1
|
Wu J, Zhan M, Yuan L, Zhu Y, Lin W, Luo J. Sealing solid agar in serum bottles for rapid isolation and long-term preservation of chemoautotrophic ammonia-oxidizing bacteria. WATER RESEARCH 2024; 260:121916. [PMID: 38875857 DOI: 10.1016/j.watres.2024.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Ammonia-oxidizing bacteria (AOB) are ubiquitous on the earth and have broad applications in bioremediation. However, the number of their species with standing in nomenclature and deposited in Microbial Culture Collections still remains low. Moreover, only a few novel species have been reported over the last decades. In this study, we sealed agar in serum bottles to develop a kind of solid agar plate with the oxygen concentration in the headspace maintained at low levels. By using these plates, eight AOB isolates including two novel species were obtained. When AOB cells were grown on the sealed solid agar plates, the time to form visible colonies was largely reduced and the maximum diameter of colonies reached 2 mm, which makes the process of AOB isolation rapid and efficient. Based on five AOB isolates, the headspace oxygen concentration had a significant influence on AOB growth either on solid plate or in liquid culture. Especially, when grown under 21 % O2, the number of colonies formed on solid agar plates was very low and sometimes no visible colony formed. Besides the application on AOB isolation, the sealed solid agar plate was also effective for the enumeration and preservation of AOB cells. When preserved under room temperature for more than ten months, the AOB colonies on the plate could still be recovered. This method provides a feasible way to isolate more novel AOB species from the environment and deposit more species in Microbial Culture Collections.
Collapse
Affiliation(s)
- Jiajie Wu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Manjun Zhan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Lingling Yuan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yueyue Zhu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Huang Y, Zhang X, Xin Y, Tian J, Li M. Distinct microbial nitrogen cycling processes in the deepest part of the ocean. mSystems 2024; 9:e0024324. [PMID: 38940525 PMCID: PMC11265455 DOI: 10.1128/msystems.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.
Collapse
Affiliation(s)
- Yuhan Huang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Jiwei Tian
- MOE Key Laboratory of Physical Oceanography, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Li Y, Li W, Jiang L, Li E, Yang X, Yang J. Salinity affects microbial function genes related to nutrient cycling in arid regions. Front Microbiol 2024; 15:1407760. [PMID: 38946896 PMCID: PMC11212614 DOI: 10.3389/fmicb.2024.1407760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Salinization damages soil system health and influences microbial communities structure and function. The response of microbial functions involved in the nutrient cycle to soil salinization is a valuable scientific question. However, our knowledge of the microbial metabolism functions in salinized soil and their response to salinity in arid desert environments is inadequate. Methods Here, we applied metagenomics technology to investigate the response of microbial carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling and the key genes to salinity, and discuss the effects of edaphic variables on microbial functions. Results We found that carbon fixation dominated the carbon cycle. Nitrogen fixation, denitrification, assimilatory nitrate reduction (ANRA), and nitrogen degradation were commonly identified as the most abundant processes in the nitrogen cycle. Organic phosphorus dissolution and phosphorus absorption/transport were the most enriched P metabolic functions, while sulfur metabolism was dominated by assimilatory sulfate reduction (ASR), organic sulfur transformation, and linkages between inorganic and organic sulfur transformation. Increasing salinity inhibited carbon degradation, nitrogen fixation, nitrogen degradation, anammox, ANRA, phosphorus absorption and transport, and the majority of processes in sulfur metabolism. However, some of the metabolic pathway and key genes showed a positive response to salinization, such as carbon fixation (facA, pccA, korAB), denitrification (narG, nirK, norBC, nosZ), ANRA (nasA, nirA), and organic phosphorus dissolution processes (pstABCS, phnCD, ugpAB). High salinity reduced the network complexity in the soil communities. Even so, the saline microbial community presented highly cooperative interactions. The soil water content had significantly correlations with C metabolic genes. The SOC, N, and P contents were significantly correlated with C, N, P, and S network complexity and functional genes. AP, NH4+, and NO3- directly promote carbon fixation, denitrification, nitrogen degradation, organic P solubilization and mineralization, P uptake and transport, ASR, and organic sulfur transformation processes. Conclusion Soil salinity in arid region inhibited multiple metabolic functions, but prompted the function of carbon fixation, denitrification, ANRA, and organic phosphorus dissolution. Soil salinity was the most important factor driving microbial functions, and nutrient availability also played important roles in regulating nutrient cycling.
Collapse
Affiliation(s)
- Yan Li
- Department of Ecology, College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
- Technology Innovation Center for Ecological Monitoring and Restoration of Desert-Oasis, Urumqi, China
| | - Wenjing Li
- Department of Ecology, College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Lamei Jiang
- College of Life Science, Xinjiang Agricultural University, Urumqi, China
| | - Eryang Li
- Department of Ecology, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Xiaodong Yang
- Department of Geography and Spatial Information Technology, Ningbo University, Ningbo, China
| | - Jianjun Yang
- Department of Ecology, College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
- Technology Innovation Center for Ecological Monitoring and Restoration of Desert-Oasis, Urumqi, China
| |
Collapse
|
4
|
Liu S, Pan Y, Jin X, Zhao S, Xu X, Chen Y, Shen Z, Chen C. A novel Biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124254. [PMID: 38815893 DOI: 10.1016/j.envpol.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
There is currently increasing pressure on agriculture to simultaneously remediate soil and ensure safe agricultural production. In this study, we investigate the potential of a novel combination of biochar and plant growth-promoting bacteria (PGPB) as a promising approach. Two types of biochar, corn stover and rice husk-derived, were used in combination with a PGPB strain, Bacillus sp. PGP5, to remediate Cd and Pb co-contaminated soil and enhance lettuce performance. The contaminated soil was pre-incubated with biochar prior to PGP5 inoculation. The combined application of biochar and PGPB reduced the diethylenetriaminepentaacetic acid (DTPA) -extractable Cd and Pb concentrations in the soil by 46.45%-55.96% and 42.08%-44.83%, respectively. Additionally, this combined application increased lettuce yield by 23.37%-65.39% and decreased Cd and Pb concentrations in the edible parts of the lettuce by 57.39%-68.04% and 13.57%-32.50%. The combined application showed a better promotion on lettuce growth by facilitating chlorophyll synthesis and reducing oxidative stress. These demonstrated a synergistic effect between biochar and PGPB. Furthermore, our study elucidated the specific role of the biochar-PGPB combination in soil microbial communities. Biochar application promoted the survival of PGP5 in the soil. The impact of biochar or PGPB on microbial communities was found to be most significant in the early stage, while the development of plants had a greater influence on rhizosphere microbial communities in later stage. Plants showed a tendency to recruit plant-associated microbes, such as Cyanobacteria, to facilitate growth processes. Notably, the combined application of biochar and PGPB expedited the assembly of microbial communities, enabling them more closely with the rhizosphere microbial communities in late stage of plant development and thus enhancing their effects on promoting plant growth. This study highlights the "accelerating" advantage of the biochar-PGPB combination in the assembly of rhizosphere microbiomes and offers a new strategy for simultaneous soil remediation and safe agricultural production.
Collapse
Affiliation(s)
- Sijia Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yiwen Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Shangjun Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
5
|
Yuan N, Li Z, Shang Q, Liu X, Deng C, Wang C. High efficiency of drinking water treatment residual-based sintered ceramsite in biofilter for domestic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120401. [PMID: 38382437 DOI: 10.1016/j.jenvman.2024.120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Aluminum (Al)-based drinking water treatment residue (DWTR) has often been attempted to be recycled as dominant ingredient to produce sintered ceramsite for water treatment. This study aimed to determine the long-term performance of DWTR-based ceramsite in treating domestic wastewater based on a 385-d biofilter test and by using physicochemical, metagenomic, and metatranscriptomic analyses. The results showed that the ceramsite-packed biofilter exhibited high and stable capability in removing phosphorus (P) and chemical oxygen demand (COD), with removal efficiencies of 92.6 ± 3.97% and 81.1 ± 14.0% for total P and COD, respectively; moreover, 88-100% of ammonium-nitrogen (N) was normally converted, and the total N removal efficiency reached 80-86% under proper aeration. Further analysis suggested that the forms of the removed P in the ceramsite were mainly NH4F- and NaOH-extractable. Microbial communities in the ceramsite biofilter exhibited relatively high activity. Typically, various organic matter degradation-related genes (e.g., hemicellulose and starch degradations) were enriched, and a complete N-cycling pathway was established, which is beneficial for enriching microbes involved in ammonium-N conversion, especially Candidatus Brocadia, Candidatus Jettenia, Nitrosomonas, and Nitrospira. In addition, the structures of the ceramsite had high stability (e.g., compressive strength and major compositions). The ceramsites showed limited metal and metalloid pollution risks and even accumulated copper from the wastewater. These results demonstrate the high feasibility of applying ceramsite prepared from Al-based DWTR for water treatment.
Collapse
Affiliation(s)
- Nannan Yuan
- Nanjing Vocational College of Information Technology, Nanjing, 210023, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ziyi Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiannan Shang
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaowei Liu
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China
| | - Chengxun Deng
- School of Biology, Food and Environment, Hefei University, Hefei, 230000, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
6
|
Peoples LM, Seixas MH, Evans KA, Bilbrey EM, Ranieri JR, Tappenbeck TH, Dore JE, Baumann A, Church MJ. Out of sight, but not out of season: Nitrifier distributions and population dynamics in a large oligotrophic lake. Environ Microbiol 2024; 26:e16616. [PMID: 38517638 DOI: 10.1111/1462-2920.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.
Collapse
Affiliation(s)
- Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Miranda H Seixas
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Kate A Evans
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Evan M Bilbrey
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - John R Ranieri
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Tyler H Tappenbeck
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - John E Dore
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Adam Baumann
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
7
|
Alfreider A, Harringer M. Vertical Distribution and Seasonal Patterns of Candidatus Nitrotoga in a Sub-Alpine Lake. Microbes Environ 2024; 39:ME23086. [PMID: 38825479 PMCID: PMC11220445 DOI: 10.1264/jsme2.me23086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/01/2024] [Indexed: 06/04/2024] Open
Abstract
The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.
Collapse
Affiliation(s)
- Albin Alfreider
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Manuel Harringer
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Qi L, Zheng Y, Hou L, Liu B, Zhou J, An Z, Wu L, Chen F, Lin Z, Yin G, Dong H, Li X, Liang X, Liu M. Potential response of dark carbon fixation to global warming in estuarine and coastal waters. GLOBAL CHANGE BIOLOGY 2023; 29:3821-3832. [PMID: 37021604 DOI: 10.1111/gcb.16702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
Dark carbon fixation (DCF), through which chemoautotrophs convert inorganic carbon to organic carbon, is recognized as a vital process of global carbon biogeochemical cycle. However, little is known about the response of DCF processes in estuarine and coastal waters to global warming. Using radiocarbon labelling method, the effects of temperature on the activity of chemoautotrophs were investigated in benthic water of the Yangtze estuarine and coastal areas. A dome-shaped thermal response pattern was observed for DCF rates (i.e., reduced rates at lower or higher temperatures), with the optimum temperature (Topt ) varying from about 21.9 to 32.0°C. Offshore sites showed lower Topt values and were more vulnerable to global warming compared with nearshore sites. Based on temperature seasonality of the study area, it was estimated that warming would accelerate DCF rate in winter and spring but inhibit DCF activity in summer and fall. However, at an annual scale, warming showed an overall promoting effect on DCF rates. Metagenomic analysis revealed that the dominant chemoautotrophic carbon fixation pathways in the nearshore area were Calvin-Benson-Bassham (CBB) cycle, while the offshore sites were co-dominated by CBB and 3-hydroxypropionate/4-hydroxybutyrate cycles, which may explain the differential temperature response of DCF along the estuarine and coastal gradients. Our findings highlight the importance of incorporating DCF thermal response into biogeochemical models to accurately estimate the carbon sink potential of estuarine and coastal ecosystems in the context of global warming.
Collapse
Affiliation(s)
- Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| |
Collapse
|
9
|
Xue Z, Tian W, Han Y, Feng Z, Wang Y, Zhang W. The hidden diversity of microbes in ballast water and sediments revealed by metagenomic sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163666. [PMID: 37094681 DOI: 10.1016/j.scitotenv.2023.163666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
With the rapid globalization of trade, the worldwide spread of pathogens through ballast water is becoming a major concern. Although the international maritime organization (IMO) convention has been adopted to prevent the spread of harmful pathogens, the limited species resolution of the current microbe-monitoring methods challenged the ballast water and sediments management (BWSM). In this study, we explored metagenomic sequencing to investigate the species composition of microbial communities in four international vessels for BWSM. Our results showed the largest species diversity (14,403) in ballast water and sediments, including bacteria (11,710), eukaryotes (1007), archaea (829), and viruses (790). A total of 129 phyla were detected, among which the Proteobacteria, followed by Bacteroidetes, and Actinobacteria were the most abundant. Notably, 422 pathogens that are potentially harmful to marine environments and aquaculture were identified. The co-occurrence network analysis showed that most of these pathogens were positively correlated with the commonly used indicator bacteria Vibrio cholerae, Escherichia coli, and intestinal Enterococci species, validating the D-2 standard in BWSM. The functional profile showed prominent pathways of methane and sulfur metabolism, indicating that the microbial community in the severe tank environment still utilizes the energy to sustain such a high level of microbe diversity. In conclusion, metagenomic sequencing provides novel information for BWSM.
Collapse
Affiliation(s)
- Zhaozhao Xue
- Marine College, Shandong University, Weihai, China
| | - Wen Tian
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Yangchun Han
- Integarted Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Zhen Feng
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Yu Wang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, China.
| |
Collapse
|
10
|
Chen Y, Lyu Y, Zhang J, Li Q, Lyu L, Zhou Y, Kong J, Zeng X, Zhang S, Li J. Riddles of Lost City: Chemotrophic Prokaryotes Drives Carbon, Sulfur, and Nitrogen Cycling at an Extinct Cold Seep, South China Sea. Microbiol Spectr 2023; 11:e0333822. [PMID: 36511717 PMCID: PMC9927161 DOI: 10.1128/spectrum.03338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Deep-sea cold seeps are one of the most productive ecosystems that sustained by hydrocarbons carried by the fluid. Once the seep fluid ceases, the thriving autotrophic communities die out, terming as the extinct seep. But heterotrophic fauna can still survive even for thousands of years. The critical role of prokaryotes in active seeps are well defined, but their functions in extinct seeps are poorly understood to date. Here, we clarified the diversity, taxonomic specificity, interspecies correlation, and metabolic profiles of sediment prokaryotes at an extinct seep site of Haima cold seep, South China Sea. Alpha diversity of archaea significantly increased, while that of bacteria remained unchanged in extinct seep compared to active seep. However, archaea composition did not differ significantly at extinct seep from active or nonseep sites based on weighted-unifrac dissimilarity, while bacteria composition exhibited significant difference. Distribution of archaea and bacteria showed clear specificity to extinct seeps, indicating the unique life strategies here. Prokaryotes might live chemolithoautotrophically on cycling of inorganic carbon, sulfur, and nitrogen, or chemoorganotrophically on recycling of hydrocarbons. Notably, many of the extinct seep specific species and networked keystone lineages are classified as Proteobacteria. Regarding the functional diversity and metabolic flexibility of this clade, Proteobacteria is supposed to integrate the geochemical cycles and play a critical role in energy and resource supplement for microbiome in extinct seep. Collectively, our findings shed lights on the microbial ecology and functional diversity in extinct seeps, providing new understanding of biogeochemical cycling after fluid cessation. IMPORTANCE This research paper uncovered the potential mechanisms for microbiota mediated geochemical cycling in extinct cold seep, advancing our understanding in deep sea microbiology ecology.
Collapse
Affiliation(s)
- Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Jie Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Xinyang Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jie Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
11
|
Diao M, Balkema C, Suárez-Muñoz M, Huisman J, Muyzer G. Succession of bacteria and archaea involved in the nitrogen cycle of a seasonally stratified lake. FEMS Microbiol Lett 2023; 370:7043454. [PMID: 36796795 PMCID: PMC9990978 DOI: 10.1093/femsle/fnad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Human-driven changes affect nutrient inputs, oxygen solubility, and the hydrodynamics of lakes, which affect biogeochemical cycles mediated by microbial communities. However, information on the succession of microbes involved in nitrogen cycling in seasonally stratified lakes is still incomplete. Here, we investigated the succession of nitrogen-transforming microorganisms in Lake Vechten over a period of 19 months, combining 16S rRNA gene amplicon sequencing and quantification of functional genes. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) and anammox bacteria were abundant in the sediment during winter, accompanied by nitrate in the water column. Nitrogen-fixing bacteria and denitrifying bacteria emerged in the water column in spring when nitrate was gradually depleted. Denitrifying bacteria containing nirS genes were exclusively present in the anoxic hypolimnion. During summer stratification, abundances of AOA, AOB, and anammox bacteria decreased sharply in the sediment, and ammonium accumulated in hypolimnion. After lake mixing during fall turnover, abundances of AOA, AOB, and anammox bacteria increased and ammonium was oxidized to nitrate. Hence, nitrogen-transforming microorganisms in Lake Vechten displayed a pronounced seasonal succession, which was strongly determined by the seasonal stratification pattern. These results imply that changes in stratification and vertical mixing induced by global warming are likely to alter the nitrogen cycle of seasonally stratified lakes.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Cherel Balkema
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - María Suárez-Muñoz
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Woo Y, Cruz MC, Wuertz S. Selective Enrichment of Nitrososphaera viennensis-Like Ammonia-Oxidizing Archaea over Ammonia-Oxidizing Bacteria from Drinking Water Biofilms. Microbiol Spectr 2022; 10:e0184522. [PMID: 36445127 PMCID: PMC9769795 DOI: 10.1128/spectrum.01845-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) can oxidize ammonia to nitrite for energy gain. They have been detected in chloraminated drinking water distribution systems (DWDS) along with the more common ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). To date, no members of the AOA have been isolated or enriched from drinking water environments. To begin the investigation of the role of AOA in chloraminated DWDS, we developed a selective approach using biofilm samples from a full-scale operational network as inoculum. A Nitrososphaera viennensis-like AOA taxon was enriched from a mixed community that also included Nitrosomonas-like AOB while gradually scaling up the culture volume. Dimethylthiourea (DMTU) and pyruvate at 100 μM were added to promote the growth of AOA while inhibiting AOB. This resulted in the eventual washout of AOB, while NOB were absent after 2 or 3 rounds of amendment with 24 μM sodium azide. The relative abundance of AOA in the enrichment increased from 0.2% to 39.5% after adding DMTU and pyruvate, and further to 51.6% after filtration through a 0.45-μm pore size membrane, within a period of approximately 6 months. IMPORTANCE Chloramination has been known to increase the risk of nitrification episodes in DWDS due to the presence of ammonia-oxidizing microorganisms. Among them, AOB are more frequently detected than AOA. All publicly available cultures of AOA have been isolated from soil, marine or surface water environments, meaning they are allochthonous to DWDS. Hence, monochloramine exposure studies involving these strains may not accurately reflect their role in DWDS. The described method allows for the rapid enrichment of autochthonous AOA from drinking water nitrifying communities. The high relative abundance of AOA in the resulting enrichment culture reduces any confounding effects of co-existing heterotrophic bacteria when investigating the response of AOA to varied levels of monochloramine in drinking water.
Collapse
Affiliation(s)
- Yissue Woo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mercedes Cecilia Cruz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Rosado-Porto D, Ratering S, Moser G, Deppe M, Müller C, Schnell S. Soil metatranscriptome demonstrates a shift in C, N, and S metabolisms of a grassland ecosystem in response to elevated atmospheric CO 2. Front Microbiol 2022; 13:937021. [PMID: 36081791 PMCID: PMC9445814 DOI: 10.3389/fmicb.2022.937021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Soil organisms play an important role in the equilibrium and cycling of nutrients. Because elevated CO2 (eCO2) affects plant metabolism, including rhizodeposition, it directly impacts the soil microbiome and microbial processes. Therefore, eCO2 directly influences the cycling of different elements in terrestrial ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment of changes in the composition and structure of the soil microbiome through a functional metatranscriptomics approach (cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment. Results showed changes in the expression of C cycle genes under eCO2 with an increase in the transcript abundance for carbohydrate and amino acid uptake, and degradation, alongside an increase in the transcript abundance for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation. In addition, N cycle changes included a decrease in the transcript abundance of N2O reductase, involved in the last step of the denitrification process, which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in nitrate (NO 3 - ) metabolism occurred, with an increase in transcript abundance for the dissimilatoryNO 3 - reduction to ammonium (NH 4 + ) (DNRA) pathway. S metabolism showed increased transcripts for sulfate (SO 4 2 - ) assimilation under eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome significantly differed between ambient and elevated CO2 conditions. The results exhibited the effects of eCO2 on the transcript abundance of C, N, and S cycles, and the soil microbiome. This finding showed a direct connection between eCO2 and the increased greenhouse gas emission, as well as the importance of soil nutrient availability to maintain the balance of soil ecosystems.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Klotz F, Kitzinger K, Ngugi DK, Büsing P, Littmann S, Kuypers MMM, Schink B, Pester M. Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. THE ISME JOURNAL 2022; 16:1647-1656. [PMID: 35260828 PMCID: PMC9122916 DOI: 10.1038/s41396-022-01216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Deep oligotrophic lakes sustain large populations of the class Nitrososphaeria (Thaumarchaeota) in their hypolimnion. They are thought to be the key ammonia oxidizers in this habitat, but their impact on N-cycling in lakes has rarely been quantified. We followed this archaeal population in one of Europe's largest lakes, Lake Constance, for two consecutive years using metagenomics and metatranscriptomics combined with stable isotope-based activity measurements. An abundant (8-39% of picoplankton) and transcriptionally active archaeal ecotype dominated the nitrifying community. It represented a freshwater-specific species present in major inland water bodies, for which we propose the name "Candidatus Nitrosopumilus limneticus". Its biomass corresponded to 12% of carbon stored in phytoplankton over the year´s cycle. Ca. N. limneticus populations incorporated significantly more ammonium than most other microorganisms in the hypolimnion and were driving potential ammonia oxidation rates of 6.0 ± 0.9 nmol l‒1 d‒1, corresponding to potential cell-specific rates of 0.21 ± 0.11 fmol cell-1 d-1. At the ecosystem level, this translates to a maximum capacity of archaea-driven nitrification of 1.76 × 109 g N-ammonia per year or 11% of N-biomass produced annually by phytoplankton. We show that ammonia-oxidizing archaea play an equally important role in the nitrogen cycle of deep oligotrophic lakes as their counterparts in marine ecosystems.
Collapse
Affiliation(s)
- Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - David Kamanda Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Marcel M M Kuypers
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany.
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany.
- Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, D-38106, Braunschweig, Germany.
| |
Collapse
|
15
|
Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150682. [PMID: 34600998 DOI: 10.1016/j.scitotenv.2021.150682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
16
|
Worsley SF, Macey MC, Prudence SMM, Wilkinson B, Murrell JC, Hutchings MI. Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Front Mol Biosci 2021; 8:686110. [PMID: 34222338 PMCID: PMC8241931 DOI: 10.3389/fmolb.2021.686110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael C Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes. Sci Rep 2021; 11:2982. [PMID: 33536606 PMCID: PMC7858572 DOI: 10.1038/s41598-021-82613-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
To date, little is known about the ecological significance of Comammox (COMplete AMMonia OXidizers) Nitrospira in the water column of freshwater lakes. Water samples collected along depth profiles were used to investigate the distribution of Comammox in 13 lakes characterized by a wide range of physicochemical properties. Several published primers, which target the α-subunit of the ammonia monooxygenase, generated non-specific PCR products or did not amplify target genes from lake water and other habitats. Therefore, a new primer set has been designed for specific detection of Comammox in lakes. The high specificity of the PCR assay was confirmed by sequencing analysis. Quantification of Comammox amoA genes in lake water samples based on droplet digital PCR (ddPCR) revealed very low abundances (not exceeding 85 amoA copies ml-1), which suggest that Comammox is of minor importance for the nitrification process in the water column of the study sites. Surprisingly, samples taken from the sediment/water-interface along an oxygen gradient in dimictic Piburger See showed Comammox abundances three to four magnitudes higher than in the pelagic realm of the lake, which indicates a preference of Comammox to a particle-attached lifestyle.
Collapse
|
18
|
Asplund-Samuelsson J, Hudson EP. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput Biol 2021; 17:e1008742. [PMID: 33556078 PMCID: PMC7895386 DOI: 10.1371/journal.pcbi.1008742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
19
|
Yue L, Kong W, Ji M, Liu J, Morgan-Kiss RM. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134001. [PMID: 31454602 DOI: 10.1016/j.scitotenv.2019.134001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Higher microbial diversity was frequently observed in saline than fresh waters, but the underlying mechanisms remains unknown, particularly in microbial primary producers (MPP). MPP abundance and activity are notably constrained by high salinity, but facilitated by high nutrients. It remains to be ascertained whether and how nutrients regulate the salinity constraints on MPP abundance and community structure. Here we investigated the impact of nutrients on salinity constraints on MPP abundance and diversity in undisturbed lakes with a wide salinity range on the Tibetan Plateau. MPP community was explored using quantitative PCR, terminal restriction fragment length polymorphism and sequencing of cloning libraries targeting form IC cbbL gene. The MPP community structure was sorted by salinity into freshwater (salinity<1‰), saline (1‰ < salinity<29‰) and hypersaline (salinity>29‰) lakes. Furthermore, while MPP abundance, diversity and richness were significantly constrained with increasing salinity, these constraints were mitigated by enhancing total organic carbon (TOC) and total nitrogen (TN) contents in freshwater and saline lakes. In contrast, the MPP diversity increased significantly with the salinity in hypersaline lakes, due to the mitigation of enhancing TOC and TN contents and salt-tolerant MPP taxa. The mitigating effect of nutrients was more pronounced in saline than in freshwater and hypersaline lakes. The MPP compositions varied along salinity, with Betaproteobacteria dominating both the freshwater and saline lakes and Gammaproteobacteria dominating the hypersaline lakes. We concluded that high nutrients could mitigate the salinity constraining effects on MPP abundance, community richness and diversity. Our findings offer a novel insight into the salinity effects on primary producers and highlight the interactive effects of salinity and nutrients on MPP in lakes. These findings can be used as a baseline to illuminate the effects of increased anthropogenic activities altering nutrient dynamics on the global hydrological cycle and the subsequent responses thereof by MPP communities.
Collapse
Affiliation(s)
- Linyan Yue
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mukan Ji
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinbo Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | | |
Collapse
|
20
|
Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano SI. Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ Microbiol 2019; 21:4740-4754. [PMID: 31608575 DOI: 10.1111/1462-2920.14816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023]
Abstract
Metagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22-5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yosuke Nishimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
21
|
Alfreider A, Tartarotti B. Spatiotemporal dynamics of different CO 2 fixation strategies used by prokaryotes in a dimictic lake. Sci Rep 2019; 9:15068. [PMID: 31636358 PMCID: PMC6803681 DOI: 10.1038/s41598-019-51584-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Calvin-Benson-Bassham (CBB) cycle and the 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle are two inorganic carbon assimilation pathways widely used by prokaryotic autotrophs in lakes. We investigated the effect of mixing periods and stable water stratification patterns on the trajectories of both CO2 fixation strategies in a dimictic lake (Piburger See), because information on the spatiotemporal dynamics of prokaryotes using these pathways in freshwater ecosystems is far from complete. Based on a quantitative approach (droplet digital PCR) of genes coding for key enzymes in different CO2 assimilation pathways, nine depths covering the entire water column were investigated on a monthly basis for one year. Our data show that the abundance of photoautotrophs and obligate chemolithoautotrophs preferentially using form IA RubisCO was determined by seasonal variations. Highest numbers were observed in summer, while a strong decline of prokrayotes using RubisCO form IA was measured between December and May, the period where the lake was mostly covered by ice. The spatiotemporal distribution patterns of genes coding for RubisCO form IC genes, an enzyme usually used by facultative autotrophs for CO2 assimilation, were less pronounced. Bacteria harboring RubisCO form II were dominating the oxygen limited hypolimnion, while nitrifying Thaumarchaeota using the HP/HB cycle were of minor importance in the lake. Our data reveal that the seasonal heterogeneity, which is determined by the dimictic thermal regime of the lake, results in pronounced spatiotemporal changes of different CO2 assimilation pathways with depth-dependent environmental parameters as key factors for their distribution.
Collapse
Affiliation(s)
- Albin Alfreider
- Department of Ecology, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
22
|
Waak MB, Hozalski RM, Hallé C, LaPara TM. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. MICROBIOME 2019; 7:87. [PMID: 31174608 PMCID: PMC6556008 DOI: 10.1186/s40168-019-0707-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/28/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Residual disinfection is often used to suppress biological growth in drinking water distribution systems (DWDSs), but not without undesirable side effects. In this study, water-main biofilms, drinking water, and bacteria under corrosion tubercles were analyzed from a chloraminated DWDS (USA) and a no-residual DWDS (Norway). Using quantitative real-time PCR, we quantified bacterial 16S rRNA genes and ammonia monooxygenase genes (amoA) of Nitrosomonas oligotropha and ammonia-oxidizing archaea-organisms that may contribute to chloramine loss. PCR-amplified 16S rRNA genes were sequenced to assess community taxa and diversity. RESULTS The chloraminated DWDS had lower biofilm biomass (P=1×10-6) but higher N. oligotropha-like amoA genes (P=2×10-7) than the no-residual DWDS (medians =4.7×104 and 1.1×103amoA copies cm-2, chloraminated and no residual, respectively); archaeal amoA genes were only detected in the no-residual DWDS (median =2.8×104 copies cm-2). Unlike the no-residual DWDS, biofilms in the chloraminated DWDS had lower within-sample diversity than the corresponding drinking water (P<1×10-4). Chloramine was also associated with biofilms dominated by the genera, Mycobacterium and Nitrosomonas (≤91.7% and ≤39.6% of sequences, respectively). Under-tubercle communities from both systems contained corrosion-associated taxa, especially Desulfovibrio spp. (≤98.4% of sequences). CONCLUSIONS Although residual chloramine appeared to decrease biofilm biomass and alpha diversity as intended, it selected for environmental mycobacteria and Nitrosomonas oligotropha-taxa that may pose water quality challenges. Drinking water contained common freshwater plankton and did not resemble corresponding biofilm communities in either DWDS; monitoring of tap water alone may therefore miss significant constituents of the DWDS microbiome. Corrosion-associated Desulfovibrio spp. were observed under tubercles in both systems but were particularly dominant in the chloraminated DWDS, possibly due to the addition of sulfate from the coagulant alum.
Collapse
Affiliation(s)
- Michael B. Waak
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens veg 5, Trondheim, 7491 Norway
| | - Raymond M. Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, 55108 MN USA
| | - Cynthia Hallé
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens veg 5, Trondheim, 7491 Norway
| | - Timothy M. LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, 55108 MN USA
| |
Collapse
|