Intestinal samples contained an enrichment of Proteobacteria compared with faecal samples (15.71-fold change, P < 0.001). At OTU level, a significant enrichment with best BLAST hits to the Escherichia-Shigella group, Eubacterium limosum, Sphingomonas kyeonggiensis, Flintibacter butyricus and Blautia faecis were detected in intestinal samples (P < 0.05). In our statistical model, geographic location and possibly associated environmental factors had a greater impact on the microbiota composition than host factors. Population had a significant effect on the composition of abundant intestinal and faecal OTUs, and on the abundance of potential pathogenic bacteria of the family Enterobacteriaceae, regularly associated with intestinal dysbiosis in hares, in faecal samples. Our study is the first to describe the microbiota in brown hares and provides a foundation to generate hypothesis aiming to test the role of gut health in population fluctuations of the species.
Collapse
Affiliation(s)
- G L Stalder
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria.
| | - B Pinior
- Department for Farm Animals and Veterinary Public Health, Institute for Veterinary Public Health, University of Veterinary Medicine, Vienna, 1210, Vienna, Austria
| | - B Zwirzitz
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, 1210, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Technopark 1C, 3430, Tulln, Austria
| | - I Loncaric
- Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, 1210, Vienna, Austria
| | - D Jakupović
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria
| | - S G Vetter
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria
| | - S Smith
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria
| | - A Posautz
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria
| | - F Hoelzl
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria
| | - M Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, 1210, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Technopark 1C, 3430, Tulln, Austria
| | - D Hoffmann
- Game Conservancy Deutschland e. V., Schloßstrasse 1, 86732, Oettingen, Germany
| | - A Kübber-Heiss
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, 1160, Vienna, Austria
| | - E Mann
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, 1210, Vienna, Austria
| |
Collapse
|
19
|
|
20
|
Gillingham MAF, Béchet A, Cézilly F, Wilhelm K, Rendón-Martos M, Borghesi F, Nissardi S, Baccetti N, Azafzaf H, Menke S, Kayser Y, Sommer S. Offspring Microbiomes Differ Across Breeding Sites in a Panmictic Species. Front Microbiol 2019; 10:35. [PMID: 30787910 PMCID: PMC6372503 DOI: 10.3389/fmicb.2019.00035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
High dispersal rates are known to homogenize host’s population genetic structure in panmictic species and to disrupt host local adaptation to the environment. Long-distance dispersal might also spread micro-organisms across large geographical areas. However, so far, to which extent selection mechanisms that shape host’s population genetics are mirrored in the population structure of the enteric microbiome remains unclear. High dispersal rates and horizontal parental transfer may homogenize bacterial communities between breeding sites (homogeneous hypothesis). Alternatively, strong selection from the local environment may differentiate bacterial communities between breeding sites (heterogeneous hypothesis). Furthermore, selection from age-specific environmental or physiological factors may differentiate the microbiome between juveniles and adults. Here, we analyzed the cloacal bacterial 16S rRNA gene of fledgling greater flamingos, Phoenicopterus roseus, across nine western Mediterranean breeding sites and four breeding seasons (n = 731) and adult birds (n = 27) from a single site. We found that fledgling cloacal microbiome, as measured by alpha diversity, beta diversity, the relative abundance of assigned sequence variants (ASVs) belonging to a phylum and genus composition within phylum, varied significantly between sampling sites and across time within site despite high adult dispersal rates. The spatio-temporal effects were stronger on individual ASV absence/presence than on ASV abundance (i.e., than on core microbiome composition). Spatial effects had a stronger effect than temporal effects, particularly on ASV abundance. Our study supports the heterogeneous hypothesis whereby local environmental conditions select and differentiate bacterial communities, thus countering the homogenizing effects of high-dispersing host species. In addition, differences in core microbiome between adult vs. fledgling samples suggests that differences in age-specific environmental and/or physiological factors result in differential selection pressure of core enteric microbiome between age classes, even within the same environment. In particular, the genus Corynebacterium, associated with both seasonal fat uptake and migration in previous studies, was much more abundant in high-dispersing fledglings than in more resident adults. To conclude, selection mechanisms that shape the host’s genetic structure cannot be extended to the genetic structure of the enteric microbiome, which has important implications regarding our understanding of both host local adaptation mechanisms and enteric microbiome population genetics.
Collapse
Affiliation(s)
| | - Arnaud Béchet
- Institut de Recherche de la Tour du Valat, Arles, France
| | - Frank Cézilly
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manuel Rendón-Martos
- Consejería de Medio Ambiente y Ordenación del Territorio, R.N. Laguna de Fuente de Piedra, Fuente de Piedra, Spain
| | - Fabrizio Borghesi
- Department of Biological Sciences, Geological and Environmental, University of Bologna, Ravenna, Italy
| | | | - Nicola Baccetti
- Istituto Superiore per la Protezione e Ricerca Ambientale, Rome, Italy
| | - Hichem Azafzaf
- Association "Les Amis des Oiseaux" (AAO/BirdLife Tunisie), Ariana Center, Ariana, Tunisia
| | - Sebastian Menke
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Yves Kayser
- Institut de Recherche de la Tour du Valat, Arles, France
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
21
|
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci 2019; 286:20182448. [PMID: 30963956 PMCID: PMC6364583 DOI: 10.1098/rspb.2018.2448] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
The central aim of conservation biology is to understand and mitigate the effects of human activities on biodiversity. To successfully achieve this objective, researchers must take an interdisciplinary approach that fully considers the effects, both direct and indirect, of anthropogenic disturbances on wildlife physiology and health. A recent surge in research has revealed that host-associated microbiota-the archaeal, bacterial, fungal and viral communities residing on and inside organisms-profoundly influence animal health, and that these microbial communities can be drastically altered by anthropogenic activities. Therefore, conservation practitioners should consider the disruption of host-associated microbial diversity as a serious threat to wildlife populations. Despite the tremendous potential for microbiome research to improve conservation outcomes, few efforts have been made to truly integrate these fields. In this review, we call for the microbial renaissance of conservation biology, where biodiversity of host-associated microbiota is recognized as an essential component of wildlife management practices. Using evidence from the existing literature, we will examine the known effects of anthropogenic activities on the diversity of host-associated microbial communities and integrate approaches for maintaining microbial diversity to successfully achieve conservation objectives.
Collapse
Affiliation(s)
- Brian K. Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha S. Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barry K. Hartup
- Department of Conservation Medicine, International Crane Foundation, Baraboo, WI, USA
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Zeng Y, Zeng D, Zhou Y, Niu L, Deng J, Li Y, Pu Y, Lin Y, Xu S, Liu Q, Xiong L, Zhou M, Pan K, Jing B, Ni X. Microbial Biogeography Along the Gastrointestinal Tract of a Red Panda. Front Microbiol 2018; 9:1411. [PMID: 30026734 PMCID: PMC6042058 DOI: 10.3389/fmicb.2018.01411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
The red panda (Ailurus fulgens) is a herbivorous carnivore that is protected worldwide. The gastrointestinal tract (GIT) microbial community has widely acknowledged its vital role in host health, especially in diet digestion; However, no study to date has revealed the GIT microbiota in the red panda. Here, we characterized the microbial biogeographical characteristics in the GIT of a red panda using high-throughput sequencing technology. Significant differences were observed among GIT segments by beta diversity of microbiota, which were divided into four distinct groups: the stomach, small intestine, large intestine, and feces. The stomach and duodenum showed less bacterial diversity, but contained higher bacterial abundance and the most unclassified tags. The number of species in the stomach and small intestine samples was higher than that of the large intestine and fecal samples. A total of 133 core operational taxonomic units were obtained from the GIT samples with 97% sequence identity. Proteobacteria (52.16%), Firmicutes (10.09%), and Bacteroidetes (7.90%) were the predominant phyla in the GIT of the red panda. Interestingly, Escherichia-Shigella were largely abundant in the stomach, small intestine, and feces whereas the abundance of Bacteroides in the large intestine was high. Overall, our study provides a deeper understanding of the gut biogeography of the red panda microbial population. Future research will be important to investigate the microbial culture, metagenomics and metabolism of red panda GIT, especially in Escherichia-Shigella.
Collapse
Affiliation(s)
- Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Jiabo Deng
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Yang Li
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Yang Pu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, China
| | - Yicen Lin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Shuai Xu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Qian Liu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Lvchen Xiong
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Mengjia Zhou
- Sichuan Animal Science Research Institute, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|