1
|
Kozaeva E, Nieto-Domínguez M, Tang KKY, Stammnitz M, Nikel PI. Leveraging Engineered Pseudomonas putida Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones. ACS Synth Biol 2025. [PMID: 39748701 DOI: 10.1021/acssynbio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium Pseudomonas putida as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone. Pathway optimization identified efficient enzyme variants from Clostridium acetobutylicum and Escherichia coli, tested with both constitutive and inducible expression of the cognate genes. By implementing these optimized pathways in P. putida minicells, which can be prepared through a simple three-step purification protocol, the feedstock was converted into the target short-chain methyl ketones. These results highlight the value of combining morphology and pathway engineering of noncanonical bacterial hosts to establish alternative bioprocesses for toxic chemicals that are difficult to produce by conventional approaches.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kent Kang Yong Tang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Wang Q, Zhang J, Zhao Z, Li Y, You J, Wang Y, Li X, Xu M, Rao Z. Dual genetic level modification engineering accelerate genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2024; 52:8609-8627. [PMID: 38967005 DOI: 10.1093/nar/gkae577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.
Collapse
Affiliation(s)
- Qing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jie Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhe Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yichen Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
3
|
Shisler KA, Kincannon WM, Mattice JR, Larson J, Valaydon-Pillay A, Mus F, Flusche T, Kumar Nath A, Stoian SA, Raugei S, Bothner B, DuBois JL, Peters JW. Homologous acetone carboxylases select Fe(II) or Mn(II) as the catalytic cofactor. mBio 2024; 15:e0298723. [PMID: 38126751 PMCID: PMC10865871 DOI: 10.1128/mbio.02987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Acetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria Xanthobacter autotrophicus and Aromatoleum aromaticum share 68% sequence identity but have been proposed to have different catalytic metals. In this work, the two ACs were expressed under the same conditions in Escherichia coli and were subjected to parallel chelation and reconstitution experiments with Mn(II) or Fe(II). Electron paramagnetic and Mössbauer spectroscopies identified signatures, respectively, of Mn(II) or Fe(II) bound at the active site. These experiments showed that the respective ACs, without the assistance of chaperones, second metal sites, or post-translational modifications facilitate correct metal incorporation, and despite the expected thermodynamic preference for Fe(II), each preferred a distinct metal. Catalysis was likewise associated uniquely with the cognate metal, though either could potentially serve the proposed Lewis acidic role. Subtle differences in the protein structure are implicated in serving as a selectivity filter for Mn(II) or Fe(II).IMPORTANCEThe Irving-Williams series refers to the predicted stabilities of transition metal complexes where the observed general stability for divalent first-row transition metal complexes increase across the row. Acetone carboxylases (ACs) use a coordinated divalent metal at their active site in the catalytic conversion of bicarbonate and acetone to form acetoacetate. Highly homologous ACs discriminate among different divalent metals at their active sites such that variations of the enzyme prefer Mn(II) over Fe(II), defying Irving-Williams-predicted behavior. Defining the determinants that promote metal discrimination within the first-row transition metals is of broad fundamental importance in understanding metal-mediated catalysis and metal catalyst design.
Collapse
Affiliation(s)
- Krista A. Shisler
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - William M. Kincannon
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jenna R. Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tamara Flusche
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Arnab Kumar Nath
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Simone Raugei
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
4
|
Wefelmeier K, Schmitz S, Kösters BJ, Liebal UW, Blank LM. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha. Microb Cell Fact 2024; 23:8. [PMID: 38172830 PMCID: PMC10763331 DOI: 10.1186/s12934-023-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND One carbon (C1) molecules such as methanol have the potential to become sustainable feedstocks for biotechnological processes, as they can be derived from CO2 and green hydrogen, without the need for arable land. Therefore, we investigated the suitability of the methylotrophic yeast Ogataea polymorpha as a potential production organism for platform chemicals derived from methanol. We selected acetone, malate, and isoprene as industrially relevant products to demonstrate the production of compounds with 3, 4, or 5 carbon atoms, respectively. RESULTS We successfully engineered O. polymorpha for the production of all three molecules and demonstrated their production using methanol as carbon source. We showed that the metabolism of O. polymorpha is well suited to produce malate as a product and demonstrated that the introduction of an efficient malate transporter is essential for malate production from methanol. Through optimization of the cultivation conditions in shake flasks, which included pH regulation and constant substrate feeding, we were able to achieve a maximum titer of 13 g/L malate with a production rate of 3.3 g/L/d using methanol as carbon source. We further demonstrated the production of acetone and isoprene as additional heterologous products in O. polymorpha, with maximum titers of 13.6 mg/L and 4.4 mg/L, respectively. CONCLUSION These findings highlight how O. polymorpha has the potential to be applied as a versatile cell factory and contribute to the limited knowledge on how methylotrophic yeasts can be used for the production of low molecular weight biochemicals from methanol. Thus, this study can serve as a point of reference for future metabolic engineering in O. polymorpha and process optimization efforts to boost the production of platform chemicals from renewable C1 carbon sources.
Collapse
Affiliation(s)
- Katrin Wefelmeier
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Simone Schmitz
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Benjamin Jonas Kösters
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Ulf Winfried Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
5
|
Mahmood T, Hussain N, Shahbaz A, Mulla SI, Iqbal HMN, Bilal M. Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng 2023; 46:1077-1097. [PMID: 36331626 PMCID: PMC10345032 DOI: 10.1007/s00449-022-02796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
6
|
Kozaeva E, Nieto-Domínguez M, Hernández AD, Nikel PI. Synthetic metabolism for in vitro acetone biosynthesis driven by ATP regeneration. RSC Chem Biol 2022; 3:1331-1341. [PMID: 36349222 PMCID: PMC9627730 DOI: 10.1039/d2cb00170e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/15/2022] [Indexed: 05/14/2024] Open
Abstract
In vitro ketone production continues to be a challenge due to the biochemical features of the enzymes involved-even when some of them have been extensively characterized (e.g. thiolase from Clostridium acetobutylicum), the assembly of synthetic enzyme cascades still face significant limitations (including issues with protein aggregation and multimerization). Here, we designed and assembled a self-sustaining enzyme cascade with acetone yields close to the theoretical maximum using acetate as the only carbon input. The efficiency of this system was further boosted by coupling the enzymatic sequence to a two-step ATP-regeneration system that enables continuous, cost-effective acetone biosynthesis. Furthermore, simple methods were implemented for purifying the enzymes necessary for this synthetic metabolism, including a first-case example on the isolation of a heterotetrameric acetate:coenzyme A transferase by affinity chromatography.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| | - Abril D Hernández
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark 2800 Kongens Lyngby Denmark +93 51 19 18
| |
Collapse
|
7
|
Suitability of Solvent-Assisted Extraction for Recovery of Lipophilic Phytochemicals in Sugarcane Straw and Bagasse. Foods 2022; 11:foods11172661. [PMID: 36076845 PMCID: PMC9455893 DOI: 10.3390/foods11172661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sugarcane is primarily harvested to meet up to 80% of global sugar demand. Recently, lipids recovered from their biomass (straw and bagasse) have attracted much attention due to their possible utilisation in biofuel production but also by the presence of health-promoting compounds as phytosterols (i.e., improvement of cardiovascular function) or 1-octacosanol (i.e., anti-obesity). Although this fraction is commonly obtained through solid–liquid isolation, there is scarce information about how different solvents affect the composition of the extracts. This research work aimed to study whether, in sugarcane straw and bagasse samples, Soxtec extraction with widely used dichloromethane (DCM) would be suitable to recover most of the lipid classes when compared to other available solvents such as food grade ethanol (EtOH) or solvents without regulation restrictions for food and drug applications (i.e., acetone and ethyl acetate). The obtained results allow concluding that sugarcane waxes from straw and bagasse are complex lipid mixtures of polar and non-polar compounds. According to the extraction yield, the best results were obtained with ethanol (5.12 ± 0.30% and 1.97 ± 0.31%) for both straw and bagasse, respectively. The extractant greatly influenced the lipid composition of the obtained product. Thus, DCM enriched the isolates in glycerolipids (mono-, di- and triglycerides), free fatty acids, fatty alcohols, fatty aldehydes, phytosterols and hydrocarbons. On the other hand, EtOH resulted in polar isolates rich in glycolipids. Therefore, depending on the application and objectives of future research studies, the solvent to recover such lipids needs to be carefully selected.
Collapse
|
8
|
Rigo D, Masters AF, Maschmeyer T, Selva M, Fiorani G. Isopropenyl Esters (iPEs) in Green Organic Synthesis. Chemistry 2022; 28:e202200431. [DOI: 10.1002/chem.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Rigo
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia (VE) Italy
| | - Anthony F. Masters
- Laboratory of Advanced Catalysis for Sustainability School of Chemistry University of Sydney Sydney NSW 2006 Australia
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability School of Chemistry University of Sydney Sydney NSW 2006 Australia
| | - Maurizio Selva
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia (VE) Italy
| | - Giulia Fiorani
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia (VE) Italy
| |
Collapse
|
9
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Hocq R, Sauer M. An artificial coculture fermentation system for industrial propanol production. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Converting plant biomass into biofuels and biochemicals via microbial fermentation has received considerable attention in the quest for finding renewable energies and materials. Most approaches have so far relied on cultivating a single microbial strain, tailored for a specific purpose. However, this contrasts to how nature works, where microbial communities rather than single species perform all tasks. In artificial coculture systems, metabolic synergies are rationally designed by carefully selecting and simultaneously growing different microbes, taking advantage of the broader metabolic space offered by the use of multiple organisms.
1-propanol and 2-propanol, as biofuels and precursors for propylene, are interesting target molecules to valorize plant biomass. Some solventogenic Clostridia can naturally produce 2-propanol in the so-called Isopropanol-Butanol-Ethanol (IBE) fermentation, by coupling 2-propanol synthesis to acetate and butyrate reduction into ethanol and 1-butanol.
In this work, we hypothesized propanoate would be converted into 1-propanol by the IBE metabolism, while driving at the same time 2-propanol synthesis. We first verified this hypothesis and chose two propionic acid bacteria (PAB) strains as propanoate producers. While consecutive PAB and IBE fermentations only resulted in low propanol titers, coculturing Propionibacterium freudenreichii and Clostridium beijerinckii at various inoculation ratios yielded much higher solvent concentrations, with as much as 21 g/L of solvents (58% increase compared to C. beijerinckii monoculture) and 12 g/L of propanol (98% increase). Taken together, our results underline how artificial cocultures can be used to foster metabolic synergies, increasing fermentative performances and orienting the carbon flow towards a desired product.
Collapse
Affiliation(s)
- Rémi Hocq
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Arslan K, Schoch T, Höfele F, Herrschaft S, Oberlies C, Bengelsdorf F, Veiga MC, Dürre P, Kennes C. Engineering
Acetobacterium woodii
for the production of isopropanol and acetone from carbon dioxide and hydrogen. Biotechnol J 2022; 17:e2100515. [DOI: 10.1002/biot.202100515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kübra Arslan
- Chemical Enginering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group University of La Coruña Rúa da Fraga 10 La Coruña 15008 Spain
| | - Teresa Schoch
- Institute of Microbiology and Biotechnology University of Ulm Albert‐Einstein‐Allee 11 Ulm 89081 Germany
| | - Franziska Höfele
- Institute of Microbiology and Biotechnology University of Ulm Albert‐Einstein‐Allee 11 Ulm 89081 Germany
| | - Sabrina Herrschaft
- Institute of Microbiology and Biotechnology University of Ulm Albert‐Einstein‐Allee 11 Ulm 89081 Germany
| | - Catarina Oberlies
- Institute of Microbiology and Biotechnology University of Ulm Albert‐Einstein‐Allee 11 Ulm 89081 Germany
| | - Frank Bengelsdorf
- Institute of Microbiology and Biotechnology University of Ulm Albert‐Einstein‐Allee 11 Ulm 89081 Germany
| | - María C. Veiga
- Chemical Enginering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group University of La Coruña Rúa da Fraga 10 La Coruña 15008 Spain
| | - Peter Dürre
- Institute of Microbiology and Biotechnology University of Ulm Albert‐Einstein‐Allee 11 Ulm 89081 Germany
| | - Christian Kennes
- Chemical Enginering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), BIOENGIN group University of La Coruña Rúa da Fraga 10 La Coruña 15008 Spain
| |
Collapse
|
12
|
Ibrahim MF, Talib NN, Alias NH, Bakar INA, Aziz SA, Yee PL. Utilization of agricultural biomass for bio-butanol production. VALUE-CHAIN OF BIOFUELS 2022:235-248. [DOI: 10.1016/b978-0-12-824388-6.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Rivas-Astroza M, Paredes I, Guerrero K, Mau S, Quintero J, Gentina JC, Conejeros R, Aroca G. Kinetic model of Clostridium beijerinckii's Acetone-Butanol-Ethanol fermentation considering metabolically diverse cell types. J Biotechnol 2021; 342:1-12. [PMID: 34648892 DOI: 10.1016/j.jbiotec.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Clostridium beijerinckii population branches into metabolically diverse cell types in batch cultures. Here, we present a new kinetic model of C. beijerinckii's Acetone-Butanol-Ethanol fermentation that considers three cell types: producers of acids (acidogenic), consumer of acids and producers of solvents (solventogenic), and spores cells. The model accurately recapitulates batch culture data. Also, the model estimates cell type-specific kinetic parameters, which can be helpful to improve the operation of the ABE fermentation and give a framework to study acidogenic and solventogenic metabolic pathways. To exemplify the latter, we used a constraint-based model to study how the ABE pathways are used among acidogenic and solventogenic cell types. We found that among both cell types, glycolytic production of ATP and consumption of NAD+ varies widely during the fermentation, with their maximum production/consumption rates happening when acidogenic and solventogenic growth rates were at their highest. However, acidogenic cells use the ABE pathway to contribute with an extra 12.5% of the total production of ATP, whereas solventogenic cell types use the ABE pathway to supply more than 75% of the demand for NAD+, alternating between the production of lactate and butyrate, being both coupled to the production of NAD+.
Collapse
Affiliation(s)
- Marcelo Rivas-Astroza
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile.
| | - Iván Paredes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Karlo Guerrero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Silvia Mau
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Julián Quintero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Juan Carlos Gentina
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Germán Aroca
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| |
Collapse
|
14
|
Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113268. [PMID: 34280865 DOI: 10.1016/j.jenvman.2021.113268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The fossil fuel utilization adversely affected the environmental health due to the rising emission levels of greenhouse gases. Consequently, the challenges of climate change loaded great stress on renewable energy sources. It is noted that extreme consumption of fossil fuels increased the earth temperature by 1.9 °C that adversely influenced the life and biodiversity. Biorefinery is the sustainable process for the production of biofuels and other bio-products from biomass feedstock using different conversion technologies. Biofuel is an important component of renewable energy sources contributing to overall carbon-neutral energy system. Studies reported that on global scale, over 90% of petroleum goods could be produced from renewable resources by 2023, whereas, 33% chemicals, and 50% of the pharmaceutical market share is also expected to be bio-based. This study details the brief review of operation, development, application, limitations, future perspectives, circular bioeconomy, and life cycle assessment of biorefinery. The economic and environmental aspects of biofuels and biorefineries are briefly discussed. Lastly, considering the present challenges, the future perspectives of biofuels and biorefineries are highlighted.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Muhammad Haq Nawaz
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nafees Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Pamula ASP, Lampert DJ, Atiyeh HK. Well-to-wake analysis of switchgrass to jet fuel via a novel co-fermentation of sugars and CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146770. [PMID: 33839671 DOI: 10.1016/j.scitotenv.2021.146770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass such as switchgrass can be converted to n-butanol using fermentation, which can be further processed into jet fuel. Traditional acetone-butanol-ethanol (ABE) fermentation only converts sugars derived from switchgrass to ABE. Novel co-fermentation processes convert sugars and gas (CO2/H2) produced during fermentation into butanol, thus increasing ABE yields by 15.5% compared to traditional ABE fermentation. Herein, the environmental impact of a Switchgrass to Jet Fuel (STJ) pathway was assessed using life cycle assessment (LCA) from well-to-wake. LCAs were performed for greenhouse gas (GHG) emissions from jet fuel production via co-fermentation of sugars and gas for ideal and practical cases of ABE fermentation and seven other jet fuel pathways. The ideal case assumes 100% sugar recovery and 95% ABE yield. The practical case assumes 90% sugar recovery and an 80% ABE yield. Results are presented based on 100-year global warming potential (GWP) per MJ of jet fuel. Co-products were allocated using various methods. The increase in butanol yield via the co-fermentation technology reduced GWP-100 for the STJ pathway by 6.5% compared to traditional ABE fermentation. Similarly, the STJ pathway for the practical case with co-fermentation had 14.2%, 47.5%, 73.8%, and 44.4% less GWP-100 compared to HRJ, Fischer-Tropsch jet fuel from switchgrass, Fischer-Tropsch jet fuel from coal, and conventional petroleum jet fuel. The results demonstrate that the STJ pathway via co-fermentation has the potential to increase product yield while reducing GHG emissions compared to other jet fuel production pathways.
Collapse
Affiliation(s)
| | - David J Lampert
- Civil Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| | - Hasan K Atiyeh
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
16
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus. Microorganisms 2021; 9:microorganisms9010162. [PMID: 33445711 PMCID: PMC7828175 DOI: 10.3390/microorganisms9010162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Thermoanaerobacter species have recently been observed to reduce carboxylic acids to their corresponding alcohols. The present investigation shows that Thermoanaerobacter pseudoethanolicus converts C2-C6 short-chain fatty acids (SCFAs) to their corresponding alcohols in the presence of glucose. The conversion yields varied from 21% of 3-methyl-1-butyrate to 57.9% of 1-pentanoate being converted to their corresponding alcohols. Slightly acidic culture conditions (pH 6.5) was optimal for the reduction. By increasing the initial glucose concentration, an increase in the conversion of SCFAs reduced to their corresponding alcohols was observed. Inhibitory experiments on C2-C8 alcohols showed that C4 and higher alcohols are inhibitory to T. pseudoethanolicus suggesting that other culture modes may be necessary to improve the amount of fatty acids reduced to the analogous alcohol. The reduction of SCFAs to their corresponding alcohols was further demonstrated using 13C-labelled fatty acids and the conversion was followed kinetically. Finally, increased activity of alcohol dehydrogenase (ADH) and aldehyde oxidation activity was observed in cultures of T. pseudoethanolicus grown on glucose as compared to glucose supplemented with either 3-methyl-1-butyrate or pentanoate, using both NADH and NADPH as cofactors, although the presence of the latter showed higher ADH and aldehyde oxidoreductase (ALDH) activity.
Collapse
|
20
|
Grewal PS, Samson JA, Baker JJ, Choi B, Dueber JE. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat Chem Biol 2021; 17:96-103. [PMID: 33046851 DOI: 10.1038/s41589-020-00668-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Eukaryotic cells compartmentalize metabolic pathways in organelles to achieve optimal reaction conditions and avoid crosstalk with cytosolic factors. We found that cytosolic expression of norcoclaurine synthase (NCS), the enzyme that catalyzes the first committed reaction in benzylisoquinoline alkaloid biosynthesis, is toxic in Saccharomyces cerevisiae and, consequently, restricts (S)-reticuline production. We developed a compartmentalization strategy that alleviates NCS toxicity while promoting increased (S)-reticuline titer. This strategy is achieved through efficient targeting of toxic NCS to the peroxisome while, crucially, taking advantage of the free flow of metabolite substrates and products across the peroxisome membrane. We demonstrate that expression of engineered transcription factors can mimic the oleate response for larger peroxisomes, further increasing benzylisoquinoline alkaloid titer without the requirement for peroxisome induction with fatty acids. This work specifically addresses the challenges associated with toxic NCS expression and, more broadly, highlights the potential for engineering organelles with desired characteristics for metabolic engineering.
Collapse
Affiliation(s)
- Parbir S Grewal
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Jennifer A Samson
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Sound Agriculture, Emeryville, CA, USA
| | - Jordan J Baker
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Brian Choi
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, CA, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
21
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
22
|
Banerjee D, Eng T, Lau AK, Sasaki Y, Wang B, Chen Y, Prahl JP, Singan VR, Herbert RA, Liu Y, Tanjore D, Petzold CJ, Keasling JD, Mukhopadhyay A. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat Commun 2020; 11:5385. [PMID: 33097726 PMCID: PMC7584609 DOI: 10.1038/s41467-020-19171-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023] Open
Abstract
High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew K Lau
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brenda Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuel and Bioproduct Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Vasanth R Singan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuel and Bioproduct Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- QB3 Institute, University of California-Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, 2970, Horsholm, Denmark
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
24
|
Sustainable short-chain olefin production through simultaneous dehydration of mixtures of 1-butanol and ethanol over HZSM-5 and γ-Al2O3. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Scholten PBV, Moatsou D, Detrembleur C, Meier MAR. Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromol Rapid Commun 2020; 41:e2000266. [PMID: 32686239 DOI: 10.1002/marc.202000266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Indexed: 12/14/2022]
Abstract
The recent focus of media and governments on renewability, green chemistry, and circular economy has led to a surge in the synthesis of renewable monomers and polymers. In this review, focussing on renewable monomers for reversible deactivation radical polymerizations (RDRP), it is highlighted that for the majority of the monomers and polymers reported, the claim to renewability is not always accurate. By closely examining the sustainability of synthetic routes and the renewability of starting materials, fully renewable monomers are identified and discussed in terms of sustainability, polymerization behavior, and properties obtained after polymerization. The holistic discussion considering the overall preparation process of polymers, that is, monomer syntheses, origin of starting materials, solvents used, the type of RDRP technique utilized, and the purification method, allows to highlight certain topics which need to be addressed in order to progress toward not only (partially) renewable, but sustainable monomers and polymers using RDRPs.
Collapse
Affiliation(s)
- Philip B V Scholten
- Center for Education and Research on Macromolecules, CESAM Research Unit, Department of Chemistry, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium.,Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany
| | - Dafni Moatsou
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, Department of Chemistry, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
| | - Michael A R Meier
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany.,Laboratory of Applied Chemistry, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
26
|
Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 2020; 320:17-27. [PMID: 32553531 DOI: 10.1016/j.jbiotec.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
N-butanol, a valued solvent and potential fuel extender, could possibly be produced by fermentation using either native producers, i.e. solventogenic Clostridia, or engineered platform organisms such as Escherichia coli or Pseudomonas species, if the main process obstacle, a low final butanol concentration, could be overcome. A low final concentration of butanol is the result of its high toxicity to production cells. Nevertheless, bacteria have developed several mechanisms to cope with this toxicity and one of them is active butanol efflux. This review presents information about a few well characterized butanol efflux pumps from Gram-negative bacteria (P. putida and E. coli) and summarizes knowledge about putative butanol efflux systems in Gram-positive bacteria.
Collapse
|
27
|
Ferreira S, Pereira R, Wahl SA, Rocha I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol Bioeng 2020; 117:2571-2587. [PMID: 32374413 DOI: 10.1002/bit.27377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022]
Abstract
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Rui Pereira
- SilicoLife Lda, Braga, Portugal.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
28
|
Azambuja SPH, Goldbeck R. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. World J Microbiol Biotechnol 2020; 36:48. [PMID: 32152786 DOI: 10.1007/s11274-020-02828-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
The search for gasoline substitutes has grown in recent decades, leading to the increased production of ethanol as viable alternative. However, research in recent years has shown that butanol exhibits various advantages over ethanol as a biofuel. Furthermore, butanol can also be used as a chemical platform, serving as an intermediate product and as a solvent in industrial reactions. This alcohol is naturally produced by some Clostridium species; however, Clostridial fermentation processes still have inherent problems, which focuses the interest on Saccharomyces cerevisiae for butanol production, as an alternative organism for the production of this alcohol. S. cerevisiae exhibits great adaptability to industrial conditions and can be modified with a wide range of genetic tools. Although S. cerevisiae is known to naturally produce isobutanol, the n-butanol synthesis pathway has not been well established in wild S. cerevisiae strains. Two strategies are most commonly used for of S. cerevisiae butanol production: the heterologous expression of the Clostridium pathway or the amino acid uptake pathways. However, butanol yields produced from S. cerevisiae are lower than ethanol yield. Thus, there are still many challenges needed to be overcome, which can be minimized through genetic and evolutive engineering, for butanol production by yeast to become a reality.
Collapse
Affiliation(s)
- Suéllen P H Azambuja
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - Rosana Goldbeck
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
29
|
Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4. J Ind Microbiol Biotechnol 2020; 47:319-328. [PMID: 32103460 DOI: 10.1007/s10295-020-02266-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Clostridium saccharoperbutylacetonicum N1-4 (Csa) is a historically significant anaerobic bacterium which can perform saccharolytic fermentations to produce acetone, butanol, and ethanol (ABE). Recent genomic analyses have highlighted this organism's potential to produce polyketide and nonribosomal peptide secondary metabolites, but little is known regarding the identity and function of these metabolites. This study provides a detailed bioinformatic analysis of seven biosynthetic gene clusters (BGCs) present in the Csa genome that are predicted to produce polyketides/nonribosomal peptides. An RNA-seq-based untargeted transcriptomic approach revealed that five of seven BGCs were expressed during ABE fermentation. Additional characterization of a highly expressed nonribosomal peptide synthetase gene led to the discovery of its associated metabolite and its biosynthetic pathway. Transcriptomic analysis suggested an association of this nonribosomal peptide synthetase gene with butanol tolerance, which was supported by butanol challenge assays.
Collapse
|
30
|
Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts 2019. [DOI: 10.3390/catal9110962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium sp. is a genus of anaerobic bacteria capable of metabolizing several substrates (monoglycerides, diglycerides, glycerol, carbon monoxide, cellulose, and more), into valuable products. Biofuels, such as ethanol and butanol, and several chemicals, such as acetone, 1,3-propanediol, and butyric acid, can be produced by these organisms through fermentation processes. Among the most well-known species, Clostridium carboxidivorans, C. ragsdalei, and C. ljungdahlii can be highlighted for their ability to use gaseous feedstocks (as syngas), obtained from the gasification or pyrolysis of waste material, to produce ethanol and butanol. C. beijerinckii is an important species for the production of isopropanol and butanol, with the advantage of using hydrolysate lignocellulosic material, which is produced in large amounts by first-generation ethanol industries. High yields of 1,3 propanediol by C. butyricum are reported with the use of another by-product from fuel industries, glycerol. In this context, several Clostridium wild species are good candidates to be used as biocatalysts in biochemical or hybrid processes. In this review, literature data showing the technical viability of these processes are presented, evidencing the opportunity to investigate them in a biorefinery context.
Collapse
|
31
|
Fairhurst NWG, Harper RA, Smith HK, Speight LC, Clements JS, Jenkinson ER. Engineering solventogenic clostridia for commercial production of bio‐chemicals. ENGINEERING BIOLOGY 2019. [DOI: 10.1049/enb.2019.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Rachel A. Harper
- Green Biologics Ltd, R&D labs 154AH Brook Drive, Milton Park Abingdon OX14 4SD UK
| | - Holly K. Smith
- Green Biologics Ltd, R&D labs 154AH Brook Drive, Milton Park Abingdon OX14 4SD UK
| | - Lee C. Speight
- Green Biologics Inc. 800 E. Leigh St, Lab 56 Richmond VA 23219 USA
| | | | | |
Collapse
|
32
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
33
|
Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0232-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Podolsky IA, Seppälä S, Lankiewicz TS, Brown JL, Swift CL, O'Malley MA. Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annu Rev Chem Biomol Eng 2019; 10:105-128. [PMID: 30883214 DOI: 10.1146/annurev-chembioeng-060718-030340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Thomas S Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Candice L Swift
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| |
Collapse
|
35
|
Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep 2019; 9:1371. [PMID: 30718562 PMCID: PMC6362236 DOI: 10.1038/s41598-018-37679-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023] Open
Abstract
Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.
Collapse
|
36
|
Ellis CK, Volker SF, Griffin DL, VerCauteren KC, Nichols TA. Use of faecal volatile organic compound analysis for ante-mortem discrimination between CWD-positive, -negative exposed, and -known negative white-tailed deer (Odocoileus virginianus). Prion 2019; 13:94-105. [PMID: 31032718 PMCID: PMC7000150 DOI: 10.1080/19336896.2019.1607462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic wasting disease (CWD) is a naturally occurring infectious, fatal, transmissible spongiform encephalopathy of cervids. Currently, disease confirmation relies on post-mortem detection of infectious prions in the medial retropharyngeal lymph nodes or obex in the brain via immunohistochemistry (IHC). Detection of CWD in living animals using this method is impractical, and IHC and other experimental assays are not reliable in detecting low concentrations of prion present in biofluids or faeces. Here, we evaluate the capability of faecal volatile organic compound analysis to discriminate between CWD-positive and -exposed white-tailed deer located at two positive cervid farms, and two groups of CWD-negative deer from two separate disease-free farms.
Collapse
Affiliation(s)
- Christine K. Ellis
- Feral Swine Project, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | - Steven F. Volker
- Analytical Chemistry Department, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | - Doreen L. Griffin
- BioLaboratories, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | - Kurt C. VerCauteren
- Feral Swine Project, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | | |
Collapse
|
37
|
Zeldes BM, Straub CT, Otten JK, Adams MW, Kelly RM. A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum. Biotechnol Bioeng 2018; 115:2951-2961. [PMID: 30199090 PMCID: PMC6231964 DOI: 10.1002/bit.26829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
One potential advantage of an extremely thermophilic metabolic engineering host (T opt ≥ 70°C) is facilitated recovery of volatile chemicals from the vapor phase of an active fermenting culture. This process would reduce purification costs and concomitantly alleviate toxicity to the cells by continuously removing solvent fermentation products such as acetone or ethanol, a process we are calling "bio-reactive distillation." Although extremely thermophilic heterologous metabolic pathways can be inspired by existing mesophilic versions, they require thermostable homologs of the constituent enzymes if they are to be utilized in extremely thermophilic bacteria or archaea. Production of acetone from acetyl-CoA and acetate in the mesophilic bacterium Clostridium acetobutylicum utilizes three enzymes: thiolase, acetoacetyl-CoA: acetate CoA transferase (CtfAB), and acetoacetate decarboxylase (Adc). Previously reported biocatalytic pathways for acetone production were demonstrated only as high as 55°C. Here, we demonstrate a synthetic enzymatic pathway for acetone production that functions up to at least 70°C in vitro, made possible by the unusual thermostability of Adc from the mesophile C. acetobutylicum, and heteromultimeric acetoacetyl-CoA:acetate CoA-transferase (CtfAB) complexes from Thermosipho melanesiensis and Caldanaerobacter subterraneus, composed of a highly thermostable α-subunit and a thermally labile β-subunit. The three enzymes produce acetone in vitro at temperatures of at least 70°C, paving the way for bio-reactive distillation of acetone using a metabolically engineered extreme thermophile as a production host.
Collapse
Affiliation(s)
- Benjamin M. Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Jonathan K. Otten
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
38
|
Xin F, Yan W, Zhou J, Wu H, Dong W, Ma J, Zhang W, Jiang M. Exploitation of novel wild type solventogenic strains for butanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:252. [PMID: 30250504 PMCID: PMC6145368 DOI: 10.1186/s13068-018-1252-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/17/2023]
Abstract
Butanol has been regarded as an important bulk chemical and advanced biofuel; however, large scaling butanol production by solventogenic Clostridium sp. is still not economically feasible due to the high cost of substrates, low butanol titer and yield caused by the toxicity of butanol and formation of by-products. Renewed interests in biobutanol as biofuel and rapid development in genetic tools have spurred technological advances to strain modifications. Comprehensive reviews regarding these aspects have been reported elsewhere in detail. Meanwhile, more wild type butanol producers with unique properties were also isolated and characterized. However, few reviews addressed these discoveries of novel wild type solventogenic Clostridium sp. strains. Accordingly, this review aims to comprehensively summarize the most recent advances on wild type butanol producers in terms of fermentation patterns, substrate utilization et al. Future perspectives using these native ones as chassis for genetic modification were also discussed.
Collapse
Affiliation(s)
- Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
39
|
Kolek J, Diallo M, Vasylkivska M, Branska B, Sedlar K, López-Contreras AM, Patakova P. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A. Appl Microbiol Biotechnol 2017; 101:8279-8291. [PMID: 28990140 DOI: 10.1007/s00253-017-8555-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023]
Abstract
The production of acetone, butanol and ethanol by fermentation of renewable biomass has potential to become a valuable industrial process. Mechanisms of solvent production and sporulation involve some common regulators in some ABE-producing clostridia, although details of the links between the pathways are not clear. In this study, we compare a wild-type (WT) Clostridium beijerinckii NRRL B-598 with its mutant strain OESpo0A, in which the gene encoding Spo0A, an important regulator of both sporulation and solventogenesis, is overexpressed in terms of solvent and acid production. We also compare morphologies during growth on two different media: TYA broth, where the WT culture sporulates, and RCM, where the WT culture does not. In addition, RT-qPCR-based analysis of expression profiles of spo0A, spoIIE, sigG, spoVD, ald and buk1 genes involved in sporulation or solvent production in these strains, were compared. The OESpo0A mutant did not produce spores and butanol titre was lower compared to the WT, but increased amounts of butyric acid and ethanol were produced. The gene spo0A had high levels of expression in the WT under non-sporulating culture conditions while other selected genes for sporulation factors were downregulated significantly. Similar observations were obtained for OESpo0A where spo0A overexpression and downregulation of other sporulation genes were demonstrated. Higher expression of spo0A led to higher expression of buk1 and ald, which could confirm the role of spo0A in activation of the solventogenic pathway, although solvent production was not affected significantly in the WT and was weakened in the OESpo0A mutant.
Collapse
Affiliation(s)
- J Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - M Diallo
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - M Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - B Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - K Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 61600, Brno, Czech Republic
| | - A M López-Contreras
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - P Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
40
|
Vitorino LC, Bessa LA. Technological Microbiology: Development and Applications. Front Microbiol 2017; 8:827. [PMID: 28539920 PMCID: PMC5423913 DOI: 10.3389/fmicb.2017.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services.
Collapse
Affiliation(s)
- Luciana C. Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal InstituteGoiás, Brazil
| | | |
Collapse
|