1
|
Li Y, Wang J, Sun T, Yu X, Yang Z, Zhao Y, Tang X, Xiao H. Community structure of endophytic bacteria of Sargassum thubergii in the intertidal zone of Qingdao in China. AMB Express 2024; 14:35. [PMID: 38615116 PMCID: PMC11016019 DOI: 10.1186/s13568-024-01688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/12/2024] [Indexed: 04/15/2024] Open
Abstract
Endophytic bacteria are one of the symbiotic microbial groups closely related to host algae. However, less research on the endophytic bacteria of marine algae. In this study, the endophytic bacterial community of Sargassum thunbergii was investigated using the culture method and high-throughput sequencing. Thirty-nine endophytic bacterial strains, belonging to two phyla, five genera and sixteen species, were isolated, and Firmicutes, Bacillus and Metabacillus indicus were the dominant taxa at the phylum, genus and species level, respectively. High-throughput sequencing revealed 39 phyla and 574 genera of endophytic bacteria, and the dominant phylum was Proteobacteria, while the dominant genus was Ralstonia. The results also indicated that the endophytic bacteria of S. thunbergii included various groups with nitrogen fixation, salt tolerance, pollutant degradation, and antibacterial properties but also contained some pathogenic bacteria. Additionally, the endophytic bacterial community shared a large number of groups with the epiphytic bacteria and bacteria in the surrounding seawater, but the three groups of samples could be clustered separately. In conclusion, there are a variety of functional endophytic bacteria living in S. thunbergii, and the internal condition of algae is a selective factor for the formation of endophytic bacterial communities. This study enriched the database of endophytic bacteria in marine macroalgae, paving the way for further understanding of the interrelationships between endophytic bacteria, macroalgae, and the environment.
Collapse
Affiliation(s)
- Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266000, China.
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266000, China.
| |
Collapse
|
2
|
Wang J, Yang Z, Lu P, Sun Y, Xue S, Tang X, Xiao H. Effects of UV-B radiation on epiphytic bacterial communities on male and female Sargassum thunbergii. Sci Rep 2023; 13:3985. [PMID: 36894683 PMCID: PMC9998616 DOI: 10.1038/s41598-022-26494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 03/11/2023] Open
Abstract
The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the β diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peiyao Lu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
3
|
Wang J, Li Y, Yang Z, Sun T, Yu X, Zhao Y, Tang X, Xiao H. Sex plays a role in the construction of epiphytic bacterial communities on the algal bodies and receptacles of Sargassum thunbergii. Front Microbiol 2022; 13:935222. [PMID: 35958132 PMCID: PMC9360977 DOI: 10.3389/fmicb.2022.935222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
The community structures of epiphytic bacteria on the surface of macroalgae are closely related to their host algae, but there is a lack of research on the differences between the epiphytic bacterial communities of male and female algae and their reproductive tissues. In this study, high-throughput sequencing was used to compare epiphytic bacterial community structures on the intertidal macroalgae Sargassum thunbergii and their receptacles between male and female samples. The epiphytic bacteria on the male and female algal bodies and receptacles had similar community structures with a large number of shared bacteria, but the samples clearly clustered separately, and the abundances of dominant taxa, specific bacteria, and indicator species differed, indicating that epiphytic bacterial communities differed significantly between the male and female S. thunbergii and their receptacles. In addition, the abundance of many predicted functional genes was significantly different between epiphytic bacteria on male and female algal bodies and receptacles, especially metabolism-related genes, and the abundances of predicted functional genes of epiphytic bacteria were significantly higher on both types of male samples than on female samples. Our study confirmed that the sex of the host algae influenced the epiphytic bacterial community structures on algae and algal reproductive tissues, and this role was mainly related to the host metabolism. The results reveal the role of host plant sex in the formation of epiphytic bacterial communities. These findings are helpful for obtaining an in-depth understanding of the construction mechanism of algae-associated bacteria.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Xuexi Tang,
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Hui Xiao,
| |
Collapse
|
4
|
Wang J, Yang Z, Wang G, Shang S, Tang X, Xiao H. Diversity of epiphytic bacterial communities on male and female Sargassum thunbergii. AMB Express 2022; 12:97. [PMID: 35841460 PMCID: PMC9288574 DOI: 10.1186/s13568-022-01439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
The epiphytic bacteria are the most abundant microorganisms on marine macroalga. However, there are few studies on the distribution of these epiphytic bacteria on male and female Sargassum thunbergii. In this study, the composition and diversity of epiphytic bacterial communities on male and female S. thunbergii were investigated by using the traditional culture-based method and 16S rDNA high-throughput sequencing. The results showed that the dominant bacterial phyla and genera were the same on both male and female S. thunbergii. However, there were significant differences in the relative abundance of epiphytic bacteria at the genus level. Furthermore, male and female S. thunbergii had their own indicative species and specific bacteria. In addition, the predicted functions of the epiphytic bacteria mainly differed in transport and metabolism, environmental adaptation and spore development. This study enriches the baseline knowledge of epiphytic bacteria related to dioecious algae and paves the way for further studies of the relationships between epiphytic microbial communities and the sex of algae.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,College of Biological and Environmental Engineering, Binzhou University, Binzhou, 256600, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
5
|
Xian L, Wan T, Cao Y, Sun J, Wu T, Apudo AA, Li W, Liu F. Structural Variability and Functional Prediction in the Epiphytic Bacteria Assemblies of Myriophyllum spicatum. Curr Microbiol 2020; 77:3582-3594. [PMID: 32740714 DOI: 10.1007/s00284-020-02139-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
Abstract
The underlying principles influencing bacteria community assembly have long been of interest in the field of microbial ecology. Environmental heterogeneity is believed to be important in controlling the uniqueness and variability of communities. However, little is known about the influence of the host macrophytes on epiphytic bacteria assembly. In this study, we used two contrasting artificial water environments (eutrophic and oligotrophic) for reciprocal transplant experiment of Myriophyllum spicatum to examine the colonization of epiphytic bacteria accompanied with plants growth. Comparative analysis addressed a higher species diversity in epiphytic bacteria than in bacterioplankton, and the highest microbiome richness in sediment. Our data revealed that the organization of epiphytic bacterial community was affected by both plant status (i.e. branch number, net photosynthesis rate etc.) and water bodies (i.e. total phosphate, total nitrogen, pH etc.). Moreover, plant status effected the assembly in priority to water. 16S rRNA gene sequencing further indicated that the epiphytic assemblies were motivated by functionalization and interplay with hosts as a whole. The results complemented new evidences for the 'lottery process' in the epiphytic bacteria assembly traits and shed insights into the assembly patterns referring to functional adaptation across epiphytic bacteria and macrophytes.
Collapse
Affiliation(s)
- Ling Xian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, 100049, Beijing, People's Republic of China
| | - Tao Wan
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, 518004, People's Republic of China
| | - Yu Cao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
| | - Junyao Sun
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
| | - Ting Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
| | - Andrew Apudo Apudo
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
| | - Fan Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China. .,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China. .,College of Science, Tibet University, Lhasa, 850000, People's Republic of China.
| |
Collapse
|
6
|
Leveau JH. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. Curr Opin Microbiol 2019; 49:41-49. [PMID: 31707206 DOI: 10.1016/j.mib.2019.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023]
Abstract
The plant leaf surface, or phyllosphere, represents a unique and challenging microbial biome with a diverse and dynamic community of commensal, parasitic, and mutualistic agents of microscopic proportions. This mini-review offers a digest of recently published research dedicated to the study of phyllosphere microbiota, framed in the context of processes and outcomes of microbial community assembly, structure, and (inter)activity in the phyllosphere, with particular focus on the contributions of environment, plant, and microbe, and on the potential benefits of interrogating those contributions at finer resolutions.
Collapse
Affiliation(s)
- Johan Hj Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Mathai PP, Dunn HM, Magnone P, Zhang Q, Ishii S, Chun CL, Sadowsky MJ. Association between submerged aquatic vegetation and elevated levels of Escherichia coli and potential bacterial pathogens in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:319-324. [PMID: 30543981 DOI: 10.1016/j.scitotenv.2018.11.484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/08/2023]
Abstract
Fecal indicator bacteria such as Escherichia coli have been reported to persist and potentially grow in a wide variety of secondary habitats, such as water, beach sand, sediment, periphyton and some algae. However, little is known about their association with submerged macrophytes and how this may influence water quality. In this study, we examined the association of E. coli and potential bacterial pathogens with Eurasian watermilfoil (EWM), an invasive, submerged, macrophyte that has spread across thousands of lakes in North America. EWM samples were collected from 10 lakes in Minnesota, once a month, for six consecutive months from early summer to late fall. Microbiota associated with EWM were examined using membrane filtration, quantitative PCR targeting various bacterial pathogens and host-associated marker genes, and high-throughput DNA sequencing. E. coli densities were generally elevated on EWM samples, and peaked during warmer months. Moreover, our results showed that EWM could serve as a temporal source for transmission of microbiota to the water column. Several potential pathogenic groups, including Aeromonas, Enterobacteriaceae, and Clostridium were present in significantly greater relative abundance on EWM than in water, and waterfowl was predicted to be the major source of fecal contamination. These findings have water quality implications with respect to the potential for submerged macrophytes to harbor and disperse E. coli and other bacterial pathogens in a large number of waterbodies.
Collapse
Affiliation(s)
- Prince P Mathai
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Hannah M Dunn
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Paolo Magnone
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| | - Chan Lan Chun
- Department of Civil Engineering and National Resources Research Institute, University of Minnesota, Duluth, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant, and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|