1
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
2
|
Santillan JY, Rojas NL, Lewkowicz ES, Iribarren AM. Novel fungal organophosphorus hydrolases in acidic media: an application to apples decontamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10803-10811. [PMID: 36085219 DOI: 10.1007/s11356-022-22854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Organophosphorus pesticides bring significant improvements in agriculture, but their toxicity causes environmental and health negative impacts. The aim of this work was the development of robust biocatalysts to be applied in bioremediation. Four fungi were evaluated as hydrolase sources capable of degrading organophosphorus pesticides: Aspergillus niger, Fusarium sp., Penicillium chrysogenum, and Penicillium nalgiovense. The hydrolysis rates of methyl paraoxon obtained under acidic conditions were in the range of 10 to 21 mg L-1 d-1, which is remarkable since most similar biocatalysts are active under alkaline conditions. Penicillium chrysogenum activity was outstanding, and it was selected to prepare, characterize, and study the applications of its enzymatic extract. It was used to evaluate the bioremediation of apple surfaces at pH 2 in the presence of SDS, achieving complete methyl paraoxon degradation under proposed conditions. These results indicate that this biocatalyst could complement industrialized fruit washing processes for the elimination of organophosphorus pesticides.
Collapse
Affiliation(s)
- Julia Yamila Santillan
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Sáenz Peña 352, Bernal (1876), Argentina.
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Sáenz Peña 352, Bernal (1876), Argentina.
| | - Natalia Lorena Rojas
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Sáenz Peña 352, Bernal (1876), Argentina
| | - Elizabeth Sandra Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Sáenz Peña 352, Bernal (1876), Argentina
| | - Adolfo Marcelo Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos Nucleicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Sáenz Peña 352, Bernal (1876), Argentina
| |
Collapse
|
3
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
4
|
Yan Z, Ding L, Zou D, Qiu J, Shao Y, Sun S, Li L, Xin Z. Characterization of a novel carboxylesterase with catalytic activity toward di(2-ethylhexyl) phthalate from a soil metagenomic library. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147260. [PMID: 33957585 DOI: 10.1016/j.scitotenv.2021.147260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
A novel carboxylesterase gene estyz5 was isolated from a soil metagenomic library. The recombinant enzyme EstYZ5 is 298 amino acids in length with a predicted molecular weight of 32 kDa. Sequence alignment and phylogenetic analysis revealed that EstYZ5 belongs to the hormone-sensitive lipase (HSL) family with a deduced catalytic triad of Ser144-Glu238-His268. EstYZ5 contains two conserved motifs, a pentapeptide motif GDSAG and a HGGG motif, which are typically found in members of the HSL family. Esterolytic activity of the recombinant enzyme was optimal at 30 °C and pH 8.0, and the kcat/Km value of the enzyme for the optimum substrate p-nitrophenyl butyrate was as high as 1272 mM-1·s-1. Importantly, EstYZ5 showed activity toward di(2-ethylhexyl) phthalate with complex side chains, which is rare for HSLs. Molecular docking simulations revealed that the catalytic triad and an oxyanion hole likely play vital roles in enzymatic activity and specificity. The phthalate-degrading activity of EstYZ5, combined with its high levels of esterolytic activity, render this new enzyme a candidate for biotechnological applications.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liping Ding
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dandan Zou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Santillan JY, Rojas NL, Ghiringhelli PD, Nóbile ML, Lewkowicz ES, Iribarren AM. Organophosphorus compounds biodegradation by novel bacterial isolates and their potential application in bioremediation of contaminated water. BIORESOURCE TECHNOLOGY 2020; 317:124003. [PMID: 32810733 DOI: 10.1016/j.biortech.2020.124003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus compounds (OPs), the major pesticides used worldwide, comprise an environmental hazard due to their harmful toxicity. Aimed to develop a bioreactor to remediate OPs contaminated wastewater, bacteria isolated from contaminated soils were identified and their ability to degrade OPs assessed, resulting in two main isolates, Sphingomonas sp. and Brevundimonas sp. Their OP degrading activities were characterized in terms of temperature, pH and substrates acceptance, resulting in high degradation rates at 60 °C, pH 10 and towards bulky OPs such as coroxon, coumaphos, and chlorpyrifos. Sphingomonas sp. cells were immobilized and 75.4% degradation of 0.15 mM chlorpyrifos was achieved after 21 days by immobilized cells in batch system, while this OP was completely degraded within 17 h when the biocatalyst is settled in a packed bed bioreactor, with a reusability of 8 cycles. These results suggest the potential application of this system in the bioremediation of contaminated wastewater.
Collapse
Affiliation(s)
- Julia Yamila Santillan
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina.
| | - Natalia Lorena Rojas
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular- Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Pablo Daniel Ghiringhelli
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular- Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Matías Leonardo Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Elizabeth Sandra Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Adolfo Marcelo Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| |
Collapse
|
6
|
Microbial degradation of organophosphorus pesticides using whole cells and enzyme extracts. Biodegradation 2020; 31:423-433. [DOI: 10.1007/s10532-020-09918-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
|
7
|
Herisse M, Porter JL, Guerillot R, Tomita T, Goncalves Da Silva A, Seemann T, Howden BP, Stinear TP, Pidot SJ. The ΦBT1 large serine recombinase catalyzes DNA integration at pseudo- attB sites in the genus Nocardia. PeerJ 2018; 6:e4784. [PMID: 29740520 PMCID: PMC5937489 DOI: 10.7717/peerj.4784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
Plasmid vectors based on bacteriophage integrases are important tools in molecular microbiology for the introduction of foreign DNA, especially into bacterial species where other systems for genetic manipulation are limited. Site specific integrases catalyze recombination between phage and bacterial attachment sites (attP and attB, respectively) and the best studied integrases in the actinomycetes are the serine integrases from the Streptomyces bacteriophages ΦC31 and ΦBT1. As this reaction is unidirectional and highly stable, vectors containing phage integrase systems have been used in a number of genetic engineering applications. Plasmids bearing the ΦBT1 integrase have been used to introduce DNA into Streptomyces and Amycolatopsis strains; however, they have not been widely studied in other actinobacterial genera. Here, we show that vectors based on ΦBT1 integrase can stably integrate into the chromosomes of a range of Nocardia species, and that this integration occurs despite the absence of canonical attB sites in these genomes. Furthermore, we show that a ΦBT1 integrase-based vector can insert at multiple pseudo-attB sites within a single strain and we determine the sequence of a pseudo-attB motif. These data suggest that ΦBT1 integrase-based vectors can be used to readily and semi-randomly introduce foreign DNA into the genomes of a range of Nocardia species. However, the precise site of insertion will likely require empirical determination in each species to avoid unexpected off-target effects.
Collapse
Affiliation(s)
- Marion Herisse
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jessica L Porter
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Romain Guerillot
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Takehiro Tomita
- Microbiological Diagnostic Unit, University of Melbourne, Melbourne, VIC, Australia
| | - Anders Goncalves Da Silva
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Microbiological Diagnostic Unit, University of Melbourne, Melbourne, VIC, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Microbiological Diagnostic Unit, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Microbiological Diagnostic Unit, University of Melbourne, Melbourne, VIC, Australia.,Doherty Applied Microbial Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Microbiological Diagnostic Unit, University of Melbourne, Melbourne, VIC, Australia.,Doherty Applied Microbial Genomics, University of Melbourne, Melbourne, VIC, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:10-22. [PMID: 29329004 DOI: 10.1016/j.jenvman.2017.12.075] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/10/2017] [Accepted: 12/29/2017] [Indexed: 05/26/2023]
Abstract
The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|