1
|
Alphonse N, Odendall C. Animal models of shigellosis: a historical overview. Curr Opin Immunol 2023; 85:102399. [PMID: 37952487 DOI: 10.1016/j.coi.2023.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Shigella spp. are major causative agents of bacillary dysentery, a severe enteric disease characterized by destruction and inflammation of the colonic epithelium accompanied by acute diarrhea, fever, and abdominal pain. Although antibiotics have traditionally been effective, the prevalence of multidrug-resistant strains is increasing, stressing the urgent need for a vaccine. The human-specific nature of shigellosis and the absence of a dependable animal model have posed significant obstacles in understanding Shigella pathogenesis and the host immune response, both of which are crucial for the development of an effective vaccine. Efforts have been made over time to develop a physiological model that mimics the pathological features of the human disease with limited success until the recent development of genetically modified mouse models. In this review, we provide an overview of Shigella pathogenesis and chronicle the historical development of various shigellosis models, emphasizing their strengths and weaknesses.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
2
|
Tchagang CF, Mah TF, Campbell-Valois FX. Anaerobic fluorescent reporters for live imaging of Pseudomonas aeruginosa. Front Microbiol 2023; 14:1245755. [PMID: 37928662 PMCID: PMC10623331 DOI: 10.3389/fmicb.2023.1245755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Pseudomonas aeruginosa thrives in the airways of individuals with cystic fibrosis, in part by forming robust biofilms that are resistant to immune clearance or antibiotic treatment. In the cystic fibrosis lung, the thickened mucus layers create an oxygen gradient, often culminating with the formation of anoxic pockets. In this environment, P. aeruginosa can use nitrate instead of oxygen to grow. Current fluorescent reporters for studying P. aeruginosa are limited to the GFP and related analogs. However, these reporters require oxygen for the maturation of their chromophore, making them unsuitable for the study of anaerobically grown P. aeruginosa. To overcome this limitation, we evaluated seven alternative fluorescent proteins, including iLOV, phiLOV2.1, evoglow-Bs2, LucY, UnaG, Fluorescence-Activating and Absorption-Shifting Tag (FAST), and iRFP670, which have been reported to emit light under oxygen-limiting conditions. We generated a series of plasmids encoding these proteins and validated their fluorescence using plate reader assays and confocal microscopy. Six of these proteins successfully labeled P. aeruginosa in anoxia. In particular, phiLOV2.1 and FAST provided superior fluorescence stability and enabled dual-color imaging of both planktonic and biofilm cultures. This study provides a set of fluorescent reporters for monitoring P. aeruginosa under low-oxygen conditions. These reporters will facilitate studies of P. aeruginosa in biofilms or other contexts relevant to its pathogenesis, such as those found in cystic fibrosis airways. Due to the broad host range of our expression vector, the phiLOV2.1 and FAST-based reporters may be applicable to the study of other Gram-negative bacteria that inhabit similar low-oxygen niches.
Collapse
Affiliation(s)
- Caetanie F. Tchagang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Alphonse N, Wanford JJ, Voak AA, Gay J, Venkhaya S, Burroughs O, Mathew S, Lee T, Evans SL, Zhao W, Frowde K, Alrehaili A, Dickenson RE, Munk M, Panina S, Mahmood IF, Llorian M, Stanifer ML, Boulant S, Berchtold MW, Bergeron JRC, Wack A, Lesser CF, Odendall C. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell 2022; 185:2354-2369.e17. [PMID: 35568036 PMCID: PMC9596379 DOI: 10.1016/j.cell.2022.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Joseph J Wanford
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Andrew A Voak
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jack Gay
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Shayla Venkhaya
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Owen Burroughs
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sanjana Mathew
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Truelian Lee
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sasha L Evans
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Weiting Zhao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Kyle Frowde
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mads Munk
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ishraque F Mahmood
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
4
|
icaR
and
icaT
Are Ancient Chromosome Genes Encoding Substrates of the Type III Secretion Apparatus in Shigella flexneri. mSphere 2022; 7:e0011522. [PMID: 35582904 PMCID: PMC9241512 DOI: 10.1128/msphere.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella is an Escherichia coli pathovar that colonizes the cytosol of mucosal cells in the human large intestine. To do this, Shigella uses a Type III Secretion Apparatus (T3SA) to translocate several proteins into host cells. The T3SA and its substrates are encoded by genes of the virulence plasmid pINV or by chromosomal genes derived thereof. We recently discovered two chromosomal genes, which seem unrelated to pINV, although they are activated by MxiE and IpgC similarly to some of the canonical substrates of the T3SA. Here, we showed that the production of the corresponding proteins depended on the conservation of a MxiE box in their cognate promoters. Furthermore, both proteins were secreted by the T3SA in a chaperone-independent manner through the recognition of their respective amino-terminal secretion signal. Based on these observations, we named these new genes icaR and icaT, which stand for invasion chromosome antigen with homology for a transcriptional regulator and a transposase, respectively. icaR and icaT have orthologs in commensal and pathogenic E. coli strains belonging mainly to phylogroups A, B1, D and E. Finally, we demonstrated that icaR and icaT orthologs could be activated by the coproduction of IpgC and MxiE in strains MG1655 K-12 (phylogroup A) and O157:H7 ATCC 43888 (phylogroup E). In contrast, the coproduction of EivF and YgeG, which are homologs of MxiE and IpgC in the E. coli T3SS 2 (ETT2), failed to activate icaR and icaT. IMPORTANCEicaR and icaT are the latest members of the MxiE regulon discovered in the chromosome. The proteins IcaR and IcaT, albeit produced in small amounts, are nonetheless secreted by the T3SA comparably to canonical substrates. The high occurrence of icaR and icaT in phylogroups A, B1, D, and E coupled with their widespread absence in their B2 counterparts agree with the consensus E. coli phylogeny. The widespread conservation of the MxiE box among icaR and icaT orthologs supports the notion that both genes had already undergone coevolution with transcriptional activators ipgC and mxiE- harbored in pINV or a relative- in the last common ancestor of Shigella and of E. coli from phylogroups A, B1, D, and E. The possibility that icaR and icaT may contribute to Shigella pathogenesis cannot be excluded, although some of their characteristics suggest they are fossil genes.
Collapse
|
5
|
André AC, Debande L, Marteyn BS. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cell Microbiol 2021; 23:e13338. [PMID: 33813807 DOI: 10.1111/cmi.13338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.
Collapse
Affiliation(s)
- Antonin C André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,Université de Paris, Paris, France
| | - Lorine Debande
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Benoit S Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, Paris Cedex 15, France
| |
Collapse
|
6
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|