1
|
Lin H, Han T, Wang J, Ma Z, Yu X. Screening and Identification of a Strain with Protease and Phytase Activities and Its Application in Soybean Meal Fermentation. Appl Biochem Biotechnol 2024; 196:790-803. [PMID: 37204550 DOI: 10.1007/s12010-023-04568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The aims of the study were to degrade the anti-nutritional factors (ANFs) such as phytic acid, glycinin, and β-conglycinin and improve the values of soybean meal (SBM). Firstly, in this study, a strain PY-4B which exhibited the best enzymatic activities of protease (403.3 ± 17.8 U/mL) and phytase (62.9 ± 2.9 U/mL) was isolated and screened among the isolates. Based on the analysis of physiological and biochemical characteristics and 16S rDNA sequence, the strain PY-4B was identified and named as Pseudomonas PY-4B. Next, Pseudomonas PY-4B was applied to fermentation of SBM. The results showed that the contents of glycinin and β-conglycinin were decreased by 57-63%, and the phytic acid was remarkably degraded by 62.5% due to the fermentation of SBM by Pseudomonas PY-4B. The degradation of glycinin and β-conglycinin resulted in increase of contents of water-soluble proteins and amino acids in fermented SBM. Moreover, Pseudomonas PY-4B exhibited no hemolytic activity and slight inhibitory effect on the growth of pathogen Staphylococcus aureus and the wide range of pH tolerance (3 to 9). In summary, our study indicates that isolated strain Pseudomonas PY-4B is a safe and applicable strain and has the ability to effectively degrade the ANFs (phytic acid, glycinin, and β-conglycinin) in SBM by fermentation.
Collapse
Affiliation(s)
- Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China.
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| |
Collapse
|
2
|
Zhen S, Abdul Rauf Z, Fenfen X, Zhan K, Ruiyu M, Wang Z. Microbial fermentation technology for degradation of saponins from peony seed meal. Prep Biochem Biotechnol 2023; 53:1263-1275. [PMID: 36927259 DOI: 10.1080/10826068.2023.2188408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Peony seed meal is a very important feed protein raw material with a high potential for development; however, the presence of some anti-nutritional factors, such as saponins, reduces its reusability. This study aimed to establish ideal microbial fermentation conditions for the degradation of saponins in peony seed meal for its subsequent use in poultry feed. First, saponins were extracted via two methods: ethanol extraction and reflux. Then, response surface methodology and orthogonal array testing were used to establish the optimal conditions for the degradation of saponins by (a) liquid fermentation of single bacteria, (b) liquid fermentation of compound bacteria, and (c) solid-state fermentation. The degradation efficiencies were 40.21% (±1.62), 59.82% (±1.54), and 69.31% (±2.95), respectively. The maximum degradation was obtained via solid-state fermentation, and the soluble protein content for this fermentation product was found to be 14% higher than that of unfermented peony seed meal.
Collapse
Affiliation(s)
- Sun Zhen
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Zirwa Abdul Rauf
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiao Fenfen
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ma Ruiyu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zaigui Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Chanworawit K, Wangsoonthorn P, Deevong P. Characterization of chitinolytic bacteria newly isolated from the termite Microcerotermes sp. and their biocontrol potential against plant pathogenic fungi. Biosci Biotechnol Biochem 2023; 87:1077-1091. [PMID: 37328422 DOI: 10.1093/bbb/zbad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Chitinolytic bacteria were isolated from guts and shells of the termite Microcerotermes sp. Among the nineteen morphologically different chitinolytic isolates, three isolates with highest extracellular chitinase production ratio (≥2.26) were selected. Based on molecular identification of 16S rRNA gene sequences and biochemical characterizations using API test kits and MALDI-TOF MS, these isolates were closely related to Bacillus thuringiensis (Mc_E02) and Paenibacillus species (Mc_E07 and Mc_G06). Isolate Mc_E02 exhibited the highest chitinase-specific activity (2.45 U/mg protein) at 96 h of cultivation, and the enzyme activity was optimized at pH 7.0 and 45 °C. The isolate showed highest and broad-spectrum inhibitory effect against three phytopathogenic fungi (Curvularia lunata, Colletotrichum capsici, and Fusarium oxysporum). Its 36-kDa chitinase exhibited the biomass reduction and mycelium inhibition against all fungi, with highest effects to Curvularia lunata. This research provides novel information about termite chitinolytic bacteria and their effective chitinase, with potential use as biocontrol tool.
Collapse
Affiliation(s)
- Kittipong Chanworawit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pachara Wangsoonthorn
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pinsurang Deevong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Shu Q, Guo X, Tian C, Wang Y, Zhang X, Cheng J, Li F, Li B. Homeostatic Regulation of the Duox-ROS Defense System: Revelations Based on the Diversity of Gut Bacteria in Silkworms ( Bombyx mori). Int J Mol Sci 2023; 24:12731. [PMID: 37628915 PMCID: PMC10454487 DOI: 10.3390/ijms241612731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The Duox-ROS defense system plays an important role in insect intestinal immunity. To investigate the role of intestinal microbiota in Duox-ROS regulation herein, 16S rRNA sequencing technology was utilized to compare the characteristics of bacterial populations in the midgut of silkworm after different time-periods of treatment with three feeding methods: 1-4 instars artificial diet (AD), 1-4 instars mulberry leaf (ML) and 1-3 instars artificial diet + 4 instar mulberry leaf (TM). The results revealed simple intestinal microbiota in the AD group whilst microbiota were abundant and variable in the ML and TM silkworms. By analyzing the relationship among intestinal pH, reactive oxygen species (ROS) content and microorganism composition, it was identified that an acidic intestinal environment inhibited the growth of intestinal microbiota of silkworms, observed concurrently with low ROS content and a high activity of antioxidant enzymes (SOD, TPX, CAT). Gene expression associated with the Duox-ROS defense system was detected using RT-qPCR and identified to be low in the AD group and significantly higher in the TM group of silkworms. This study provides a new reference for the future improvement of the artificial diet feeding of silkworm and a systematic indicator for the further study of the relationship between changes in the intestinal environment and intestinal microbiota balance caused by dietary alterations.
Collapse
Affiliation(s)
- Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Chao Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiaoxia Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Qi N, Zhan X, Milmine J, Sahar M, Chang KH, Li J. Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal. Front Nutr 2023; 10:1123422. [PMID: 36969826 PMCID: PMC10030947 DOI: 10.3389/fnut.2023.1123422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Soybean meal (SBM) is one of the most important sources of plant-based protein in the livestock and poultry industry. However, SBM contains anti-nutritional factors (ANFs) such as glycinin, β-conglycinin, trypsin inhibitor and phytic acid that can damage the intestinal health of animals, inevitably reducing growth performance. Fermentation using microorganisms with probiotic potential is a viable strategy to reduce ANFs and enhance the nutritional value of SBM. In this study, a novel potential probiotic Bacillus licheniformis (B4) with phytase, protease, cellulase and xylanase activity was isolated from camel feces. The ability of B4 to tolerate different pH, bile salts concentrations and temperatures were tested using metabolic activity assay. It was found that B4 can survive at pH 3.0, or 1.0% bile salts for 5 h, and displayed high proliferative activity when cultured at 50°C. Furthermore, B4 was capable of degrading glycinin, β-conglycinin and trypsin inhibitor which in turn resulted in significant increases of the degree of protein hydrolysis from 15.9% to 25.5% (p < 0.01) and crude protein from 44.8% to 54.3% (p < 0.001). After fermentation with B4 for 24 h, phytic acid in SBM was reduced by 73.3% (p < 0.001), the neutral detergent fiber (NDF) and the acid detergent fiber of the fermented SBM were significantly decreased by 38.40% (p < 0.001) and 30.20% (p < 0.05), compared to the unfermented SBM sample. Our results suggested that the effect of solid-state fermented SBM using this novel B. licheniformis (B4) strain, could significantly reduce phytic acid concentrations whilst improving the nutritional value of SBM, presenting itself as a promising alternative to phytase additives.
Collapse
Affiliation(s)
- Nanshan Qi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Joshua Milmine
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Maureen Sahar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kai-Hsiang Chang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|