1
|
Tao J, Li B, Shi Y, Cheng J, Tang P, Jiao J, Liu H. Genomic Evolution and Selective Pressure Analysis of a Novel Porcine Sapovirus in Shanghai, China. Microorganisms 2024; 12:569. [PMID: 38543620 PMCID: PMC10975609 DOI: 10.3390/microorganisms12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine sapovirus (PoSaV) is one of the most significant pathogens causing piglet diarrhea, and one with limited genetic characterization. In this study, the prevalence, infection pattern, and genetic evolution of porcine sapovirus were elucidated in detail. The positive rate of PoSaV was 10.1% (20/198), with dual, triple, and quadruple infections of 45%, 40%, and 5%, respectively. To further explore the viral composition in the PoSaV-positive diarrhea feces, metagenomic sequencing was carried out. The results confirmed that RNA viruses accounted for a higher proportion (55.47%), including the two primary viruses of PoSaV (21.78%) and porcine astrovirus (PAstV) (24.54%) in the tested diarrhea feces samples. Afterward, a full-length sequence of the PoSaV isolate was amplified and named SHCM/Mega2023, and also given the identifier of GenBank No. PP388958. Phylogenetic analysis identified the prevalent PoSaV strain SHCM/Mega2023 in the GIII genogroup, involving a recombinant event with MK962338 and KT922089, with the breakpoint at 2969-5132 nucleotides (nt). The time tree revealed that the GIII genogroup exhibits the widest divergence time span, indicating a high likelihood of viral recombination. Moreover, SHCM/Mega2023 had three nucleotide "RPL" insertions at the 151-153 nt site in the VP2 gene, compared to the other GIII strains. Further selective pressure calculations demonstrate that the whole genome of the SHCM/Mega2023 strain was under purifying selection (dN/dS < 1), with seven positively selected sites in the VP1 protein, which might be related to antigenicity. In conclusion, this study presents a novel genomic evolution of PoSaV, offering valuable insights into antigenicity and for vaccine research.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.T.); (B.L.); (Y.S.); (J.C.); (P.T.); (J.J.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
2
|
Porto PS, Rivera A, Moonrinta R, Wobus CE. Entry and egress of human astroviruses. Adv Virus Res 2023; 117:81-119. [PMID: 37832992 DOI: 10.1016/bs.aivir.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.
Collapse
Affiliation(s)
- Pedro Soares Porto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Andres Rivera
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Rootjikarn Moonrinta
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states.
| |
Collapse
|