1
|
Reynaud Y, Gelasse A, Multigner L, Quénel P, Talarmin A, Guyomard-Rabenirina S. Looking for Pathogens in Dust from North Africa Arriving in the French West Indies Using Metabarcoding and Cultivable Analysis. Microorganisms 2024; 12:2111. [PMID: 39458420 PMCID: PMC11510511 DOI: 10.3390/microorganisms12102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Periodically, the French West Indies receive dust originating from North Africa (NA). Microorganisms associated with desert dust can be transported over long distances through the atmosphere and could represent a means for the remote colonization of new habitats by putatively pathogenic microorganisms. The aim of this study was to determine the diversity and frequency of microbial agents (bacteria, eukaryotes) in NA dusts and the potential threat toward human and/or animal health by comparing microbial air composition during dust events and in control samples. In 2017 and 2018, 16 samples were collected during seven NA dust episodes and there were 9 controls. The microbial composition of the samples was characterized using a cultivable approach and by metabarcoding analyses (16S and 18S). A greater bacterial load and greater diversity were observed during the dust events, and some genera were significantly associated with the events. Some, such as Geodermatophilus, can be considered signature species of NA dust. No pathogenic species were found with the cultivable approach, whereas the metabarcoding analyses highlighted the presence of several potentially pathogenic species or known human pathogens such as Naegleria fowleri.
Collapse
Affiliation(s)
- Yann Reynaud
- Unité Transmission Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Guadeloupe, 97139 Les Abymes, France
| | - Andric Gelasse
- Unité Transmission Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Guadeloupe, 97139 Les Abymes, France
| | - Luc Multigner
- Institut de Recherche en Santé, Environnement et Travail, UMR_S 1085, INSERM, EHESP, University Rennes, 35000 Rennes, France (P.Q.)
| | - Philippe Quénel
- Institut de Recherche en Santé, Environnement et Travail, UMR_S 1085, INSERM, EHESP, University Rennes, 35000 Rennes, France (P.Q.)
| | - Antoine Talarmin
- Unité Transmission Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Guadeloupe, 97139 Les Abymes, France
| | - Stéphanie Guyomard-Rabenirina
- Unité Transmission Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Guadeloupe, 97139 Les Abymes, France
| |
Collapse
|
2
|
Yadav A, Yadav R, Khare P. Impact of cultivating different Ocimum species on bioaerosol bacterial communities and functional genome at an agricultural site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124289. [PMID: 38825219 DOI: 10.1016/j.envpol.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The effects of the surrounding environment on the bacterial composition of bioaerosol were well documented for polluted and contaminated sites. However, there is limited data on the impact of plant species, especially those that produce aromas, on bioaerosol composition at agricultural sites. Hence, the aim of this study is to evaluate the variability in bacterial communities present in bioaerosol samples collected from agricultural sites with aroma-producing crops. For this, PM2.5, PM10, and bioaerosol samples were collected from agricultural fields growing Ocimum [two varieties of O. sanctum (CIM-Aayu and CIM-Angana)] and O. kilimandscharicum (Kapoor), nearby traffic junctions and suburban areas. PM2.5 and PM10 concentrations at the agricultural site were in between the other two polluted sites. However, bioaerosol concentration was lower at agricultural sites than at other sites. The culturable bacteria Bacillus subtilis, Bacillus tequilensis, and Staphylococcus saprophyticus were more prevalent in agricultural sites than in other areas. However, the composition of non-culturable bacteria varied between sites and differed in three fields where Ocimum was cultivated. The CIM-Aayu cultivated area showed a high bacterial richness, lower Simpson and Shannon indices, and a distinctive metabolic profile. The sites CIM-Angana and CIM-Kapoor had a higher abundance of Aeromonas, while Pantoea and Pseudomonas were present at CIM-Aayu. Acinetobacter, Staphylococcus, and Bacillus were the dominant genera at the other two sites. Metabolic profiling showed that the CIM-Aayu site had a higher prevalence of pathways related to amino acid and carbohydrate metabolism and environmental information processing compared to other sites. The composition of bioaerosol among the three different Ocimum sites could be due to variations in the plant volatile and cross-feeding nature of bacterial isolates, which further needs to be explored.
Collapse
Affiliation(s)
- Anisha Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Das S, McEwen A, Prospero J, Spalink D, Chellam S. Respirable Metals, Bacteria, and Fungi during a Saharan-Sahelian Dust Event in Houston, Texas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19942-19955. [PMID: 37943153 PMCID: PMC10862556 DOI: 10.1021/acs.est.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Although airborne bacteria and fungi can impact human, animal, plant, and ecosystem health, very few studies have investigated the possible impact of their long-range transport in the context of more commonly measured aerosol species, especially those present in an urban environment. We report first-of-kind simultaneous measurements of the elemental and microbial composition of North American respirable airborne particulate matter concurrent with a Saharan-Sahelian dust episode. Comprehensive taxonomic and phylogenetic profiles of microbial communities obtained by 16S/18S/ITS rDNA sequencing identified hundreds of bacteria and fungi, including several cataloged in the World Health Organization's lists of global priority human pathogens along with numerous other animal and plant pathogens and (poly)extremophiles. While elemental analysis sensitively tracked long-range transported Saharan dust and its mixing with locally emitted aerosols, microbial diversity, phylogeny, composition, and abundance did not well correlate with the apportioned African dust mass. Bacterial/fungal diversity, phylogenetic signal, and community turnover were strongly correlated to apportioned sources (especially vehicular emissions and construction activities) and elemental composition (especially calcium). Bacterial communities were substantially more dissimilar from each other across sampling days than were fungal communities. Generalized dissimilarity modeling revealed that daily compositional turnover in both communities was linked to calcium concentrations and aerosols from local vehicles and Saharan dust. Because African dust is known to impact large areas in northern South America, the Caribbean Basin, and the southern United States, the microbiological impacts of such long-range transport should be assessed in these regions.
Collapse
Affiliation(s)
- Sourav Das
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alyvia McEwen
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Prospero
- Rosenstiel
School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, United States
| | - Daniel Spalink
- Department
of Ecology and Conservation Biology, Texas
A&M University, College
Station, Texas 77843, United States
| | - Shankararaman Chellam
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
5
|
Ladin ZS, Ferrell B, Dums JT, Moore RM, Levia DF, Shriver WG, D'Amico V, Trammell TLE, Setubal JC, Wommack KE. Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems. Sci Rep 2021; 11:1629. [PMID: 33452291 PMCID: PMC7811025 DOI: 10.1038/s41598-020-80602-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zachary S Ladin
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA.
| | - Barbra Ferrell
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Jacob T Dums
- Biotechnology Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ryan M Moore
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Delphis F Levia
- Department of Entomology and Wildlife Ecology, University of Delaware, 250 Townsend Hall, Newark, DE, 19716, USA
| | - W Gregory Shriver
- Departments of Geography and Spatial Sciences and Plant and Soil Sciences, University of Delaware, 216C Pearson Hall, Newark, DE, 19716, USA
| | - Vincent D'Amico
- US Forest Service, Northern Research Station, Newark, DE, USA
| | - Tara L E Trammell
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| | - João Carlos Setubal
- Instituto de Química, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| |
Collapse
|