1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
3
|
He H, Yang M, Li S, Zhang G, Ding Z, Zhang L, Shi G, Li Y. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol 2023; 8:565-577. [PMID: 37691767 PMCID: PMC10482752 DOI: 10.1016/j.synbio.2023.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Mingfei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Gaoyang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| |
Collapse
|
4
|
Demeester W, De Baets J, Duchi D, De Mey M, De Paepe B. MoBioS: Modular Platform Technology for High-Throughput Construction and Characterization of Tunable Transcriptional Biological Sensors. BIOSENSORS 2023; 13:590. [PMID: 37366955 DOI: 10.3390/bios13060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
All living organisms have evolved and fine-tuned specialized mechanisms to precisely monitor a vast array of different types of molecules. These natural mechanisms can be sourced by researchers to build Biological Sensors (BioS) by combining them with an easily measurable output, such as fluorescence. Because they are genetically encoded, BioS are cheap, fast, sustainable, portable, self-generating and highly sensitive and specific. Therefore, BioS hold the potential to become key enabling tools that stimulate innovation and scientific exploration in various disciplines. However, the main bottleneck in unlocking the full potential of BioS is the fact that there is no standardized, efficient and tunable platform available for the high-throughput construction and characterization of biosensors. Therefore, a modular, Golden Gate-based construction platform, called MoBioS, is introduced in this article. It allows for the fast and easy creation of transcription factor-based biosensor plasmids. As a proof of concept, its potential is demonstrated by creating eight different, functional and standardized biosensors that detect eight diverse molecules of industrial interest. In addition, the platform contains novel built-in features to facilitate fast and efficient biosensor engineering and response curve tuning.
Collapse
Affiliation(s)
- Wouter Demeester
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Jasmine De Baets
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Dries Duchi
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology (CSB), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Clustered regularly interspaced short palindromic repeats tools for plant metabolic engineering: achievements and perspectives. Curr Opin Biotechnol 2023; 79:102856. [PMID: 36473330 DOI: 10.1016/j.copbio.2022.102856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
The plant kingdom represents the biggest source of feedstock, food, and added-value compounds. Engineering plant metabolic pathways to increase the phytochemical production or improve the nutraceutical value of crops is challenging because of the intricate interaction networks that link multiple genes, enzymatic steps, and metabolites, even when pathways are fully elucidated. The development of clustered regularly interspaced short palindromic repeats - CRISPR-associated (CRISPR-Cas) technologies has helped to overcome limitations in metabolic engineering, providing efficient and versatile tools for multigene editing. CRISPR approaches in plants were shown to have a remarkable efficiency in genome editing of different species to improve agronomic and metabolic traits. Here, we give an overview of the different achievements and perspectives of CRISPR technology in plant metabolic engineering.
Collapse
|
6
|
Zúñiga A, Bonnet J, Guiziou S. Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications. Methods Mol Biol 2023; 2553:155-171. [PMID: 36227543 DOI: 10.1007/978-1-0716-2617-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synthetic biology aims at engineering new biological systems and functions that can be used to provide new technological solutions to worldwide challenges. Detection and processing of multiple signals are crucial for many synthetic biology applications. A variety of logic circuits operating in living cells have been implemented. One particular class of logic circuits uses site-specific recombinases mediating specific DNA inversion or excision. Recombinase logic offers many interesting features, including single-layer architectures, memory, low metabolic footprint, and portability in many species. Here, we present two automated design strategies for both Boolean and history-dependent recombinase-based logic circuits. One approach is based on the distribution of computation within multicellular consortia, and the other is a single-cell design. Both are complementary and adapted for non-expert users via a web design interface, called CALIN and RECOMBINATOR, for multicellular and single-cell design strategies, respectively. In this book chapter, we are guiding the reader step by step through recombinase logic circuit design, from selecting the design strategy fitting to their final system of interest to obtaining the final design using one of our design web interfaces.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biologie Structurale (CBS), Univ. Montpellier, INSERM U1054, CNRS UMR5048, Montpellier, France
| | - Jérôme Bonnet
- Centre de Biologie Structurale (CBS), Univ. Montpellier, INSERM U1054, CNRS UMR5048, Montpellier, France
| | - Sarah Guiziou
- Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Guidi C, De Wannemaeker L, De Baets J, Demeester W, Maertens J, De Paepe B, De Mey M. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21:260. [PMID: 36522655 PMCID: PMC9753035 DOI: 10.1186/s12934-022-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) are an important class of molecules with a wide array of cellular functions and are part of many metabolic pathways. Despite their great potential-as therapeutic drug targets or in microbial cell factory optimization-many challenges remain for efficient and functional expression in a host such as Escherichia coli. RESULTS A dynamically regulated small RNA-based circuit was developed to counter membrane stress caused by overexpression of different MPs. The best performing small RNAs were able to enhance the maximum specific growth rate with 123%. On culture level, the total MP production was increased two-to three-fold compared to a system without dynamic control. This strategy not only improved cell growth and production of the studied MPs, it also suggested the potential use for countering metabolic burden in general. CONCLUSIONS A dynamically regulated feedback circuit was developed that can sense metabolic stress caused by, in casu, the overexpression of an MP and responds to it by balancing the metabolic state of the cell and more specifically by downregulating the expression of the MP of interest. This negative feedback mechanism was established by implementing and optimizing simple-to-use genetic control elements based on post-transcriptional regulation: small non-coding RNAs. In addition to membrane-related stress when the MP accumulated in the cytoplasm as aggregates, the sRNA-based feedback control system was still effective for improving cell growth but resulted in a decreased total protein production. This result suggests promiscuity of the MP sensor for more than solely membrane stress.
Collapse
Affiliation(s)
- Chiara Guidi
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | | | - Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Wouter Demeester
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Gurdo N, Volke DC, Nikel PI. Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes. Trends Biotechnol 2022; 40:1148-1159. [DOI: 10.1016/j.tibtech.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
|
9
|
Cazier AP, Blazeck J. Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J 2021; 16:e2100239. [PMID: 34351706 DOI: 10.1002/biot.202100239] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Synthetic biology continues to progress by relying on more robust tools for transcriptional control, of which promoters are the most fundamental component. Numerous studies have sought to characterize promoter function, determine principles to guide their engineering, and create promoters with stronger expression or tailored inducible control. In this review, we will summarize promoter architecture and highlight recent advances in the field, focusing on the novel applications of inducible promoter design and engineering towards metabolic engineering and cellular therapeutic development. Additionally, we will highlight how the expansion of new, machine learning techniques for modeling and engineering promoter sequences are enabling more accurate prediction of promoter characteristics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew P Cazier
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| |
Collapse
|
10
|
Cui S, Lv X, Xu X, Chen T, Zhang H, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L. Multilayer Genetic Circuits for Dynamic Regulation of Metabolic Pathways. ACS Synth Biol 2021; 10:1587-1597. [PMID: 34213900 DOI: 10.1021/acssynbio.1c00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The dynamic regulation of metabolic pathways is based on changes in external signals and endogenous changes in gene expression levels and has extensive applications in the field of synthetic biology and metabolic engineering. However, achieving dynamic control is not trivial, and dynamic control is difficult to obtain using simple, single-level, control strategies because they are often affected by native regulatory networks. Therefore, synthetic biologists usually apply the concept of logic gates to build more complex and multilayer genetic circuits that can process various signals and direct the metabolic flux toward the synthesis of the molecules of interest. In this review, we first summarize the applications of dynamic regulatory systems and genetic circuits and then discuss how to design multilayer genetic circuits to achieve the optimal control of metabolic fluxes in living cells.
Collapse
Affiliation(s)
- Shixiu Cui
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Taichi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co., Ltd., Tai’an 271000, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Fernández-Cabezón L, Cros A, Nikel PI. Spatiotemporal Manipulation of the Mismatch Repair System of Pseudomonas putida Accelerates Phenotype Emergence. ACS Synth Biol 2021; 10:1214-1226. [PMID: 33843192 DOI: 10.1021/acssynbio.1c00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of complex phenotypes in industrially relevant bacteria is a major goal of metabolic engineering, which encompasses the implementation of both rational and random approaches. In the latter case, several tools have been developed toward increasing mutation frequencies, yet the precise control of mutagenesis processes in cell factories continues to represent a significant technical challenge. Pseudomonas species are endowed with one of the most efficient DNA mismatch repair (MMR) systems found in the bacterial domain. Here, we investigated if the endogenous MMR system could be manipulated as a general strategy to artificially alter mutation rates in Pseudomonas species. To bestow a conditional mutator phenotype in the platform bacterium Pseudomonas putida, we constructed inducible mutator devices to modulate the expression of the dominant-negative mutLE36K allele. Regulatable overexpression of mutLE36K in a broad-host-range, easy-to-cure plasmid format resulted in a transitory inhibition of the MMR machinery, leading to a significant increase (up to 438-fold) in DNA mutation frequencies and a heritable fixation of mutations in the genome. Following such an accelerated mutagenesis-followed by selection approach, three phenotypes were successfully evolved: resistance to antibiotics streptomycin and rifampicin (either individually or combined) and reversion of a synthetic uracil auxotrophy. Thus, these mutator devices could be applied to accelerate the evolution of metabolic pathways in long-term evolutionary experiments, alternating cycles of (inducible) mutagenesis coupled to selection schemes toward the desired phenotype(s).
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Hwang Y, Kim SG, Jang S, Kim J, Jung GY. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches. J Biol Eng 2021; 15:11. [PMID: 33741029 PMCID: PMC7977183 DOI: 10.1186/s13036-021-00261-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synthetic biological circuits are widely utilized to control microbial cell functions. Natural and synthetic riboswitches are attractive sensor modules for use in synthetic biology applications. However, tuning the fold-change of riboswitch circuits is challenging because a deep understanding of the riboswitch mechanism and screening of mutant libraries is generally required. Therefore, novel molecular parts and strategies for straightforward tuning of the fold-change of riboswitch circuits are needed. RESULTS In this study, we devised a toehold switch-based modulator approach that combines a hybrid input construct consisting of a riboswitch and transcriptional repressor and de-novo-designed riboregulators named toehold switches. First, the introduction of a pair of toehold switches and triggers as a downstream signal-processing module to the hybrid input for coenzyme B12 resulted in a functional riboswitch circuit. Next, several optimization strategies that focused on balancing the expression levels of the RNA components greatly improved the fold-change from 260- to 887-fold depending on the promoter and host strain. Further characterizations confirmed low leakiness and high orthogonality of five toehold switch pairs, indicating the broad applicability of this strategy to riboswitch tuning. CONCLUSIONS The toehold switch-based modulator substantially improved the fold-change compared to the previous sensors with only the hybrid input construct. The programmable RNA-RNA interactions amenable to in silico design and optimization can facilitate further development of RNA-based genetic modulators for flexible tuning of riboswitch circuitry and synthetic biosensors.
Collapse
Affiliation(s)
- Yunhee Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea
| | - Jongmin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
13
|
Zou X, Li S, Wang P, Li B, Feng Y, Yang ST. Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes. Crit Rev Biotechnol 2020; 41:216-228. [PMID: 33153315 DOI: 10.1080/07388551.2020.1844632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polymalic acid (PMA), a homopolymer of L-malic acid (MA) generated from a yeast-like fungus Aureobasidium pullulans, has unique properties and many applications in food, biomedical, and environmental fields. Acid hydrolysis of PMA, releasing the monomer MA, has become a novel process for the production of bio-based MA, which currently is produced by chemical synthesis using petroleum-derived feedstocks. Recently, current researches attempted to develop economically competitive process for PMA and MA production from renewable biomass feedstocks. Compared to lignocellulosic biomass, PMA and MA production from low-value food processing wastes or by-products, generated from corn, sugarcane, or soybean refinery industries, showed more economical and sustainable for developing a MA derivatives platform from biomass biorefinery to chemical conversion. In the review, we compared the process feasibility for PMA fermentation with lignocellulosic biomass and food process wastes. Some useful strategies for metabolic engineering are summarized. Its changeable applicability and future prospects in food and biomedical fields are also discussed.
Collapse
Affiliation(s)
- Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Shanshan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Pan Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Bingqin Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Yingying Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Ding Q, Diao W, Gao C, Chen X, Liu L. Microbial cell engineering to improve cellular synthetic capacity. Biotechnol Adv 2020; 45:107649. [PMID: 33091485 DOI: 10.1016/j.biotechadv.2020.107649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Rapid technological progress in gene assembly, biosensors, and genetic circuits has led to reinforce the cellular synthetic capacity for chemical production. However, overcoming the current limitations of these techniques in maintaining cellular functions and enhancing the cellular synthetic capacity (e.g., catalytic efficiency, strain performance, and cell-cell communication) remains challenging. In this review, we propose a strategy for microbial cell engineering to improve the cellular synthetic capacity by utilizing biotechnological tools along with system biology methods to regulate cellular functions during chemical production. Current strategies in microbial cell engineering are mainly focused on the organelle, cell, and consortium levels. This review highlights the potential of using biotechnology to further develop the field of microbial cell engineering and provides guidance for utilizing microorganisms as attractive regulation targets.
Collapse
Affiliation(s)
- Qiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wenwen Diao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Controlling metabolic flux by toehold-mediated strand displacement. Curr Opin Biotechnol 2020; 66:150-157. [PMID: 32801094 DOI: 10.1016/j.copbio.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 01/03/2023]
Abstract
To maximize desired products in engineered cellular factories it is often necessary to optimize metabolic flux. While a number of works have focused on metabolic pathway enhancement through genetic regulators and synthetic scaffolds, these approaches require time-intensive design and optimization with limited versatility and capacity for scale-up. Recently, nucleic-acid nanotechnology has emerged as an encouraging approach to overcome these limitations and create systems for modular programmable control of metabolic flux. Using toehold-mediated strand displacement (TMSD), nucleic acid constructs can be made into dynamic devices that recognize specific biomolecular triggers for conditional control of gene regulation as well as design of dynamic synthetic scaffolds. This review will consider the various approaches that have been used thus far to control metabolic flux using toehold-gated devices.
Collapse
|
16
|
High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol 2020; 64:141-150. [DOI: 10.1016/j.copbio.2020.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023]
|
17
|
Flux controlling technology for central carbon metabolism for efficient microbial bio-production. Curr Opin Biotechnol 2020; 64:169-174. [PMID: 32485613 DOI: 10.1016/j.copbio.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
Collapse
|
18
|
Enhanced Lycopene Production in Escherichia coli by Expression of Two MEP Pathway Enzymes from Vibrio sp. Dhg. Catalysts 2019. [DOI: 10.3390/catal9121003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. Considering that the MEP pathway is closely related to the cell membrane and electron transport chain, the activities of the two enzymes of Vibrio sp. dhg were expected to be higher than the enzymes of Escherichia coli. We found that Dxs and IspA in Vibrio sp. dhg exhibited 1.08-fold and 1.38-fold higher catalytic efficiencies, respectively. Consequently, the heterologous overexpression improved the specific lycopene production by 1.88-fold. Our findings could be widely utilized to enhance production of lycopene and other carotenoids.
Collapse
|
19
|
Gao C, Xu P, Ye C, Chen X, Liu L. Genetic Circuit-Assisted Smart Microbial Engineering. Trends Microbiol 2019; 27:1011-1024. [PMID: 31421969 DOI: 10.1016/j.tim.2019.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Rapid advances in DNA synthesis, genetic manipulation, and biosensors have greatly improved the ability to engineer microorganisms with complex functions. By accurately integrating quality biosensors and complex genetic circuits, recently emerged smart microorganisms have enabled exciting opportunities for dissecting complex signaling networks and making responses without artificial intervention. However, because of the lack of design principles, developing such smart microorganisms remains challenging. In this review, we propose the concept of smart microbial engineering (SME) and describe the general features of basic SME, including the circuit architecture, components, and design process. We also summarize the latest SME achievements, remaining challenges, and potential solutions in this growing field.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Lim HG, Kwak DH, Park S, Woo S, Yang JS, Kang CW, Kim B, Noh MH, Seo SW, Jung GY. Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Nat Commun 2019; 10:2486. [PMID: 31171782 PMCID: PMC6554313 DOI: 10.1038/s41467-019-10371-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Although brown macroalgae holds potential as an alternative feedstock, its utilization by conventional microbial platforms has been limited due to the inability to metabolize one of the principal sugars, alginate. Here, we isolate Vibrio sp. dhg, a fast-growing bacterium that can efficiently assimilate alginate. Based on systematic characterization of the genomic information of Vibrio sp. dhg, we establish a genetic toolbox for its engineering. We also demonstrate its ability to rapidly produce ethanol, 2,3-butanediol, and lycopene from brown macroalgae sugar mixture with high productivities and yields. Collectively, Vibrio sp. dhg can be used as a platform for the efficient conversion of brown macroalgae sugars into diverse value-added biochemicals.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Dong Hun Kwak
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Sungwoo Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jae-Seong Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Chae Won Kang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Beomhee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
21
|
Harwood CR, Park SH, Sauer M. Editorial for the thematic issue on “Industrial Microbiology”. FEMS Microbiol Lett 2018; 365:5230855. [DOI: 10.1093/femsle/fny275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- C R Harwood
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle Upon Tyne, NE2 AX, UK
| | - S H Park
- Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea, 44919
| | - M Sauer
- Department of Biotechnology BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|