1
|
Wan T, Dong X, Yu L, Li D, Han H, Tu S, Wan J. Influence of Pteris vittata-maize intercropping on plant agronomic parameters and soil arsenic remediation. CHEMOSPHERE 2024; 359:142331. [PMID: 38740340 DOI: 10.1016/j.chemosphere.2024.142331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
To achieve "production while remediation" in arsenic (As) -contaminated farmlands, a field experiment was conducted to investigate the effects of five Pteris vittata L. (PV) - maize intercropping modes on the growth, nutrient, and As accumulation characteristics of PV and maize. The intercropping increased the As content of PV by 2.9%-132.0% and decreased the As content in maize shoots by 15.5%-37.0%. Total As accumulation in above-ground plant parts reached 202.03-941.97 g hm-2. Intercropping also improved nitrogen and phosphorus content in maize kernels by 27.6%-124.7% and 15.9%-31.5%, respectively. Additionally, intercropping increased maize kernel 100-grain weight by 10.0%-16.6% and resulted in a 1.1%-24.1% increase in maize yield compared to sole cultivation. The intercropping transformed soil As from iron-bound to calcium-bound and aluminum-bound forms. Analysis of soil microbial diversity showed that the intercropping decreases the abundance of Chloroflexi and increases the abundance of Proteobacteria. Among the five modes, the intercropping mode with 4 rows of maize and 4 rows of PV showed the highest remediation efficiency and mechanized operation. These findings contribute to a theoretical framework and technical support for the simultaneous soil pollution remediation and productive farming practices.
Collapse
Affiliation(s)
- Tianying Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiangwei Dong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Qujiang Agricultural Technology Extension Center, Quzhou, 324000, China.
| | - Lihua Yu
- School of Mechanical and Electrical Engineering, Wuhan Polytechnic, Wuhan, 430074, China.
| | - Dandan Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100000, China.
| | - Haozhan Han
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Yangzhou Ecological Environment Comprehensive Administrative Law Enforcement Bureau, Yangzhou, 225000, China.
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin Wan
- TK Elevator (China) Co., Ltd, Shanghai, 201602, China.
| |
Collapse
|
2
|
Freches A, Fradinho JC. The biotechnological potential of the Chloroflexota phylum. Appl Environ Microbiol 2024; 90:e0175623. [PMID: 38709098 PMCID: PMC11218635 DOI: 10.1128/aem.01756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
3
|
Correa-Galeote D, Argiz L, Val del Rio A, Mosquera-Corral A, Juarez-Jimenez B, Gonzalez-Lopez J, Rodelas B. Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries. Polymers (Basel) 2022; 14:1396. [PMID: 35406269 PMCID: PMC9003127 DOI: 10.3390/polym14071396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
The biosynthesis of polyhydroxyalkanoates (PHAs) from industrial wastes by mixed microbial cultures (MMCs) enriched in PHA-accumulating bacteria is a promising technology to replace petroleum-based plastics. However, the populations' dynamics in the PHA-accumulating MMCs are not well known. Therefore, the main objective of this study was to address the shifts in the size and structure of the bacterial communities in two lab-scale sequencing batch reactors (SBRs) fed with fish-canning effluents and operated under non-saline (SBR-N, 0.5 g NaCl/L) or saline (SBR-S, 10 g NaCl/L) conditions, by using a combination of quantitative PCR and Illumina sequencing of bacterial 16S rRNA genes. A double growth limitation (DGL) strategy, in which nitrogen availability was limited and uncoupled to carbon addition, strongly modulated the relative abundances of the PHA-accumulating bacteria, leading to an increase in the accumulation of PHAs, independently of the saline conditions (average 9.04 wt% and 11.69 wt%, maximum yields 22.03 wt% and 26.33% SBR-N and SBR-S, respectively). On the other hand, no correlations were found among the PHAs accumulation yields and the absolute abundances of total Bacteria, which decreased through time in the SBR-N and did not present statistical differences in the SBR-S. Acinetobacter, Calothrix, Dyella, Flavobacterium, Novosphingobium, Qipengyuania, and Tsukamurella were key PHA-accumulating genera in both SBRs under the DGL strategy, which was revealed as a successful tool to obtain a PHA-enriched MMC using fish-canning effluents.
Collapse
Affiliation(s)
- David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Lucia Argiz
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Angeles Val del Rio
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, CRETUS Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.A.); (A.V.d.R.); (A.M.-C.)
| | - Belen Juarez-Jimenez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| | - Belen Rodelas
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain; (B.J.-J.); (J.G.-L.); (B.R.)
- Microbiology and Environmental Technology Section, Water Institute, University of Granada, 18011 Granada, Spain
| |
Collapse
|
4
|
Bryantseva IA, Grouzdev DS, Krutkina MS, Ashikhmin AA, Kostrikina NA, Koziaeva VV, Gorlenko VM. 'Candidatus Chloroploca mongolica' sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium. FEMS Microbiol Lett 2021; 368:6352337. [PMID: 34390245 DOI: 10.1093/femsle/fnab107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5-14 g/L and pH 8.0-9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes. The antenna pigments were bacteriochlorophyll d and β- and γ-carotenes. Analysis of the genome assembled from the metagenome of the enrichment culture revealed all the enzymes of the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation. The genome also contained the genes encoding a type IV sulfide:quinone oxidoreductase (sqrX). The organism had no nifHDBK genes, encoding the proteins of the nitrogenase complex responsible for dinitrogen fixation. The DNA G + C content was 58.6%. The values for in silico DNA‒DNA hybridization and average nucleotide identity between M50-1 and a closely related bacterium 'Ca. Chloroploca asiatica' B7-9 containing bacteriochlorophyll c were 53.4% and 94.0%, respectively, which corresponds to interspecies differences. Classification of the filamentous anoxygenic phototrophic bacterium M50-1 as a new 'Ca. Chloroploca' species was proposed, with the species name 'Candidatus Chloroploca mongolica' sp. nov.
Collapse
Affiliation(s)
- Irina A Bryantseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| | - Denis S Grouzdev
- SciBear LLC, Tartu mnt 67/1-13b, Kesklinna linnaosa, Tallin 10115, Estonia
| | - Maria S Krutkina
- SciBear LLC, Tartu mnt 67/1-13b, Kesklinna linnaosa, Tallin 10115, Estonia
| | - Aleksandr A Ashikhmin
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of Russian Academy of Sciences', Institutskaya ave. 2, Pushchino 142290, Russian Federation
| | - Nadezda A Kostrikina
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| | - Veronika V Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| | - Vladimir M Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| |
Collapse
|
5
|
Ivanovsky RN, Lebedeva NV, Keppen OI, Tourova TP. Nitrogen Metabolism of an Anoxygenic Filamentous Phototrophic Bacterium Oscillocholris trichoides Strain DG-6. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
The possible nitrogen sources for Osc. trichoides DG6, a typical strain of the Oscillochloridaceae family, are ammonium, N2, glutamate, asparagine, glycine, and glutamine. The assimilation of molecular nitrogen occurs with the participation of nitrogenase, the structural gene of which, nifH, is located in the gene cluster which also includes the genes of the nifD and nifK nitrogenase subunits and the auxiliary nifB gene. Considering that nifHBDK clusters have been also annotated in the genomes of other members of the Oscillochloridaceae family, including uncultured and candidate taxa, it can be assumed that the ability to fix nitrogen is a property immanent for this entire family. The pathways for assimilating ammonium in the cells grown using different nitrogen sources may differ. Osc. trichoides DG6 growing in a medium containing ammonium assimilated it with the participation of glutamate dehydrogenase, which is determined by a single gene. The expression product of this gene has dual functionality and can be used to implement the reaction with both NAD and NADP. With the growth of Osc. trichoides DG6 on a medium with glutamate as the only nitrogen source all the enzymes necessary for the implementation of the GS‑GOGAT pathway were found in the cells. However, for the glutamine synthetase reaction, ammonium, which was absent in the growth medium, was required. The source of ammonium may be glutamate metabolized through glutamate dehydrogenase.
Collapse
|
6
|
Oren A, Garrity GM. Candidatus List No. 2. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2021; 71. [PMID: 33881984 DOI: 10.1099/ijsem.0.004671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
7
|
Gorlenko VM, Bryantseva IA, Samylina OS, Ashikhmin AA, Sinetova MA, Kostrikina NA, Kozyaeva VV. Filamentous Anoxygenic Phototrophic Bacteria in Microbial Communities of the Kulunda Steppe Soda Lakes (Altai Krai, Russia). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
‘Candidatus Oscillochloris kuznetsovii’ a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments. FEMS Microbiol Lett 2020; 367:5917981. [DOI: 10.1093/femsle/fnaa158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named ‘Candidatus Oscillochloris kuznetsovii’. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.
Collapse
|
9
|
Gaisin VA, Kooger R, Grouzdev DS, Gorlenko VM, Pilhofer M. Cryo-Electron Tomography Reveals the Complex Ultrastructural Organization of Multicellular Filamentous Chloroflexota ( Chloroflexi) Bacteria. Front Microbiol 2020; 11:1373. [PMID: 32670237 PMCID: PMC7332563 DOI: 10.3389/fmicb.2020.01373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
The cell biology of Chloroflexota is poorly studied. We applied cryo-focused ion beam milling and cryo-electron tomography to study the ultrastructural organization of thermophilic Roseiflexus castenholzii and Chloroflexus aggregans, and mesophilic “Ca. Viridilinea mediisalina.” These species represent the three main lineages within a group of multicellular filamentous anoxygenic phototrophic Chloroflexota bacteria belonging to the Chloroflexales order. We found surprising structural complexity in the Chloroflexales. As with filamentous cyanobacteria, cells of C. aggregans and “Ca. Viridilinea mediisalina” share the outer membrane-like layers of their intricate multilayer cell envelope. Additionally, cells of R. castenholzii and “Ca. Viridilinea mediisalina” are connected by septal channels that resemble cyanobacterial septal junctions. All three strains possess long pili anchored close to cell-to-cell junctions, a morphological feature comparable to that observed in cyanobacteria. The cytoplasm of the Chloroflexales bacteria is crowded with intracellular organelles such as different types of storage granules, membrane vesicles, chlorosomes, gas vesicles, chemoreceptor-like arrays, and cytoplasmic filaments. We observed a higher level of complexity in the mesophilic strain compared to the thermophilic strains with regards to the composition of intracellular bodies and the organization of the cell envelope. The ultrastructural details that we describe in these Chloroflexales bacteria will motivate further cell biological studies, given that the function and evolution of the many discovered morphological traits remain enigmatic in this diverse and widespread bacterial group.
Collapse
Affiliation(s)
- Vasil A Gaisin
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Romain Kooger
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Denis S Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Kochetkova TV, Zayulina KS, Zhigarkov VS, Minaev NV, Chichkov BN, Novikov AA, Toshchakov SV, Elcheninov AG, Kublanov IV. Tepidiforma bonchosmolovskayae gen. nov., sp. nov., a moderately thermophilic Chloroflexi bacterium from a Chukotka hot spring (Arctic, Russia), representing a novel class, Tepidiformia, which includes the previously uncultivated lineage OLB14. Int J Syst Evol Microbiol 2020; 70:1192-1202. [PMID: 31769750 DOI: 10.1099/ijsem.0.003902] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19 : 0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).
Collapse
Affiliation(s)
- Tatiana V Kochetkova
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Kseniya S Zayulina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Vyacheslav S Zhigarkov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Troitsk, Pionerskaya, Russia
| | - Nikita V Minaev
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Troitsk, Pionerskaya, Russia
| | - Boris N Chichkov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Troitsk, Pionerskaya, Russia
| | | | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 60-let Oktyabrya prospect 7/2, Russia
| |
Collapse
|