1
|
García-Estrada DA, Selem-Mojica N, Martínez-Hernández A, Lara-Reyna J, Dávila-Ramos S, Verdel-Aranda K. Diversity of bacterial communities in wetlands of Calakmul Biosphere Reserve: a comparative analysis between conserved and semi-urbanized zones in pre-Mayan Train era. BMC Microbiol 2024; 24:376. [PMID: 39342129 PMCID: PMC11437969 DOI: 10.1186/s12866-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.
Collapse
Affiliation(s)
- David Alberto García-Estrada
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | | | - Joel Lara-Reyna
- Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Karina Verdel-Aranda
- Conahcyt-Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
- Present address: Tecnológico Nacional de México-Instituto Tecnológico de Chiná, Chiná, Campeche, Mexico.
| |
Collapse
|
2
|
Pallen MJ. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int J Syst Evol Microbiol 2024; 74:006508. [PMID: 39250184 PMCID: PMC11382960 DOI: 10.1099/ijsem.0.006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Here, I review the dynamic history of prokaryotic phyla. Following leads set by Darwin, Haeckel and Woese, the concept of phylum has evolved from a group sharing common phenotypes to a set of organisms sharing a common ancestry, with modern taxonomy based on phylogenetic classifications drawn from macromolecular sequences. Phyla came as surprising latecomers to the formalities of prokaryotic nomenclature in 2021. Since then names have been validly published for 46 prokaryotic phyla, replacing some established names with neologisms, prompting criticism and debate within the scientific community. Molecular barcoding enabled phylogenetic analysis of microbial ecosystems without cultivation, leading to the identification of candidate divisions (or phyla) from diverse environments. The introduction of metagenome-assembled genomes marked a significant advance in identifying and classifying uncultured microbial phyla. The lumper-splitter dichotomy has led to disagreements, with experts cautioning against the pressure to create a profusion of new phyla and prominent databases adopting a conservative stance. The Candidatus designation has been widely used to provide provisional status to uncultured prokaryotic taxa, with phyla named under this convention now clearly surpassing those with validly published names. The Genome Taxonomy Database (GTDB) has offered a stable, standardized prokaryotic taxonomy with normalized taxonomic ranks, which has led to both lumping and splitting of pre-existing phyla. The GTDB framework introduced unwieldy alphanumeric placeholder labels, prompting recent publication of over 100 user-friendly Latinate names for unnamed prokaryotic phyla. Most candidate phyla remain 'known unknowns', with limited knowledge of their genomic diversity, ecological roles, or environments. Whether phyla still reflect significant evolutionary and ecological partitions across prokaryotic life remains an area of active debate. However, phyla remain of practical importance for microbiome analyses, particularly in clinical research. Despite potential diminishing returns in discovery of biodiversity, prokaryotic phyla offer extensive research opportunities for microbiologists for the foreseeable future.
Collapse
Affiliation(s)
- Mark J. Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
3
|
Xin G, Xiaohong S, Yujiao S, Wenbao L, Yanjun W, Zhimou C, Arvolab L. Characterization of bacterial community dynamics dominated by salinity in lakes of the Inner Mongolian Plateau, China. Front Microbiol 2024; 15:1448919. [PMID: 39234542 PMCID: PMC11371557 DOI: 10.3389/fmicb.2024.1448919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Microorganisms in lakes are sensitive to salinity fluctuations. Despite extensive prior research on bacterial communities, our understanding of their characteristics and assembly mechanisms in lakes, especially in desert lakes with different salinities. To address this issue, we collected three samples from freshwater lakes, six from brackish lakes, and five from salt lakes in the Badanjilin Desert. The 16S rRNA gene sequencing was applied to investigate the bacterial interactions with rising salinity, community coexistence patterns, and assembly mechanisms. Our findings suggested that the increased lake salinity significantly reduces the bacterial community diversity and enhanced the community differentiation. Significant variations were observed in the contribution of biomarkers from Cyanobacteria, Chloroflexi, and Halobacterota to the composition of the lake bacterial communities. The bacterial communities in the salt lakes exhibited a higher susceptibility to salinity limitations than those in the freshwater and brackish lakes. In addition, the null modeling analyses confirmed the quantitative biases in the stochastic assembly processes of bacterial communities across freshwater, brackish, and saline lakes. With the increasing lake salinity, the significance of undominated and diffusion limitation decreased slightly, and the influence of homogenizing dispersal on community assembly increased. However, the stochasticity remained the dominant process across all lakes in the Badanjilin Desert. The analysis of co-occurring networks revealed that the rising salinity reduced the complexity of bacterial network structures and altered the interspecific interactions, resulting in the increased interspecies collaboration with increasing salinity levels. Under the influence of salinity stress, the key taxon Cyanobacteria in freshwater lakes (Schizothrix_LEGE_07164) was replaced by Proteobacteria (Thalassobaculum and Polycyclovorans) in brackish lakes, and Thermotogota (SC103) in salt lakes. The results indicated the symbiotic patterns of bacterial communities across varying salinity gradients in lakes and offer insights into potential mechanisms of community aggregation, thereby enhancing our understanding of bacterial distribution in response to salinity changes.
Collapse
Affiliation(s)
- Guo Xin
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Shi Xiaohong
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, China
| | - Shi Yujiao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Li Wenbao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Wang Yanjun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Cui Zhimou
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Lauri Arvolab
- Lammi Biological Station, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| |
Collapse
|
4
|
Nai H, Xu S, Chen B, Zhong J, Fang L, Qin S, Sano Y. Generation of secondary microbial methane of high-rank coals: insights from the microbial community and carbon isotope. Front Microbiol 2024; 15:1414379. [PMID: 39149210 PMCID: PMC11324580 DOI: 10.3389/fmicb.2024.1414379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Secondary microbial methane could provide a valuable energy source if it were better understood. Although coal seam is an ideal environment for investigating secondary microbial methane, there are few studies to trace the secondary microbial methane of high-rank coals. Here, we collected co-produced water samples from coalbeds in the Qinshui Basin (China) and analyzed the microbial community structure by 16S ribosomal RNA (16S rRNA) amplicon sequencing analysis. 16S rRNA sequencing demonstrated abundant methanogens in coalbeds including 6 orders (Methanobacteriales, Methanococcales, Methanofastidiosales, Methanomassiliicoccale, Methanomicrobiales, and Methanosarciniales) and 22 genera of methanogens. Superheavy DIC (δ13CDIC ranging from -4.2‰ to 34.8‰) and abundance of methanogenic microbes in co-produced water revealed the generation of secondary biogenic methane in high-rank coal seams in the Qingshui Basin. Hydrogenotrophic methanogenesis is the main pathway for secondary biogenic methane production. In deeply buried coal seams, biogenic methane is dominated by CO2 and H2 reduction methanogenesis, and in shallow buried coal seams, it may be produced synergistically by hydrocarbon degradation and hydrogenotrophic methanogenic microbes. The study discussed here is important for a better understanding of the generation of secondary microbial methane in high-rank coal.
Collapse
Affiliation(s)
- Hui Nai
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Biying Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Lujia Fang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Sirou Qin
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yuji Sano
- Marine Core Research Institute, Kochi University, Kochi, Japan
| |
Collapse
|
5
|
Sun CL, Pratama AA, Gazitúa MC, Cronin D, McGivern BB, Wainaina JM, Vik DR, Zayed AA, Bolduc B, Wrighton KC, Rich VI, Sullivan MB. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ Microbiol 2024; 26:e16665. [PMID: 39101434 DOI: 10.1111/1462-2920.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 08/06/2024]
Abstract
Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.
Collapse
Affiliation(s)
- Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | | | - Dylan Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Bridget B McGivern
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Kelly C Wrighton
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Iqbal S, Begum F, Ullah I, Jalal N, Shaw P. Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Crit Rev Microbiol 2024:1-21. [PMID: 38385313 DOI: 10.1080/1040841x.2024.2319669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Microbes represent the most common organisms on Earth; however, less than 2% of microbial species in the environment can undergo cultivation for study under laboratory conditions, and the rest of the enigmatic, microbial world remains mysterious, constituting a kind of "microbial dark matter" (MDM). In the last two decades, remarkable progress has been made in culture-dependent and culture-independent techniques. More recently, studies of MDM have relied on culture-independent techniques to recover genetic material through either unicellular genomics or shotgun metagenomics to construct single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs), respectively, which provide information about evolution and metabolism. Despite the remarkable progress made in the past decades, the functional diversity of MDM still remains uncharacterized. This review comprehensively summarizes the recently developed culture-dependent and culture-independent techniques for characterizing MDM, discussing major challenges, opportunities, and potential applications. These activities contribute to expanding our knowledge of the microbial world and have implications for various fields including Biotechnology, Bioprospecting, Functional genomics, Medicine, Evolutionary and Planetary biology. Overall, this review aims to peel off the layers from MDM, shed light on recent advancements, identify future challenges, and illuminate the exciting opportunities that lie ahead in unraveling the secrets of this intriguing microbial realm.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ihsan Ullah
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Nasir Jalal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| | - Peter Shaw
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| |
Collapse
|
7
|
Bandla A, Akhtar H, Lupascu M, Sukri RS, Swarup S. Elevated methane flux in a tropical peatland post-fire is linked to depth-dependent changes in peat microbiome assembly. NPJ Biofilms Microbiomes 2024; 10:8. [PMID: 38253600 PMCID: PMC10803758 DOI: 10.1038/s41522-024-00478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Fires in tropical peatlands extend to depth, transforming them from carbon sinks into methane sources and severely limit forest recovery. Peat microbiomes influence carbon transformations and forest recovery, yet our understanding of microbiome shifts post-fire is currently limited. Our previous study highlighted altered relationships between the peat surface, water table, aboveground vegetation, and methane flux after fire in a tropical peatland. Here, we link these changes to post-fire shifts in peat microbiome composition and assembly processes across depth. We report kingdom-specific and depth-dependent shifts in alpha diversity post-fire, with large differences at deeper depths. Conversely, we found shifts in microbiome composition across all depths. Compositional shifts extended to functional groups involved in methane turnover, with methanogens enriched and methanotrophs depleted at mid and deeper depths. Finally, we show that community shifts at deeper depths result from homogeneous selection associated with post-fire changes in hydrology and aboveground vegetation. Collectively, our findings provide a biological basis for previously reported methane fluxes after fire and offer new insights into depth-dependent shifts in microbiome assembly processes, which ultimately underlie ecosystem function predictability and ecosystem recovery.
Collapse
Affiliation(s)
- Aditya Bandla
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Hasan Akhtar
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Department of Geography, National University of Singapore, Singapore, Singapore
- School of Liberal Arts and Sciences, RV University, Bengaluru, Karnataka, India
| | - Massimo Lupascu
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Rahayu Sukmaria Sukri
- Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Sanjay Swarup
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Medvedeva S, Borrel G, Krupovic M, Gribaldo S. A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat Microbiol 2023; 8:2170-2182. [PMID: 37749252 DOI: 10.1038/s41564-023-01485-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Methanogenic archaea are major producers of methane, a potent greenhouse gas and biofuel, and are widespread in diverse environments, including the animal gut. The ecophysiology of methanogens is likely impacted by viruses, which remain, however, largely uncharacterized. Here we carried out a global investigation of viruses associated with all current diversity of methanogens by assembling an extensive CRISPR database consisting of 156,000 spacers. We report 282 high-quality (pro)viral and 205 virus-like/plasmid sequences assigned to hosts belonging to ten main orders of methanogenic archaea. Viruses of methanogens can be classified into 87 families, underscoring a still largely undiscovered genetic diversity. Viruses infecting gut-associated archaea provide evidence of convergence in adaptation with viruses infecting gut-associated bacteria. These viruses contain a large repertoire of lysin proteins that cleave archaeal pseudomurein and are enriched in glycan-binding domains (Ig-like/Flg_new) and diversity-generating retroelements. The characterization of this vast repertoire of viruses paves the way towards a better understanding of their role in regulating methanogen communities globally, as well as the development of much-needed genetic tools.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Unit Archaeal Virology, Paris, France.
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| |
Collapse
|
9
|
Li F, Li H, Su H, Du W, Gao Z, Liu H, Liang H, Gao D. Effects of salinity on methane emissions and methanogenic archaeal communities in different habitat of saline-alkali wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106378-106389. [PMID: 37728677 DOI: 10.1007/s11356-023-29922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
The increase in temperature caused by global climate change has promoted the salinization of wetlands. Inland saline-alkaline wetlands have an environment of over-humidity and shallow water and are hot spots for CH4 emissions. However, there are few reports on the effect of salinity on CH4 emissions in inland saline-alkaline wetlands. This study conducted simulation experiments of increased salinity to investigate the impact of salinity, habitat, and their interactions on CH4 emissions, as well as to examine the response of methanogenic archaea to salinity. Overall, salinity inhibited CH4 emissions. But there were different responses in the three habitat soils. Salinity decreased the relative abundance of methanogenic archaea and changed the community structure. In addition, salinity changed soil pH and dissolved organic carbon (DOC) and ammonium (NH4+) concentrations, which were significantly correlated with methanogenic archaea. Our study showed that salinity changed the soil physicochemical properties and characteristics of the methanogenic archaeal community, affecting CH4 emissions.
Collapse
Affiliation(s)
- Feng Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huiju Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huihui Su
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wei Du
- Heilongjiang Zhalong National Natural Reserve Administrative Bureau, Qiqihar, 161002, Heilongjiang, China
| | - Zhongyan Gao
- Heilongjiang Zhalong National Natural Reserve Administrative Bureau, Qiqihar, 161002, Heilongjiang, China
| | - Huajun Liu
- Heilongjiang Zhalong National Natural Reserve Administrative Bureau, Qiqihar, 161002, Heilongjiang, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
10
|
Arnold W, Taylor M, Bradford M, Raymond P, Peccia J. Microbial activity contributes to spatial heterogeneity of wetland methane fluxes. Microbiol Spectr 2023; 11:e0271423. [PMID: 37728556 PMCID: PMC10580924 DOI: 10.1128/spectrum.02714-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/21/2023] Open
Abstract
The emission of methane from wetlands is spatially heterogeneous, as concurrently measured surface fluxes can vary by orders of magnitude within the span of a few meters. Despite extensive study and the climatic significance of these emissions, it remains unclear what drives large, within-site variations. While geophysical factors (e.g., soil temperature) are known to correlate with methane (CH4) flux, measurable variance in these parameters often declines as spatial and temporal scales become finer. As methane emitted from wetlands is the direct, net product of microbial metabolisms which both produce and degrade CH4, it stands to reason that characterizing the spatial variability of microbial communities within a wetland-both horizontally and vertically-may help explain observed variances in flux. To that end, we surveyed microbial communities to a depth of 1 m across an ombrotrophic peat bog in Maine, USA using amplicon sequencing and gene expression techniques. Surface methane fluxes and geophysical factors were concurrently measured. Across the first meter of peat at the site, we observed significant changes in the abundance and composition of methanogenic taxa at every depth sampled, with variance in methanogen abundance explaining 70% of flux heterogeneity at a subset of plots. Among measured environmental factors, only peat depth emerged as correlated with flux, and had significant impact on the abundance and composition of methane-cycling communities. These conclusions suggest that a heightened awareness of how microbial communities are structured and spatially distributed within wetlands could offer improved insights into predicting CH4 flux dynamics. IMPORTANCE Globally, wetlands are one of the largest sources of methane (CH4), a greenhouse gas with a warming impact significantly greater than CO2. Methane produced in wetlands is the byproduct of a group of microorganisms which convert organic carbon into CH4. Despite our knowledge of how this process works, it is still unclear what drives dramatic, localized (<10 m) variance in emission rates from the surface of wetlands. While environmental conditions, like soil temperature or water table depth, correlate with methane flux when variance in these factors is large (e.g., spring vs fall), the explanatory power of these variables decline when spatial and temporal scales become smaller. As methane fluxes are the direct product of microbial activity, we profiled how the microbial community varied, both horizontally and vertically, across a peat bog in Maine, USA, finding that variance in microbial communities was likely contributing to much of the observed variance in flux.
Collapse
Affiliation(s)
- Wyatt Arnold
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA
| | - Meghan Taylor
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Mark Bradford
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Peter Raymond
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Oren A, Göker M. Candidatus List. Lists of names of prokaryotic Candidatus phyla. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159402 DOI: 10.1099/ijsem.0.005821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
12
|
Acetoclastic archaea adaptation under increasing temperature in lake sediments and wetland soils from Alaska. Polar Biol 2023. [DOI: 10.1007/s00300-023-03120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Xiang X, Wang H, Man B, Xu Y, Gong L, Tian W, Yang H. Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China. MICROBIAL ECOLOGY 2023; 85:557-571. [PMID: 35332366 DOI: 10.1007/s00248-022-01990-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Bathyarchaeota are believed to have roles in the carbon cycle in marine systems. However, the ecological knowledge of Bathyarchaeota is limited in peatland ecosystems. Here, we investigated the vertical distribution of Bathyarchaeota community structure using quantitative PCR and high-throughput sequencing technology of ribosomal 16S rRNA gene integrated with detailed chemical profiling in the Dajiuhu Peatland, central China. Eight archaeal phyla were observed in peat samples, which mainly composed of Bathyarchaeota with a mean relative abundance about 88%, followed by Thaumarchaeota (9%). Bathyarchaeota were further split into 17 subgroups, and some subgroups showed habitat specificity to peat horizons with distinct lithological and physicochemical properties, for example, Bathy-6 and Bathy-15 had preference for the acrotelm, Bathy-5b, Bathy-16, and Bathy-19 were enriched in the catotelm, Bathy-5a, Bathy-8, and Bathy-11 were specific for the clay horizon. This spatial distribution pattern of archaeal communities along peat profile was mainly influenced by water content as indicated by RDA ordination and permutational MANOVA, whereas organic matter content exclusively affected Bathyarchaeota distribution along the peat profile significantly. The abundance of archaeal 16S rRNA genes ranged from 105 to 107 copies per gram dry sediment, and the highest archaeal biomass was observed in the periodically oxic mesotelm horizon with more dynamic archaeal interaction relationship as indicated by the network analysis. Bathyarchaeota dominated the archaeal interaction network with 82% nodes, 96% edges, and 71% keystone species. Our results provide an overview of the archaeal population, community structure, and relationship with environmental factors that affect the vertical distribution of archaeal communities and emphasize the ecology of bathyarchaeotal lineages in terrestrial peatland ecosystems.
Collapse
Affiliation(s)
- Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Ying Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Linfeng Gong
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Third Institute of Oceanography, SOA, Xiamen, 361005, China
| | - Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Study of Wetland Soils of the Salar de Atacama with Different Azonal Vegetative Formations Reveals Changes in the Microbiota Associated with Hygrophile Plant Type on the Soil Surface. Microbiol Spectr 2022; 10:e0053322. [PMID: 36121227 DOI: 10.1128/spectrum.00533-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salar de Atacama is located approximately 55 km south of San Pedro de Atacama in the Antofagasta region, Chile. The high UV irradiation and salt concentration and extreme drought make Salar de Atacama an ideal site to search for novel soil microorganisms with unique properties. Here, we used a metataxonomic approach (16S rRNA V3-V4) to identify and characterize the soil microbiota associated with different surface azonal vegetation formations, including strict hygrophiles (Baccharis juncea, Juncus balticus, and Schoenoplectus americanus), transitional hygrophiles (Distichlis spicata, Lycium humile, and Tessaria absinthioides), and their various combinations. We detected compositional differences among the soil surface microbiota associated with each plant formation in the sampling area. There were changes in soil microbial phylogenetic diversity from the strict to the transitional hygrophiles. Moreover, we found alterations in the abundance of bacterial phyla and genera. Halobacteriota and Actinobacteriota might have facilitated water uptake by the transitional hygrophiles. Our findings helped to elucidate the microbiota of Salar de Atacama and associate them with the strict and transitional hygrophiles indigenous to the region. These findings could be highly relevant to future research on the symbiotic relationships between microbiota and salt-tolerant plants in the face of climate change-induced desertification. IMPORTANCE The study of the composition and diversity of the wetland soil microbiota associated with hygrophilous plants in a desert ecosystem of the high Puna in northern Chile makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. These microorganisms are adapted to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration; they can be applied in various fields, such as biotechnology and astrobiology, and industries, including the pharmaceutical, food, agricultural, biofuel, cosmetic, and textile industries. These microorganisms can also be used for ecological conservation and restoration. Extreme ecosystems are a unique biological resource and biodiversity hot spots that play a crucial role in maintaining environmental sustainability. The findings could be highly relevant to future research on the symbiotic relationships between microbiota and extreme-environment-tolerant plants in the face of climate change-induced desertification.
Collapse
|
15
|
Allenby A, Cunningham MR, Hillebrand-Voiculescu A, Comte JC, Doherty R, Kumaresan D. Occurrence of methane-oxidizing bacteria and methanogenic archaea in earth’s cave systems—A metagenomic analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.909865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Karst ecosystems represent up to 25% of the land surface and recent studies highlight their potential role as a sink for atmospheric methane. Despite this, there is limited knowledge of the diversity and distribution of methane-oxidizing bacteria (MOB) or methanogens in karst caves and the sub-surface environment in general. Here, we performed a survey of 14 shotgun metagenomes from cave ecosystems covering a broad set of environmental conditions, to compare the relative abundance and phylogenetic diversity of MOB and methanogens, targeting biomarker genes for methane monooxygenase (pmoA and mmoX) and methyl-coenzyme M reductase (mcrA). Taxonomic analysis of metagenomes showed 0.02–1.28% of classified reads were related to known MOB, of which Gammaproteobacterial MOB were the most abundant making up on average 70% of the surveyed caves’ MOB community. Potential for biogenic methane production in caves was also observed, with 0.008–0.39% of reads classified to methanogens and was dominated by sequences related to Methanosarcina. We have also generated a cave ecosystems protein database (CEPD) based on protein level assembly of cave metagenomes that can be used to profile genes of interest.
Collapse
|
16
|
Wang C, Wei W, Zhang YT, Ni BJ. Evaluating the role of biochar in mitigating the inhibition of polyethylene nanoplastics on anaerobic granular sludge. WATER RESEARCH 2022; 221:118855. [PMID: 35949070 DOI: 10.1016/j.watres.2022.118855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The extensive application of anaerobic granular sludge (AGS) to wastewater treatment for methane recovery has drawn considerable attention to the system performances affected by the presence of emerging contaminants in wastewater such as nanoplastics. However, effective strategies on how to mitigate the inhibition caused by nanoplastics remained unavailable. In this study, a novel strategy using biochar to mitigate the inhibition on the AGS performances caused by polyethylene nanoplastics (PE-NPs) was proposed and the corresponding mitigating mechanisms involved were explored. The PE-NPs solely decreased the level of methane recovery of AGS to 71.3 ± 2.7% of control, which was subsequently increased to 85.6 ± 0.8% of control with the presences of both biochar and PE-NPs, although biochar solely showed no obvious effect on methane production. The addition of biochar also elevated the granule size of AGS, along with AGS integrity based on the morphological observation. Moreover, the distributions of live cells and functional microbes related to acidification and methanation increased with biochar addition compared to sole PE-NPs exposure. More extracellular polymeric substance (EPS) was secreted when biochar was involved in AGS systems, with more protein being detected to maintain the granule structure of AGS. Evaluation of adsorption tests indicated that biochar possessed stronger affinity for PE-NPs than AGS, thus capturing the PE-NPs that would originally contact AGS and posing less toxicity to microorganisms.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
17
|
Prasitwuttisak W, Hoshiko Y, Maeda T, Haraguchi A, Yanagawa K. Microbial Community Structures and Methanogenic Functions in Wetland Peat Soils. Microbes Environ 2022; 37. [PMID: 35851269 PMCID: PMC9530717 DOI: 10.1264/jsme2.me22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane metabolism in wetlands involves diverse groups of bacteria and archaea, which are responsible for the biological decomposition of organic matter under certain anoxic conditions. Recent advances in environmental omics revealed the phylogenetic diversity of novel microbial lineages, which have not been previously placed in the traditional tree of life. The present study aimed to verify the key players in methane production, either well-known archaeal members or recently identified lineages, in peat soils collected from wetland areas in Japan. Based on an analysis of microbial communities using 16S rRNA gene sequencing and the molecular cloning of the functional gene, mcrA, a marker gene for methanogenesis, methanogenic archaea belonging to Methanomicrobiales, Methanosarcinales, Methanobacteriales, and Methanomassiliicoccales were detected in anoxic peat soils, suggesting the potential of CH4 production in this natural wetland. “Candidatus Bathyarchaeia”, archaea with vast metabolic capabilities that is widespread in anoxic environments, was abundant in subsurface peat soils (up to 96% of the archaeal community) based on microbial gene quantification by qPCR. These results emphasize the importance of discovering archaea members outside of traditional methanogenic lineages that may have significant functions in the wetland biogeochemical cycle.
Collapse
Affiliation(s)
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
| | - Akira Haraguchi
- Faculty of Environmental Engineering, The University of Kitakyushu
| | | |
Collapse
|
18
|
Changes in Soil Microbial Community and Carbon Flux Regime across a Subtropical Montane Peatland-to-Forest Successional Series in Taiwan. FORESTS 2022. [DOI: 10.3390/f13060958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subtropical montane peatland is among several rare ecosystems that continue to receive insufficient scientific exploration. We analyzed the vegetation types and soil bacterial composition, as well as surface carbon dioxide and methane fluxes along a successional peatland-to-upland-forest series in one such ecosystem in Taiwan. The Yuanyang Lake (YYL) study site is characterized by low temperature, high precipitation, prevailing fog, and acidic soil, which are typical conditions for the surrounding dominant Chamaecyparis obtusa var. formosana forest. Bacterial communities were dominated by Acidobacteriota and Proteobacteria. Along the bog-to-forest gradient, Proteobacteria decreased and Acidobacteriota increased while CO2 fluxes increased and CH4 fluxes decreased. Principal coordinate analysis allowed separating samples into four clusters, which correspond to samples from the bog, marsh, forest, and forest outside of the watershed. The majority of bacterial genera were found in all plots, suggesting that these communities can easily switch to other types. Variation among samples from the same vegetation type suggests influence of habitat heterogeneity on bacterial community composition. Variations of soil water content and season caused the variations of carbon fluxes. While CO2 flux decreased exponentially with increasing soil water content, the CH4 fluxes exhibited an exponential increase together with soil water content. Because YYL is in a process of gradual terrestrialization, especially under the warming climate, we expect changes in microbial composition and the greenhouse gas budget at the landscape scale within the next decades.
Collapse
|
19
|
Usman M, Zhao S, Jeon BH, Salama ES, Li X. Microbial β-oxidation of synthetic long-chain fatty acids to improve lipid biomethanation. WATER RESEARCH 2022; 213:118164. [PMID: 35176594 DOI: 10.1016/j.watres.2022.118164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
β-oxidation is a well-known pathway for fatty acid (FA) degradation. However, the wide range of feedstocks, their intermediates, and complex microbial networks involved in anaerobic digestion (AD) make β-oxidation unclear during lipid digestion having a variety of long-chain fatty acids (LCFAs). Here, we demonstrated the detailed metabolic pathway of major bacteria and enzymes responsible for the β-oxidation of individual saturated FAs (C16:0 and C18:0) and unsaturated FAs (C18:1 and C18:2). C16:0 showed no negative impact on AD. The relative enzyme abundance and production of shorter-chain FAs (
Collapse
Affiliation(s)
- Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University Lanzhou 730000, Gansu, China
| | - Shuai Zhao
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
20
|
Bryanskaya AV, Shipova AA, Rozanov AS, Kolpakova OA, Lazareva EV, Uvarova YE, Efimov VM, Zhmodik SM, Taran OP, Goryachkovskaya TN, Peltek SE. Diversity and Metabolism of Microbial Communities in a Hypersaline Lake along a Geochemical Gradient. BIOLOGY 2022; 11:biology11040605. [PMID: 35453804 PMCID: PMC9031644 DOI: 10.3390/biology11040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
In the south of western Siberia (Russia), there are many unique and unexplored soda, saline, and freshwater lakes. In this study, the results are presented on microbial diversity, its metabolic potential, and their relation with a set of geochemical parameters for a hypersaline lake ecosystem in the Novosibirsk region (Oblast). The metagenomic approach used in this work allowed us to determine the composition and structure of a floating microbial community, the upper layer of silt, and the strata of bottom sediments in a natural saline lake via two bioinformatic approaches, whose results are in good agreement with each other. In the floating microbial community and in the upper layers of the bottom sediment, bacteria of the Proteobacteria (Gammaproteobacteria), Cyanobacteria, and Bacteroidetes phyla were found to predominate. The lower layers were dominated by Proteobacteria (mainly Deltaproteobacteria), Gemmatimonadetes, Firmicutes, and Archaea. Metabolic pathways were reconstructed to investigate the metabolic potential of the microbial communities and other hypothetical roles of the microbial communities in the biogeochemical cycle. Relations between different taxa of microorganisms were identified, as was their potential role in biogeochemical transformations of C, N, and S in a comparative structural analysis that included various ecological niches.
Collapse
Affiliation(s)
- Alla V. Bryanskaya
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Correspondence: or ; Tel.: +7-383-363-4963 (ext. 4120)
| | - Aleksandra A. Shipova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Alexei S. Rozanov
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Oxana A. Kolpakova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Elena V. Lazareva
- V.S. Sobolev Institute of Geology and Mineralogy SB RAS, 630090 Novosibirsk, Russia; (E.V.L.); (S.M.Z.)
| | - Yulia E. Uvarova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Vadim M. Efimov
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Sergey M. Zhmodik
- V.S. Sobolev Institute of Geology and Mineralogy SB RAS, 630090 Novosibirsk, Russia; (E.V.L.); (S.M.Z.)
| | - Oxana P. Taran
- FRC Krasnoyarsk Science Center SB RAS, Institute of Chemistry and Chemical Technology SB RAS, 660036 Krasnoyarsk, Russia;
| | - Tatyana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.A.S.); (A.S.R.); (O.A.K.); (Y.E.U.); efim (V.M.E.); (T.N.G.); (S.E.P.)
- Kurchatov Genomics Center, Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
Ferrer A, Heath KD, Mosquera SL, Suaréz Y, Dalling JW. Assembly of wood-inhabiting archaeal, bacterial and fungal communities along a salinity gradient: common taxa are broadly distributed but locally abundant in preferred habitats. FEMS Microbiol Ecol 2022; 98:6566339. [PMID: 35404430 DOI: 10.1093/femsec/fiac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine, and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9, and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that taxa either dispersed to both terrestrial and aquatic habitats, or that microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.
Collapse
Affiliation(s)
- Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sergio L Mosquera
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Yaraví Suaréz
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
22
|
Effects of Pig Manure and Its Organic Fertilizer Application on Archaea and Methane Emission in Paddy Fields. LAND 2022. [DOI: 10.3390/land11040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paddy fields account for 10% of global CH4 emissions, and the application of manure may increase CH4 emissions. In this study, high-throughput sequencing technology was used to investigate the effects of manure application on CH4 emissions and methanogens in paddy soil. Three treatments were studied: a controlled treatment (CK), pig manure (PM), and organic fertilizer (OF). The results showed that the contents of Zn, Cr and Ni in paddy soil increased with the application of manure, but the contents of heavy metals gradually decreased with the growth of rice. The Shannon index and Ace index showed that the application of pig manure and organic fertilizer less affected the diversity and richness of soil Archaea. The results of community composition analysis showed that Methanobacterium, Methanobrevibacter, Methanosphaera, Methanosarcina and Rice_Cluster_I were the main methanogens in paddy soil after manure and organic fertilizer application. Soil environmental factors were changed after applied manure, among which total potassium (TK) and total nitrogen (TN) were the main environmental factors affecting methanogens in paddy soil. The changes of soil environmental factors affected the community composition of methanogens, and the increase of the relative abundance of methanogens maybe the main reason for the increase of CH4 emission flux. The relative abundance of methanogens and CH4 emission flux in paddy soil were increased by both pig manure and organic fertilizer application, and pig manure had a bigger impact than organic manure.
Collapse
|
23
|
Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region. Ecosystems 2021. [DOI: 10.1007/s10021-021-00713-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractPeatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows and fens, and further to bogs. Potential microbial activity (aerobic CO2 production; CH4 production and oxidation) and biomass were greatest in the early successional meadows, although their communities of aerobic decomposers (fungi, actinobacteria), methanogens, and methanotrophs did not differ from the older fens. Instead, the functional microbial communities shifted at the fen–bog transition concurrent with a sudden decrease in C fluxes. The successional patterns of decomposer versus CH4-cycling communities diverged at the bog stage, indicating strong but distinct microbial responses to Sphagnum dominance and acidity. We highlight young meadows as dynamic sites with the greatest microbial potential for C release. These hot spots of C turnover with dense sedge cover may represent a sensitive bottleneck in succession, which is necessary for eventual long-term peat accumulation. The distinctive microbes in bogs could serve as indicators of the C sink function in restoration measures that aim to stabilize the C in the peat.
Collapse
|
24
|
Putkinen A, Siljanen HMP, Laihonen A, Paasisalo I, Porkka K, Tiirola M, Haikarainen I, Tenhovirta S, Pihlatie M. New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. THE NEW PHYTOLOGIST 2021; 231:524-536. [PMID: 33780002 DOI: 10.1111/nph.17365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4 ) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4 -producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4 -producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.
Collapse
Affiliation(s)
- Anuliina Putkinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Henri M P Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70200, Finland
- Department of Ecogenomics and Archaea Biology, University of Vienna, Vienna, A-1090, Austria
| | - Antti Laihonen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | - Inga Paasisalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70200, Finland
| | - Kaija Porkka
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
- Natural Resources Institute Finland, Savonlinna, FI-57200, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | - Iikka Haikarainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Salla Tenhovirta
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
25
|
Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology. ENVIRONMENTS 2021. [DOI: 10.3390/environments8020016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of methane as a greenhouse gas in the concept of global climate changes is well known. Methanogens and methanotrophs are two microbial groups which contribute to the biogeochemical methane cycle in soil, so that the total emission of CH4 is the balance between its production and oxidation by microbial communities. Traditional identification techniques, such as selective enrichment and pure-culture isolation, have been used for a long time to study diversity of methanogens and methanotrophs. However, these techniques are characterized by significant limitations, since only a relatively small fraction of the microbial community could be cultured. Modern molecular methods for quantitative analysis of the microbial community such as real-time PCR (Polymerase chain reaction), DNA fingerprints and methods based on high-throughput sequencing together with different “omics” techniques overcome the limitations imposed by culture-dependent approaches and provide new insights into the diversity and ecology of microbial communities in the methane cycle. Here, we review available knowledge concerning the abundances, composition, and activity of methanogenic and methanotrophic communities in a wide range of natural and anthropogenic environments. We suggest that incorporation of microbial data could fill the existing microbiological gaps in methane flux modeling, and significantly increase the predictive power of models for different environments.
Collapse
|