1
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
2
|
Hodgins HP, Chen P, Lobb B, Wei X, Tremblay BJM, Mansfield MJ, Lee VCY, Lee PG, Coffin J, Duggan AT, Dolphin AE, Renaud G, Dong M, Doxey AC. Ancient Clostridium DNA and variants of tetanus neurotoxins associated with human archaeological remains. Nat Commun 2023; 14:5475. [PMID: 37673908 PMCID: PMC10482840 DOI: 10.1038/s41467-023-41174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
The analysis of microbial genomes from human archaeological samples offers a historic snapshot of ancient pathogens and provides insights into the origins of modern infectious diseases. Here, we analyze metagenomic datasets from 38 human archaeological samples and identify bacterial genomic sequences related to modern-day Clostridium tetani, which produces the tetanus neurotoxin (TeNT) and causes the disease tetanus. These genomic assemblies had varying levels of completeness, and a subset of them displayed hallmarks of ancient DNA damage. Phylogenetic analyses revealed known C. tetani clades as well as potentially new Clostridium lineages closely related to C. tetani. The genomic assemblies encode 13 TeNT variants with unique substitution profiles, including a subgroup of TeNT variants found exclusively in ancient samples from South America. We experimentally tested a TeNT variant selected from an ancient Chilean mummy sample and found that it induced tetanus muscle paralysis in mice, with potency comparable to modern TeNT. Thus, our ancient DNA analysis identifies DNA from neurotoxigenic C. tetani in archaeological human samples, and a novel variant of TeNT that can cause disease in mammals.
Collapse
Affiliation(s)
- Harold P Hodgins
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Briallen Lobb
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Xin Wei
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin J M Tremblay
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Victoria C Y Lee
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Coffin
- Department of Anthropology, University of Waterloo, Waterloo, ON, Canada
| | - Ana T Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, ON, Canada
| | - Alexis E Dolphin
- Department of Anthropology, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel Renaud
- Department of Health Technology, Section of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Andrew C Doxey
- Department of Biology and the Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
3
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Pellett S. Advances in Clostridial and Related Neurotoxins. Int J Mol Sci 2022; 23:14076. [PMID: 36430554 PMCID: PMC9697359 DOI: 10.3390/ijms232214076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The huge advances in genomics and molecular biology in the past two decades have made now an exciting time to study bacterial toxins, in particular, the most potent bacterial toxin known to humankind, botulinum neurotoxins (BoNTs) [...].
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
5
|
Regulatory Networks Controlling Neurotoxin Synthesis in Clostridium botulinum and Clostridium tetani. Toxins (Basel) 2022; 14:toxins14060364. [PMID: 35737025 PMCID: PMC9229411 DOI: 10.3390/toxins14060364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridium botulinum and Clostridium tetani are Gram-positive, spore-forming, and anaerobic bacteria that produce the most potent neurotoxins, botulinum toxin (BoNT) and tetanus toxin (TeNT), responsible for flaccid and spastic paralysis, respectively. The main habitat of these toxigenic bacteria is the environment (soil, sediments, cadavers, decayed plants, intestinal content of healthy carrier animals). C. botulinum can grow and produce BoNT in food, leading to food-borne botulism, and in some circumstances, C. botulinum can colonize the intestinal tract and induce infant botulism or adult intestinal toxemia botulism. More rarely, C. botulinum colonizes wounds, whereas tetanus is always a result of wound contamination by C. tetani. The synthesis of neurotoxins is strictly regulated by complex regulatory networks. The highest levels of neurotoxins are produced at the end of the exponential growth and in the early stationary growth phase. Both microorganisms, except C. botulinum E, share an alternative sigma factor, BotR and TetR, respectively, the genes of which are located upstream of the neurotoxin genes. These factors are essential for neurotoxin gene expression. C. botulinum and C. tetani share also a two-component system (TCS) that negatively regulates neurotoxin synthesis, but each microorganism uses additional distinct sets of TCSs. Neurotoxin synthesis is interlocked with the general metabolism, and CodY, a master regulator of metabolism in Gram-positive bacteria, is involved in both clostridial species. The environmental and nutritional factors controlling neurotoxin synthesis are still poorly understood. The transition from amino acid to peptide metabolism seems to be an important factor. Moreover, a small non-coding RNA in C. tetani, and quorum-sensing systems in C. botulinum and possibly in C. tetani, also control toxin synthesis. However, both species use also distinct regulatory pathways; this reflects the adaptation of C. botulinum and C. tetani to different ecological niches.
Collapse
|
6
|
Adler M, Pellett S, Sharma SK, Lebeda FJ, Dembek ZF, Mahan MA. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms 2022; 10:microorganisms10050886. [PMID: 35630331 PMCID: PMC9148055 DOI: 10.3390/microorganisms10050886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic peripheral nerve injuries tend to be more common in younger, working age populations and can lead to long-lasting disability. Peripheral nerves have an impressive capacity to regenerate; however, successful recovery after injury depends on a number of factors including the mechanism and severity of the trauma, the distance from injury to the reinnervation target, connective tissue sheath integrity, and delay between injury and treatment. Even though modern surgical procedures have greatly improved the success rate, many peripheral nerve injuries still culminate in persistent neuropathic pain and incomplete functional recovery. Recent studies in animals suggest that botulinum neurotoxin A (BoNT/A) can accelerate nerve regeneration and improve functional recovery after injury to peripheral nerves. Possible mechanisms of BoNT/A action include activation or proliferation of support cells (Schwann cells, mast cells, and macrophages), increased angiogenesis, and improvement of blood flow to regenerating nerves.
Collapse
Affiliation(s)
- Michael Adler
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Correspondence: ; Tel.: +1-410-436-1913
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA;
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Frank J. Lebeda
- Biotechnology, Protein Bioinformatics, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Advanced Academic Programs, 9601 Medical Center Drive, Rockville, MD 20850, USA;
| | - Zygmunt F. Dembek
- Department of Military and Emergency Medicine, Uniformed Services University of Health Sciences, 3154 Jones Bridge Rd., Bethesda, MD 20814, USA;
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences, University of Utah, 175 N Medical Drive East, Salt Lake City, UT 84132, USA;
| |
Collapse
|
7
|
Lobb B, Tremblay BJM, Moreno-Hagelsieb G, Doxey AC. PathFams: statistical detection of pathogen-associated protein domains. BMC Genomics 2021; 22:663. [PMID: 34521345 PMCID: PMC8442362 DOI: 10.1186/s12864-021-07982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background A substantial fraction of genes identified within bacterial genomes encode proteins of unknown function. Identifying which of these proteins represent potential virulence factors, and mapping their key virulence determinants, is a challenging but important goal. Results To facilitate virulence factor discovery, we performed a comprehensive analysis of 17,929 protein domain families within the Pfam database, and scored them based on their overrepresentation in pathogenic versus non-pathogenic species, taxonomic distribution, relative abundance in metagenomic datasets, and other factors. Conclusions We identify pathogen-associated domain families, candidate virulence factors in the human gut, and eukaryotic-like mimicry domains with likely roles in virulence. Furthermore, we provide an interactive database called PathFams to allow users to explore pathogen-associated domains as well as identify pathogen-associated domains and domain architectures in user-uploaded sequences of interest. PathFams is freely available at https://pathfams.uwaterloo.ca. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07982-8.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
8
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
9
|
Zuverink M, Barbieri JT. Resolving the Molecular Steps in Clostridial Neurotoxin Light Chain Translocation. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 1:123-134. [PMID: 33615314 PMCID: PMC7894615 DOI: 10.33696/neurol.1.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clostridial neurotoxins (CNTs), botulinum toxin and tetanus toxin, are the most toxic proteins for humans. Neurotoxicity is based upon the specificity of the CNTs for neural host receptors and substrates. CNTs are organized into three domains, a Light Chain (LC) that is a metalloprotease and a Heavy Chain (HC) that has two domains, an N-terminal LC translocation domain (HCN) and a C-terminal receptor binding domain (HCC). While catalysis and receptor binding functions of the CNTs have been developed, our understanding of LC translocation is limited. This is due to the intrinsic complexity of the translocation process and limited tools to assess the step-by-step events in LC translocation. Recently, we developed a novel, cell-based TT-reporter to measure LC translocation as the translocation of a β-lactamase reporter across a vesicle membrane in neurons. Using this approach, we identified a role for a cis-Loop, located within the HCN, in LC translocation. In this commentary, we describe our current understanding of how CNTs mediate LC translocation and place the role of the cis-Loop in the LC translocation process relative to other independent functions that have been implicated in LC translocation. Understanding the basis for LC translocation will enhance the use of CNTs in vaccine development and as human therapies.
Collapse
Affiliation(s)
- Madison Zuverink
- Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 Watertown Plank Road, BSB2 Rm. 2830, Microbiology and Immunology, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Smith TJ, Xie G, Williamson CHD, Hill KK, Fernández RA, Sahl JW, Keim P, Johnson SL. Genomic Characterization of Newly Completed Genomes of Botulinum Neurotoxin-Producing Species from Argentina, Australia, and Africa. Genome Biol Evol 2021; 12:229-242. [PMID: 32108238 DOI: 10.1093/gbe/evaa043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/14/2022] Open
Abstract
Botulinum neurotoxin-producing clostridia are diverse in the types of toxins they produce as well as in their overall genomic composition. They are globally distributed, with prevalent species and toxin types found within distinct geographic regions, but related strains containing the same toxin types may also be located on distinct continents. The mechanisms behind the spread of these bacteria and the independent movements of their bont genes may be understood through examination of their genetic backgrounds. The generation of 15 complete genomic sequences from bacteria isolated in Argentina, Australia, and Africa allows for a thorough examination of genome features, including overall relationships, bont gene cluster locations and arrangements, and plasmid comparisons, in bacteria isolated from various areas in the southern hemisphere. Insights gained from these examinations provide an understanding of the mechanisms behind the independent movements of these elements among distinct species.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory
| | | | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory
| | | | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University
| | | |
Collapse
|
11
|
A Monoclonal Antibody Combination against both Serotypes A and B Botulinum Toxin Prevents Inhalational Botulism in a Guinea Pig Model. Toxins (Basel) 2021; 13:toxins13010031. [PMID: 33466411 PMCID: PMC7824882 DOI: 10.3390/toxins13010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are extremely potent and can induce respiratory failure, requiring long-term intensive care to prevent death. Recombinant monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics. In contrast, equine antitoxin cannot be used prophylactically and has a short half-life. Two three-mAb combinations are in development that specifically neutralize BoNT serotype A (BoNT/A) and B (BoNT/B). The three-mAb combinations addressing a single serotype provided pre-exposure prophylaxis in the guinea pig inhalation model. A lyophilized co-formulation of six mAbs, designated G03-52-01, that addresses both A and B serotypes is in development. Here, we investigated the efficacy of G03-52-01 to protect guinea pigs against an aerosol exposure challenge of BoNT/A1 or BoNT/B1. Previously, it was found that each antibody demonstrated a dose-dependent exposure and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intravenous (IV) injection. Here we show that G03-52-01, in a single IM injection of G03-52-01 administered 48 h pre-exposure, protected guinea pigs against an aerosol challenge of up to 238 LD50s of BoNT/A1 and 191 LD50s of BoNT/B1. These data suggest that a single IM administration of G03-52-01 provides pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A1 or BoNT/B1.
Collapse
|
12
|
Brunt J, van Vliet AHM, Stringer SC, Carter AT, Lindström M, Peck MW. Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins (Basel) 2020; 12:E306. [PMID: 32397147 PMCID: PMC7291236 DOI: 10.3390/toxins12050306] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
The neurotoxin formed by Clostridium botulinum Group II is a major cause of foodborne botulism, a deadly intoxication. This study aims to understand the genetic diversity and spread of C. botulinum Group II strains and their neurotoxin genes. A comparative genomic study has been conducted with 208 highly diverse C. botulinum Group II strains (180 newly sequenced strains isolated from 16 countries over 80 years, 28 sequences from Genbank). Strains possessed a single type B, E, or F neurotoxin gene or were closely related strains with no neurotoxin gene. Botulinum neurotoxin subtype variants (including novel variants) with a unique amino acid sequence were identified. Core genome single-nucleotide polymorphism (SNP) analysis identified two major lineages-one with type E strains, and the second dominated by subtype B4 strains with subtype F6 strains. This study revealed novel details of population structure/diversity and established relationships between whole-genome lineage, botulinum neurotoxin subtype variant, association with foodborne botulism, epidemiology, and geographical source. Additionally, the genome sequences represent a valuable resource for the research community (e.g., understanding evolution of C. botulinum and its neurotoxin genes, dissecting key aspects of C. botulinum Group II biology). This may contribute to improved risk assessments and the prevention of foodborne botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| |
Collapse
|
13
|
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens. mSystems 2020; 5:5/2/e00145-20. [PMID: 32345738 PMCID: PMC7190384 DOI: 10.1128/msystems.00145-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome. Despite progress understanding microbial communities involved in terrestrial vertebrate decomposition, little is known about the microbial decomposition of aquatic vertebrates from a functional and environmental context. Here, we analyzed temporal changes in the “necrobiome” of rainbow darters, which are common North American fish that are sensitive indicators of water quality. By combining 16S rRNA gene and shotgun metagenomic sequence data from four time points, we studied the progression of decomposers from both taxonomic and functional perspectives. The 16S rRNA gene profiles revealed strong community succession, with early decomposition stages associated with Aeromonas and Clostridium taxa and later stages dominated by members of the Rikenellaceae (i.e., Alistipes/Acetobacteroides genera). These results were reproducible and independent of environmental perturbation, given that exposure to wastewater treatment plant effluent did not substantially influence the necrobiome composition of fish or the associated water sample microbiota. Metagenomic analysis revealed significant changes throughout decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other compounds, in addition to putrefaction pathways for production of putrescine, cadaverine, and indole. Binning of contigs confirmed a predominance of Aeromonas genome assemblies, including those from novel strains related to the pathogen Aeromonas veronii. These bins of Aeromonas genes also encoded known hemolysin toxins (e.g., aerolysin) that were particularly abundant early in the process, potentially contributing to host cell lysis during decomposition. Overall, our results demonstrate that wild-caught fish have a reproducible decomposer succession and that the fish necrobiome serves as a potential source of putative pathogens and toxigenic bacteria. IMPORTANCE The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome.
Collapse
|
14
|
Harris RA, Anniballi F, Austin JW. Adult Intestinal Toxemia Botulism. Toxins (Basel) 2020; 12:E81. [PMID: 31991691 PMCID: PMC7076759 DOI: 10.3390/toxins12020081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Intoxication with botulinum neurotoxin can occur through various routes. Foodborne botulism results after consumption of food in which botulinum neurotoxin-producing clostridia (i.e., Clostridium botulinum or strains of Clostridiumbutyricum type E or Clostridiumbaratii type F) have replicated and produced botulinum neurotoxin. Infection of a wound with C. botulinum and in situ production of botulinum neurotoxin leads to wound botulism. Colonization of the intestine by neurotoxigenic clostridia, with consequent production of botulinum toxin in the intestine, leads to intestinal toxemia botulism. When this occurs in an infant, it is referred to as infant botulism, whereas in adults or children over 1 year of age, it is intestinal colonization botulism. Predisposing factors for intestinal colonization in children or adults include previous bowel or gastric surgery, anatomical bowel abnormalities, Crohn's disease, inflammatory bowel disease, antimicrobial therapy, or foodborne botulism. Intestinal colonization botulism is confirmed by detection of botulinum toxin in serum and/or stool, or isolation of neurotoxigenic clostridia from the stool, without finding a toxic food. Shedding of neurotoxigenic clostridia in the stool may occur for a period of several weeks. Adult intestinal botulism occurs as isolated cases, and may go undiagnosed, contributing to the low reported incidence of this rare disease.
Collapse
Affiliation(s)
- Richard A. Harris
- Botulism Reference Service for Canada, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Ottawa, ON K1A 0K9, Canada;
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Microbiological Foodborne Hazard Unit, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, viale Regina Elena, 29900161 Rome, Italy;
| | - John W. Austin
- Botulism Reference Service for Canada, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Ottawa, ON K1A 0K9, Canada;
| |
Collapse
|
15
|
Le Gratiet T, Poezevara T, Rouxel S, Houard E, Mazuet C, Chemaly M, Le Maréchal C. Development of An Innovative and Quick Method for the Isolation of Clostridium botulinum Strains Involved in Avian Botulism Outbreaks. Toxins (Basel) 2020; 12:E42. [PMID: 31936866 PMCID: PMC7020472 DOI: 10.3390/toxins12010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
Avian botulism is a serious neuroparalytic disease mainly caused by a type C/D botulinum neurotoxin produced by Clostridium botulinum group III, one of the entwined bacterial species from the Clostridiumnovyisensulato genospecies. Its isolation is very challenging due to the absence of selective media and the instability of the phage carrying the gene encoding for the neurotoxin. The present study describes the development of an original method for isolating C. botulinum group III strains. Briefly, this method consists of streaking the InstaGene matrix extraction pellet on Egg Yolk Agar plates and then collecting the colonies with lipase and lecithinase activities. Using this approach, it was possible to isolate 21 C. novyi sensu lato strains from 22 enrichment broths of avian livers, including 14 toxic strains. This method was successfully used to re-isolate type C, D, C/D, and D/C strains from liver samples spiked with five spores per gram. This method is cheap, user-friendly, and reliable. It can be used to quickly isolate toxic strains involved in avian botulism with a 64% success rate and C. novyi sensu lato with a 95% rate. This opens up new perspectives for C. botulinum genomic research, which will shed light on the epidemiology of avian botulism.
Collapse
Affiliation(s)
- Thibault Le Gratiet
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
- UFR of Life Sciences and Environment, University of Rennes 1, 35 000 Rennes, France
| | - Typhaine Poezevara
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Sandra Rouxel
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Emmanuelle Houard
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Christelle Mazuet
- National Reference Center for Anaerobic Bacteria and Botulism, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Marianne Chemaly
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Caroline Le Maréchal
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| |
Collapse
|
16
|
Pellett S, Tepp WH, Johnson EA. Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins. Toxins (Basel) 2019; 11:E713. [PMID: 31817843 PMCID: PMC6950160 DOI: 10.3390/toxins11120713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis of botulism, basic research, drug development, potency determination, and detection in clinical, environmental, and food samples. Ideally, a definitive assay for BoNT should reflect the activity of each of the four steps in nerve intoxication. The in vivo mouse bioassay (MBA) is the 'gold standard' for the detection of BoNTs. The MBA is sensitive, robust, semi-quantitative, and reliable within its sensitivity limits. Potential drawbacks with the MBA include assay-to-assay potency variations, especially between laboratories, and false positives or negatives. These limitations can be largely avoided by careful planning and performance. Another detection method that has gained importance in recent years for research and potency determination of pharmaceutical BoNTs is cell-based assays, as these assays can be highly sensitive, quantitative, human-specific, and detect fully functional holotoxins at physiologically relevant concentrations. A myriad of other in vitro BoNT detection methods exist. This review focuses on critical factors and assay limitations of the mouse bioassay and cell-based assays for BoNT detection.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (S.P.); (W.H.T.)
| |
Collapse
|
17
|
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 2019; 21:e13037. [PMID: 31050145 PMCID: PMC6899712 DOI: 10.1111/cmi.13037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.
Collapse
Affiliation(s)
- Ornella Rossetto
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Marco Pirazzini
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Florigio Lista
- Sezione di Istologia e Biologia MolecolareCentro di ricerca Medica e Veterinaria del Ministero della DifesaRomeItaly
| | - Cesare Montecucco
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
- Istituto Neuroscienze del CNRUniversità di PadovaPaduaItaly
| |
Collapse
|
18
|
Chapeton-Montes D, Plourde L, Bouchier C, Ma L, Diancourt L, Criscuolo A, Popoff MR, Brüggemann H. The population structure of Clostridium tetani deduced from its pan-genome. Sci Rep 2019; 9:11220. [PMID: 31375706 PMCID: PMC6677821 DOI: 10.1038/s41598-019-47551-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
Clostridium tetani produces a potent neurotoxin, the tetanus neurotoxin (TeNT) that is responsible for the worldwide neurological disease tetanus, but which can be efficiently prevented by vaccination with tetanus toxoid. Until now only one type of TeNT has been characterized and very little information exists about the heterogeneity among C. tetani strains. We report here the genome sequences of 26 C. tetani strains, isolated between 1949 and 2017 and obtained from different locations. Genome analyses revealed that the C. tetani population is distributed in two phylogenetic clades, a major and a minor one, with no evidence for clade separation based on geographical origin or time of isolation. The chromosome of C. tetani is highly conserved; in contrast, the TeNT-encoding plasmid shows substantial heterogeneity. TeNT itself is highly conserved among all strains; the most relevant difference is an insertion of four amino acids in the C-terminal receptor-binding domain in four strains that might impact on receptor-binding properties. Other putative virulence factors, including tetanolysin and collagenase, are encoded in all genomes. This study highlights the population structure of C. tetani and suggests that tetanus-causing strains did not undergo extensive evolutionary diversification, as judged from the high conservation of its main virulence factors.
Collapse
Affiliation(s)
| | | | | | - Laurence Ma
- Genomic Platform, Biomics, Institut Pasteur, Paris, France
| | - Laure Diancourt
- CNR Bactéries anaérobies Botulisme, Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Hub Bioinformatique Biostatistique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
19
|
|
20
|
Abstract
The molecular evolution of virulence factors is a central theme in our understanding of bacterial pathogenesis and host-microbe interactions. Using bioinformatics and genome data mining, recent studies have shed light on the evolution of important virulence factor families and the mechanisms by which they have adapted and diversified in function. This perspective highlights three complementary approaches useful for studying the molecular evolution of virulence factors: identification and analysis of virulence factor homologs, detection of adaptations or functional shifts, and computational prediction of novel virulence factor families. Each of these research directions is associated with distinct questions, approaches, and challenges for future work. Moving forward, bioinformatics will continue to play a critical role in exploring the evolution of virulence factors, including those that target humans. By reconstructing past processes and events, we will be able to better interpret newly sequenced microbial genomes and detect future pathoadaptations.
Collapse
|
21
|
Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci Rep 2019; 9:1634. [PMID: 30733520 PMCID: PMC6367388 DOI: 10.1038/s41598-018-37647-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/05/2018] [Indexed: 11/12/2022] Open
Abstract
Clostridial neurotoxins (CNTs), which include botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT), are the most potent toxins known to science and are the causative agents of botulism and tetanus, respectively. The evolutionary origins of CNTs and their relationships to other proteins remains an intriguing question. Here we present a large-scale bioinformatic screen for putative toxin genes in all currently available genomes. We detect a total of 311 protein sequences displaying at least partial homology to BoNTs, including 161 predicted toxin sequences that have never been characterized. We focus on a novel toxin family from Chryseobacterium piperi with homology to BoNTs. We resequenced the genome of C. piperi to confirm and further analyze the genomic context of these toxins, and also examined their potential toxicity by expression of the protease domain of one C. piperi toxin in human cells. Our analysis suggests that these C. piperi sequences encode a novel family of metalloprotease toxins that are distantly related to BoNTs with similar domain architecture. These toxins target a yet unknown class of substrates, potentially reflecting divergence in substrate specificity between the metalloprotease domains of these toxins and the related metalloprotease domain of clostridial neurotoxins.
Collapse
|
22
|
Kumar R, Feltrup TM, Kukreja RV, Patel KB, Cai S, Singh BR. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins (Basel) 2019; 11:toxins11010015. [PMID: 30609803 PMCID: PMC6356308 DOI: 10.3390/toxins11010015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022] Open
Abstract
Toxins can function both as a harmful and therapeutic molecule, depending on their concentrations. The diversity in their function allows us to ask some very pertinent questions related to their origin and roles: (a) What makes them such effective molecules? (b) Are there evolutionary features encoded within the structures of the toxins for their function? (c) Is structural hierarchy in the toxins important for maintaining their structure and function? (d) Do protein dynamics play a role in the function of toxins? and (e) Do the evolutionary connections to these unique features and functions provide the fundamental points in driving evolution? In light of the growing evidence in structural biology, it would be appropriate to suggest that protein dynamics and flexibility play a much bigger role in the function of the toxin than the structure itself. Discovery of IDPs (intrinsically disorder proteins), multifunctionality, and the concept of native aggregation are shaking the paradigm of the requirement of a fixed three-dimensional structure for the protein’s function. Growing evidence supporting the above concepts allow us to redesign the structure-function aspects of the protein molecules. An evolutionary model is necessary and needs to be developed to study these important aspects. The criteria for a well-defined model would be: (a) diversity in structure and function, (b) unique functionality, and (c) must belong to a family to define the evolutionary relationships. All these characteristics are largely fulfilled by bacterial toxins. Bacterial toxins are diverse and widely distributed in all three forms of life (Bacteria, Archaea and Eukaryotes). Some of the unique characteristics include structural folding, sequence and functional combination of domains, targeting a cellular process to execute their function, and most importantly their flexibility and dynamics. In this work, we summarize certain unique aspects of bacterial toxins, including role of structure in defining toxin function, uniqueness in their enzymatic function, and interaction with their substrates and other proteins. Finally, we have discussed the evolutionary aspects of toxins in detail, which will help us rethink the current evolutionary theories. A careful study, and appropriate interpretations, will provide answers to several questions related to the structure-function relationship of proteins, in general. Additionally, this will also allow us to refine the current evolution theories.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Thomas M Feltrup
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Roshan V Kukreja
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Kruti B Patel
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| |
Collapse
|
23
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
24
|
Mansfield MJ, Sugiman-Marangos SN, Melnyk RA, Doxey AC. Identification of a diphtheria toxin-like gene family beyond the Corynebacterium genus. FEBS Lett 2018; 592:2693-2705. [PMID: 30058084 DOI: 10.1002/1873-3468.13208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/04/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Diphtheria toxin (DT), produced by Corynebacterium diphtheria, is the causative agent of diphtheria and one of the most potent protein toxins known; however, it has an unclear evolutionary history. Here, we report the discovery of a DT-like gene family in several bacterial lineages outside of Corynebacterium, including Austwickia and Streptomyces. These DT-like genes form sister lineages in the DT phylogeny and conserve key DT features including catalytic and translocation motifs, but possess divergent receptor-binding domains. DT-like genes are not associated with corynephage, but have undergone lateral transfer through a separate mechanism. The discovery of the first non-Corynebacterium homologs of DT sheds light on its evolutionary origin and highlights novelties that may have resulted in the emergence of DT targeting humans.
Collapse
Affiliation(s)
| | - Seiji N Sugiman-Marangos
- Department of Biochemistry, University of Toronto, Canada.,Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Roman A Melnyk
- Department of Biochemistry, University of Toronto, Canada.,Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
25
|
Benoit RM. Botulinum Neurotoxin Diversity from a Gene-Centered View. Toxins (Basel) 2018; 10:E310. [PMID: 30071587 PMCID: PMC6115791 DOI: 10.3390/toxins10080310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) rank amongst the most potent toxins known. The factors responsible for the emergence of the many known and yet unknown BoNT variants remain elusive. It also remains unclear why anaerobic bacteria that are widely distributed in our environment and normally do not pose a threat to humans, produce such deadly toxins. Even the possibility of accidental toxicity to humans has not been excluded. Here, I review the notion that BoNTs may have specifically evolved to target vertebrates. Considering the extremely complex molecular architecture of the toxins, which enables them to reach the bloodstream, to recognize and enter neurons, and to block neurotransmitter release, it seems highly unlikely that BoNT toxicity to vertebrates is a coincidence. The carcass⁻maggot cycle provides a plausible explanation for a natural role of the toxins: to enable mass reproduction of bacteria, spores, and toxins, using toxin-unaffected invertebrates, such as fly maggots, as the vectors. There is no clear correlation between toxigenicity and a selective advantage of clostridia in their natural habitat. Possibly, non-toxigenic strains profit from carcasses resulting from the action of toxigenic strains. Alternatively, a gene-centered view of toxin evolution would also explain this observation. Toxin-coding mobile genetic elements may have evolved as selfish genes, promoting their own propagation, similar to commensal viruses, using clostridia and other bacteria as the host. Research addressing the role of BoNTs in nature and the origin of toxin variability goes hand in hand with the identification of new toxin variants and the design of improved toxin variants for medical applications. These research directions may also reveal yet unknown natural antidotes against these extremely potent neurotoxins.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen CH-5232, Switzerland.
| |
Collapse
|
26
|
Light Chain Diversity among the Botulinum Neurotoxins. Toxins (Basel) 2018; 10:toxins10070268. [PMID: 30004421 PMCID: PMC6070880 DOI: 10.3390/toxins10070268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are produced by several species of clostridium. There are seven immunologically unique BoNT serotypes (A⁻G). The Centers for Disease Control classifies BoNTs as 'Category A' select agents and are the most lethal protein toxins for humans. Recently, BoNT-like proteins have also been identified in several non-clostridia. BoNTs are di-chain proteins comprised of an N-terminal zinc metalloprotease Light Chain (LC) and a C-terminal Heavy Chain (HC) which includes the translocation and receptor binding domains. The two chains are held together by a disulfide bond. The LC cleaves Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The cleavage of SNAREs inhibits the fusion of synaptic vesicles to the cell membrane and the subsequent release of acetylcholine, which results in flaccid paralysis. The LC controls the catalytic properties and the duration of BoNT action. This review discusses the mechanism for LC catalysis, LC translocation, and the basis for the duration of LC action. Understanding these properties of the LC may expand the applications of BoNT as human therapies.
Collapse
|
27
|
Tehran DA, Pirazzini M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins (Basel) 2018; 10:toxins10050190. [PMID: 29748471 PMCID: PMC5983246 DOI: 10.3390/toxins10050190] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|