1
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Quantifying transmission fitness costs of multi-drug resistant tuberculosis. Epidemics 2021; 36:100471. [PMID: 34256273 DOI: 10.1016/j.epidem.2021.100471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/14/2020] [Accepted: 05/17/2021] [Indexed: 11/22/2022] Open
Abstract
As multi-drug resistant tuberculosis (MDR-TB) continues to spread, investigating the transmission potential of different drug-resistant strains becomes an ever more pressing topic in public health. While phylogenetic and transmission tree inferences provide valuable insight into possible transmission chains, phylodynamic inference combines evolutionary and epidemiological analyses to estimate the parameters of the underlying epidemiological processes, allowing us to describe the overall dynamics of disease spread in the population. In this study, we introduce an approach to Mycobacterium tuberculosis (M. tuberculosis) phylodynamic analysis employing an existing computationally efficient model to quantify the transmission fitness costs of drug resistance with respect to drug-sensitive strains. To determine the accuracy and precision of our approach, we first perform a simulation study, mimicking the simultaneous spread of drug-sensitive and drug-resistant tuberculosis (TB) strains. We analyse the simulated transmission trees using the phylodynamic multi-type birth-death model (MTBD, (Kühnert et al., 2016)) within the BEAST2 framework and show that this model can estimate the parameters of the epidemic well, despite the simplifying assumptions that MTBD makes compared to the complex TB transmission dynamics used for simulation. We then apply the MTBD model to an M. tuberculosis lineage 4 dataset that primarily consists of MDR sequences. Some of the MDR strains additionally exhibit resistance to pyrazinamide - an important first-line anti-tuberculosis drug. Our results support the previously proposed hypothesis that pyrazinamide resistance confers a transmission fitness cost to the bacterium, which we quantify for the given dataset. Importantly, our sensitivity analyses show that the estimates are robust to different prior distributions on the resistance acquisition rate, but are affected by the size of the dataset - i.e. we estimate a higher fitness cost when using fewer sequences for analysis. Overall, we propose that MTBD can be used to quantify the transmission fitness cost for a wide range of pathogens where the strains can be appropriately divided into two or more categories with distinct properties.
Collapse
|
3
|
Nimmo C, Brien K, Millard J, Grant AD, Padayatchi N, Pym AS, O'Donnell M, Goldstein R, Breuer J, Balloux F. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 2020; 55:102747. [PMID: 32361247 PMCID: PMC7195533 DOI: 10.1016/j.ebiom.2020.102747] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Studying within-host genetic diversity of Mycobacterium tuberculosis (Mtb) in patients during treatment may identify adaptations to antibiotic and immune pressure. Understanding the significance of genetic heteroresistance, and more specifically heterozygous resistance-associated variants (RAVs), is clinically important given increasing use of rapid molecular tests and whole genome sequencing (WGS). METHODS We analyse data from six studies in KwaZulu-Natal, South Africa. Most patients (>75%) had baseline rifampicin resistance. Sputum was collected for culture at baseline and at between two and nine intervals until month six. Positive cultures underwent WGS. Mixed infections and reinfections were excluded from analysis. FINDINGS Baseline Mtb overall genetic diversity (at treatment initiation or major change to regimen) was associated with cavitary disease, not taking antiretroviral therapy if HIV infected, infection with lineage 2 strains and absence of second-line drug resistance on univariate analyses. Baseline genetic diversity was not associated with six-month outcome. Genetic diversity increased from baseline to weeks one and two before returning to previous levels. Baseline genetic heteroresistance was most common for bedaquiline (6/10 [60%] of isolates with RAVs) and fluoroquinolones (9/62 [13%]). Most patients with heterozygous RAVs on WGS with sequential isolates available demonstrated RAV persistence or fixation (17/20, 85%). New RAVs emerged in 9/286 (3%) patients during treatment. We could detect low-frequency RAVs preceding emergent resistance in only one case, although validation of deep sequencing to detect rare variants is required. INTERPRETATION In this study of single-strain Mtb infections, baseline within-host bacterial genetic diversity did not predict outcome but may reveal adaptations to host and drug pressures. Predicting emergent resistance from low-frequency RAVs requires further work to separate transient from consequential mutations. FUNDING Wellcome Trust, NIH/NIAID.
Collapse
MESH Headings
- Adult
- Antitubercular Agents/therapeutic use
- Cohort Studies
- Diarylquinolines/therapeutic use
- Drug Resistance, Multiple, Bacterial/genetics
- Female
- Fluoroquinolones/therapeutic use
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genetic Variation
- Host-Pathogen Interactions/genetics
- Humans
- Male
- Metabolic Networks and Pathways/genetics
- Microbial Sensitivity Tests
- Middle Aged
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Rifampin/therapeutic use
- South Africa
- Sputum/microbiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Camus Nimmo
- Division of Infection and Immunity, University College London, London, UK; UCL Genetics Institute, University College London, London, UK; Africa Health Research Institute, Durban, South Africa.
| | - Kayleen Brien
- Africa Health Research Institute, Durban, South Africa
| | - James Millard
- Africa Health Research Institute, Durban, South Africa; Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa; London School of Hygiene & Tropical Medicine, London, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | | | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa; Department of Medicine & Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Richard Goldstein
- Division of Infection and Immunity, University College London, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
4
|
Anthony RM, den Hertog AL, van Soolingen D. 'Happy the man, who, studying nature's laws, Thro' known effects can trace the secret cause.' Do we have enough pieces to solve the pyrazinamide puzzle? J Antimicrob Chemother 2019. [PMID: 29528413 DOI: 10.1093/jac/dky060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A low pH was assumed to be required for the activity of pyrazinoic acid (the active form of pyrazinamide) against Mycobacterium tuberculosis, but recently activity has been demonstrated at neutral pH. Renewed interest in pyrazinamide has led to an increasing number of potential targets and the suspicion that pyrazinamide is a 'dirty drug'. However, it is our opinion that the recent demonstration that pyrazinoic acid is active against PanD provides an alternative explanation for the secret of pyrazinamide's unusual activity. In this article we propose that PanD is the primary target of pyrazinoic acid but expression of pyrazinoic acid susceptibility requires an intact stress response. As the mycobacterial stress response requires the interaction of a number of genes, disruption of any could result in an inability to enter the susceptible phenotype. We believe this model can explain most of the recent observations of the seemingly diverse spectrum of activity of pyrazinamide.
Collapse
Affiliation(s)
- R M Anthony
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A L den Hertog
- Institute for Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - D van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
5
|
Nguyen QH, Contamin L, Nguyen TVA, Bañuls A. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl 2018; 11:1498-1511. [PMID: 30344622 PMCID: PMC6183457 DOI: 10.1111/eva.12654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/01/2023] Open
Abstract
At present, the successful transmission of drug-resistant Mycobacterium tuberculosis, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, in human populations, threatens tuberculosis control worldwide. Differently from many other bacteria, M. tuberculosis drug resistance is acquired mainly through mutations in specific drug resistance-associated genes. The panel of mutations is highly diverse, but depends on the affected gene and M. tuberculosis genetic background. The variety of genetic profiles observed in drug-resistant clinical isolates underlines different evolutionary trajectories towards multiple drug resistance, although some mutation patterns are prominent. This review discusses the intrinsic processes that may influence drug resistance evolution in M. tuberculosis, such as mutation rate, drug resistance-associated mutations, fitness cost, compensatory mutations and epistasis. This knowledge should help to better predict the risk of emergence of highly resistant M. tuberculosis strains and to develop new tools and strategies to limit the development and spread of MDR and XDR strains.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- Department of Pharmacological, Medical and Agronomical BiotechnologyUniversity of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Lucie Contamin
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Anne‐Laure Bañuls
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| |
Collapse
|
6
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
7
|
Calderón RI, Velásquez GE, Becerra MC, Zhang Z, Contreras CC, Yataco RM, Galea JT, Lecca LW, Kritski AL, Murray MB, Mitnick CD. Prevalence of pyrazinamide resistance and Wayne assay performance analysis in a tuberculosis cohort in Lima, Peru. Int J Tuberc Lung Dis 2018; 21:894-901. [PMID: 28786798 DOI: 10.5588/ijtld.16.0850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (MDR-TB) regimens often contain pyrazinamide (PZA) even if susceptibility to the drug has not been confirmed. This gap is due to the limited availability and reliability of PZA susceptibility testing. OBJECTIVES To estimate the prevalence of PZA resistance using the Wayne assay among TB patients in Lima, Peru, to describe characteristics associated with PZA resistance and to compare the performance of Wayne with that of BACTEC™ MGIT™ 960. METHODS PZA susceptibility using the Wayne assay was tested in patients diagnosed with culture-positive pulmonary TB from September 2009 to August 2012. Factors associated with PZA resistance were evaluated. We compared the performance of the Wayne assay to that of MGIT 960 in a convenience sample. RESULTS The prevalence of PZA resistance was 6.6% (95%CI 5.8-7.5) among 3277 patients, and 47.7% (95%CI 42.7-52.6) among a subset of 405 MDR-TB patients. In multivariable analysis, MDR-TB (OR 86.0, 95%CI 54.0-136.9) and Latin American-Mediterranean lineage (OR 3.40, 95%CI 2.33-4.96) were associated with PZA resistance. The Wayne assay was in agreement with MGIT 960 in 83.9% of samples (κ 0.66, 95%CI 0.56-0.76). CONCLUSION PZA resistance was detected using the Wayne assay in nearly half of MDR-TB patients in Lima. This test can inform the selection and composition of regimens, especially those dependent on additional resistance.
Collapse
Affiliation(s)
- R I Calderón
- Socios En Salud Sucursal Peru, Lima, Peru; Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - G E Velásquez
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - M C Becerra
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Z Zhang
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - R M Yataco
- Socios En Salud Sucursal Peru, Lima, Peru
| | - J T Galea
- Socios En Salud Sucursal Peru, Lima, Peru
| | - L W Lecca
- Socios En Salud Sucursal Peru, Lima, Peru
| | - A L Kritski
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - M B Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - C D Mitnick
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Baddam R, Kumar N, Wieler LH, Lankapalli AK, Ahmed N, Peacock SJ, Semmler T. Analysis of mutations in pncA reveals non-overlapping patterns among various lineages of Mycobacterium tuberculosis. Sci Rep 2018; 8:4628. [PMID: 29545614 PMCID: PMC5854631 DOI: 10.1038/s41598-018-22883-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug, resistance to which occurs primarily due to mutations in pncA (Rv2043c) that encodes the pyrazinamidase enzyme responsible for conversion of pro-drug PZA into its active form. Previous studies have reported numerous resistance-conferring mutations distributed across the entire length of pncA without any hotspot regions. As different lineages of Mycobacterium tuberculosis display a strong geographic association, we sought to understand whether the genetic background influenced the distribution of mutations in pncA. We analyzed the whole genome sequence data of 1,480 clinical isolates representing four major M. tuberculosis lineages to identify the distribution of mutations in the complete operon (Rv2044c-pncA-Rv2042c) and its upstream promoter region. We observed a non-overlapping pattern of mutations among various lineages and identified a lineage 3-specific frame-shift deletion in gene Rv2044c upstream of pncA that disrupted the stop codon and led to its fusion with pncA. This resulted in the addition of a novel domain of unknown function (DUF2784) to the pyrazinamidase enzyme. The variant molecule was computationally modelled and physico-chemical parameters determined to ascertain stability. Although the functional impact of this mutation remains unknown, its lineage specific nature highlights the importance of genetic background and warrants further study.
Collapse
Affiliation(s)
- Ramani Baddam
- Robert Koch Institute, Berlin, 13353, Germany
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Narender Kumar
- Department of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | | | - Aditya Kumar Lankapalli
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, 500084, India
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, 500084, India
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Sharon J Peacock
- Department of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | | |
Collapse
|
9
|
Ngabonziza JCS, Diallo AB, Tagliani E, Diarra B, Kadanga AE, Togo ACG, Thiam A, de Rijk WB, Alagna R, Houeto S, Ba F, Dagnra AY, Ivan E, Affolabi D, Schwoebel V, Trebucq A, de Jong BC, Rigouts L, Daneau G. Half of rifampicin-resistant Mycobacterium tuberculosis complex isolated from tuberculosis patients in Sub-Saharan Africa have concomitant resistance to pyrazinamide. PLoS One 2017; 12:e0187211. [PMID: 29088294 PMCID: PMC5663438 DOI: 10.1371/journal.pone.0187211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Besides inclusion in 1st line regimens against tuberculosis (TB), pyrazinamide (PZA) is used in 2nd line anti-TB regimens, including in the short regimen for multidrug-resistant TB (MDR-TB) patients. Guidelines and expert opinions are contradictory about inclusion of PZA in case of resistance. Moreover, drug susceptibility testing (DST) for PZA is not often applied in routine testing, and the prevalence of resistance is unknown in several regions, including in most African countries. Methods Six hundred and twenty-three culture isolates from rifampicin-resistant (RR) patients were collected in twelve Sub-Saharan African countries. Among those isolates, 71% were from patients included in the study on the Union short-course regimen for MDR-TB in Benin, Burkina Faso, Burundi, Cameroon, Central Africa Republic, the Democratic Republic of the Congo, Ivory Coast, Niger, and Rwanda PZA resistance, and the rest (29%) were consecutive isolates systematically stored from 2014–2015 in Mali, Rwanda, Senegal, and Togo. Besides national guidelines, the isolates were tested for PZA resistance through pncA gene sequencing. Results Over half of these RR-TB isolates (54%) showed a mutation in the pncA gene, with a significant heterogeneity between countries. Isolates with fluoroquinolone resistance (but not with injectable resistance or XDR) were more likely to have concurrent PZA resistance. The pattern of mutations in the pncA gene was quite diverse, although some isolates with an identical pattern of mutations in pncA and other drug-related genes were isolated from the same reference center, suggesting possible transmission of these strains. Conclusion Similar to findings in other regions, more than half of the patients having RR-TB in West and Central Africa present concomitant resistance to PZA. Further investigations are needed to understand the relation between resistance to PZA and resistance to fluoroquinolones, and whether continued use of PZA in the face of PZA resistance provides clinical benefit to the patients.
Collapse
Affiliation(s)
- Jean Claude Semuto Ngabonziza
- National Reference Laboratory Division, Biomedical Services Department, Rwanda Biomedical Centre, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Awa Ba Diallo
- Mycobacteriology Unit, Bacteriology- Virology Laboratory, CHNU Aristide le Dantec, Dakar, Senegal
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bassirou Diarra
- SEREFO/UCRC Program, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | | | - Aliou Thiam
- Mycobacteriology Unit, Bacteriology- Virology Laboratory, CHNU Aristide le Dantec, Dakar, Senegal
| | - Willem Bram de Rijk
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Riccardo Alagna
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine Houeto
- Laboratoire de Référence des Mycobactéries, Cotonou, Benin
| | - Fatoumata Ba
- Laboratoire de Reference des Mycobactéries, Dakar, Senegal
| | | | - Emil Ivan
- National Reference Laboratory Division, Biomedical Services Department, Rwanda Biomedical Centre, Kigali, Rwanda
| | | | - Valérie Schwoebel
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Arnaud Trebucq
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Bouke Catherine de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Géraldine Daneau
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Biomedical section, Haute Ecole Francisco Ferrer, Brussels, Belgium
| | | |
Collapse
|
10
|
Molecular analysis of pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of pyrazinamide resistance-associated mutations in clinical isolates. Emerg Microbes Infect 2017; 6:e86. [PMID: 29018250 PMCID: PMC5658769 DOI: 10.1038/emi.2017.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/16/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Pyrazinamide (PZA) is a key antibiotic in current anti-tuberculosis regimens. Although the WHO has stressed the urgent need to obtain data on PZA resistance, in high tuberculosis burden countries, little is known about the level of PZA resistance, the genetic basis of such resistance or its link with Mycobacterium tuberculosis families. In this context, this study assessed PZA resistance through the molecular analysis of 260 Vietnamese M. tuberculosis isolates. First-line drug susceptibility testing, pncA gene sequencing, spoligotyping and mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing were performed. Overall, the pncA mutation frequency was 38.1% (99 out of 260 isolates) but was higher than 72% (89 out of 123 isolates) in multidrug and quadruple-drug resistant isolates. Many different pncA mutations (71 types) were detected, of which 55 have been previously described and 50 were linked to PZA resistance. Among the 16 novel mutations, 14 are likely to be linked to PZA resistance because of their mutation types or codon positions. Genotype analysis revealed that PZA resistance can emerge in any M. tuberculosis cluster or family, although the mutation frequency was the highest in Beijing family isolates (47.7%, 62 out of 130 isolates). These data highlight the high rate of PZA resistance-associated mutations in M. tuberculosis clinical isolates in Vietnam and bring into question the use of PZA for current and future treatment regimens of multidrug-resistant tuberculosis without PZA resistance testing.
Collapse
|
11
|
Gopal P, Tasneen R, Yee M, Lanoix JP, Sarathy J, Rasic G, Li L, Dartois V, Nuermberger E, Dick T. In Vivo-Selected Pyrazinoic Acid-Resistant Mycobacterium tuberculosis Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infect Dis 2017; 3:492-501. [PMID: 28271875 PMCID: PMC5514395 DOI: 10.1021/acsinfecdis.7b00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Rokeya Tasneen
- Center for Tuberculosis
Research, Johns Hopkins University, Baltimore, Maryland, United States
| | - Michelle Yee
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Jean-Philippe Lanoix
- Department of Infectious Diseases, University Hospital of Amiens-Picardie, Amiens, France
| | - Jansy Sarathy
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - George Rasic
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Liping Li
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Eric Nuermberger
- Center for Tuberculosis
Research, Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas Dick
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
12
|
Sengstake S, Bergval IL, Schuitema AR, de Beer JL, Phelan J, de Zwaan R, Clark TG, van Soolingen D, Anthony RM. Pyrazinamide resistance-conferring mutations in pncA and the transmission of multidrug resistant TB in Georgia. BMC Infect Dis 2017; 17:491. [PMID: 28697808 PMCID: PMC5506614 DOI: 10.1186/s12879-017-2594-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/05/2017] [Indexed: 11/28/2022] Open
Abstract
Background The ongoing epidemic of multidrug-resistant tuberculosis (MDR-TB) in Georgia highlights the need for more effective control strategies. A new regimen to treat MDR-TB that includes pyrazinamide (PZA) is currently being evaluated and PZA resistance status will largely influence the success of current and future treatment strategies. PZA susceptibility testing was not routinely performed at the National Reference Laboratory (NRL) in Tbilisi between 2010 and September 2015. We here provide a first insight into the prevalence of PZA resistant TB in this region. Methods Phenotypic susceptibility to PZA was determined in a convenience collection of well-characterised TB patient isolates collected at the NRL in Tbilisi between 2012 and 2013. In addition, the pncA gene was sequenced and whole genome sequencing was performed on two isolates. Results Out of 57 isolates tested 33 (57.9%) showed phenotypic drug resistance to PZA and had a single pncA mutation. All of these 33 isolates were MDR-TB strains. pncA mutations were absent in all but one of the 24 PZA susceptible isolate. In total we found 18 polymorphisms in the pncA gene. From the two major MDR-TB clusters represented (94–32 and 100–32), 10 of 15, 67.0% and 13 of 14, 93.0% strains, respectively were PZA resistant. We also identified a member of the potentially highly transmissive clade A strain carrying the characteristic I6L substitution in PncA. Another strain with the same MLVA type as the clade A strain acquired a different mutation in pncA and was genetically more distantly related suggesting that different branches of this particular lineage have been introduced into this region. Conclusion In this high MDR-TB setting more than half of the tested MDR-TB isolates were resistant to PZA. As PZA is part of current and planned MDR-TB treatment regimens this is alarming and deserves the attention of health authorities. Based on our typing and sequence analysis results we conclude that PZA resistance is the result of primary transmission as well as acquisition within the patient and recommend prospective genotyping and PZA resistance testing in high MDR-TB settings. This is of utmost importance in order to preserve bacterial susceptibility to PZA to help protect (new) second line drugs in PZA containing regimens.
Collapse
Affiliation(s)
- Sarah Sengstake
- Royal Tropical Institute, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands. .,Unit of Mycobacteriology, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.
| | - Indra L Bergval
- Royal Tropical Institute, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands.,Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Anja R Schuitema
- Royal Tropical Institute, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands
| | - Jessica L de Beer
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Jody Phelan
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Rina de Zwaan
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Taane G Clark
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.,Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Dick van Soolingen
- Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Richard M Anthony
- Royal Tropical Institute, KIT Biomedical Research, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands.,Mycobacteria Diagnostic Laboratory for Bacteriology and Parasitology (BPD) Center for Infectious Disease Research, Diagnostics and Perinatal Screening (IDS) National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
13
|
Protecting Pyrazinamide, a Priority for Improving Outcomes in Multidrug-Resistant Tuberculosis Treatment. Antimicrob Agents Chemother 2017; 61:61/6/e00258-17. [PMID: 28539498 DOI: 10.1128/aac.00258-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infect Dis 2016; 2:616-626. [PMID: 27759369 DOI: 10.1021/acsinfecdis.6b00070] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyrazinamide (PZA) is a critical component of first- and second-line treatments of tuberculosis (TB), yet its mechanism of action largely remains an enigma. We carried out a genetic screen to isolate Mycobacterium bovis BCG mutants resistant to pyrazinoic acid (POA), the bioactive derivative of PZA, followed by whole genome sequencing of 26 POA resistant strains. Rather than finding mutations in the proposed candidate targets fatty acid synthase I and ribosomal protein S1, we found resistance conferring mutations in two pathways: missense mutations in aspartate decarboxylase panD, involved in the synthesis of the essential acyl carrier coenzyme A (CoA), and frameshift mutations in the vitro nonessential polyketide synthase genes mas and ppsA-E, involved in the synthesis of the virulence factor phthiocerol dimycocerosate (PDIM). Probing for cross resistance to two structural analogs of POA, nicotinic acid and benzoic acid, showed that the analogs share the PDIM- but not the CoA-related mechanism of action with POA. We demonstrated that POA depletes CoA in wild-type bacteria, which is prevented by mutations in panD. Sequencing 10 POA-resistant Mycobacterium tuberculosis H37Rv isolates confirmed the presence of at least 2 distinct mechanisms of resistance to the drug. The emergence of resistance through the loss of a virulence factor in vitro may explain the lack of clear molecular patterns in PZA-resistant clinical isolates, other than mutations in the prodrug-converting enzyme. The apparent interference of POA with virulence pathways may contribute to the drug's excellent in vivo efficacy compared to its modest in vitro potency.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jickky Sarathy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jian Liang Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jansy P. Sarathy
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Véronique Dartois
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Martin Gengenbacher
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
15
|
Pyrazinamide Is Active against Mycobacterium tuberculosis Cultures at Neutral pH and Low Temperature. Antimicrob Agents Chemother 2016; 60:4956-60. [PMID: 27270287 DOI: 10.1128/aac.00654-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
For the past decades, an acidic pH has been used to render Mycobacterium tuberculosis susceptible to pyrazinamide for in vitro testing. Here, we show that at the standard breakpoint concentration and reduced culture temperatures, pyrazinamide (PZA) is active against tuberculosis (TB) at neutral pH. This finding should help unravel the mechanism of action of PZA and allow drug susceptibility testing (DST) methods to be optimized.
Collapse
|
16
|
Dekhil N, Meftahi N, Mhenni B, Ben Fraj S, Haltiti R, Belhaj S, Mardassi H. MDR-TB Outbreak among HIV-Negative Tunisian Patients followed during 11 Years. PLoS One 2016; 11:e0153983. [PMID: 27124599 PMCID: PMC4849785 DOI: 10.1371/journal.pone.0153983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/06/2016] [Indexed: 01/09/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) outbreaks that evolve, from the outset, in a context strictly negative for HIV infection deserve special consideration since they reflect the true intrinsic epidemic potential of the causative strain. To our knowledge, the long-term evolution of such exceptional outbreaks and the treatment outcomes for the involved patients has never been reported hitherto. Here we provide a thorough description, over an 11-year period, of an MDR-TB outbreak that emerged and expanded in an HIV-negative context, Northern Tunisia. Methodology/Principal Findings From October 2001 to June 2011, the MDR-TB outbreak involved 48 HIV-negative individuals that are mainly young (mean age 31.09 yrs; 89.6% male) and noninstitutionalized. Drug susceptibility testing coupled to mutational analysis revealed that initial transmission involved an isolate that was simultaneously resistant to isoniazid, rifampicin, ethambutol, and streptomycin. The causative Haarlem3-ST50 outbreak strain expanded mainly as an 11-banded IS6110 RFLP profile (77.1%), from which a 12-banded subclone evolved. After undergoing a 2-year treatment with second-line drugs, 22 (45.8%) patients were cured and 3 (6.2%) completed treatment, thus yielding an overall treatment success rate of 52.1%. Among the patients that experienced unfavorable treatment outcomes, 10 (20.8%) failed treatment, 3 (6.2%) were lost to follow-up, 5 (10.4%) died, and 5 (10.4%) could not be evaluated. Poor adherence to treatment was found to be the main independent predictor of unfavorable outcomes (HR: 9.15; 95% CI 1.72–48.73; P = 0.014). Intriguingly, the evolved 12-banded subclone proved significantly associated with unfavorable outcomes (HR: 4.90; 95% CI 1.04–23.04, P = 0.044). High rate of fatality and relapse was further demonstrated at the long-term, since 70% of those whose treatment failed have died, and 24% among those deemed successfully treated have relapsed. Conclusions/Significance Taken together, the data obtained in this study indicate that MDR-TB clinical isolates could become fit enough to cause large and severe outbreaks in an HIV-negative context. Such MDR-TB outbreaks are characterized by low treatment success rates and could evolve towards increased severity, thus calling for early detection of cases and the necessity to raise the bar of surveillance throughout and beyond the treatment period.
Collapse
Affiliation(s)
- Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Nedra Meftahi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Saloua Ben Fraj
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Raja Haltiti
- Hôpital Régional de Menzel-Bourguiba, Menzel Bourguiba, Tunisia
| | - Sameh Belhaj
- Hôpital Régional de Menzel-Bourguiba, Menzel Bourguiba, Tunisia
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|