1
|
Nazeer RR, Askenasy I, Swain JEV, Welch M. Contribution of the infection ecosystem and biogeography to antibiotic failure in vivo. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:45. [PMID: 39649078 PMCID: PMC11618093 DOI: 10.1038/s44259-024-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
The acquisition of antibiotic resistance in bacteria, though a deeply concerning international issue, is reasonably well-understood at a mechanistic level. Less well-understood is why bacteria that are sensitive in vitro to well-established and widely-used antibiotics sometimes fail to respond to these agents in vivo. This is a particularly common problem in chronic, polymicrobial infection scenarios. Here, we discuss this in vitro-in vivo disconnect from the perspective of the bacterium, focusing in particular on how infection micro/macro-environment, biogeography, and the presence of co-habiting species affect the response to antibiotics. Using selected exemplars, we also consider interventions that might improve treatment outcomes, as well as ecologically 'eubiotic' approaches that have less of an impact on the patient's commensal microflora. In our view, the accrued data strongly suggest that we need a more comprehensive understanding of the in situ microbiology at infection sites.
Collapse
Affiliation(s)
| | - Isabel Askenasy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Wang Y, Xu Q, Xu B, Lin Y, Yang X, Tong J, Huang C. Clinical performance of nucleotide MALDI-TOF-MS in the rapid diagnosis of pulmonary tuberculosis and drug resistance. Tuberculosis (Edinb) 2023; 143:102411. [PMID: 37748279 DOI: 10.1016/j.tube.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To evaluate the application value of nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) technology in the rapid diagnosis of pulmonary tuberculosis (PTB) and its drug resistance. METHODS From February 2021 to January 2022, respiratory specimens from 214 suspected PTB patients at the First Hospital of Quanzhou were collected. Nucleotide MALDI-TOF-MS and BACTEC MGIT 960 culture methods were used for the detection of Mycobacterium tuberculosis (MTB) and drug resistance to anti-tuberculosis drugs. RESULTS Compared with culture method, nucleotide MALDI-TOF-MS technology had a sensitivity, specificity, and accuracy of 92.2%, 74.1%, and 82.7%, respectively, for the detection of MTB in respiratory specimens. With clinical diagnosis as the reference standard, the sensitivity and accuracy of nucleotide MALDI-TOF-MS were 82.5% and 86.0%, respectively, which were higher than those of the culture method (69.2% and 78.0%, respectively). The specificity of nucleotide MALDI-TOF-MS was 93.0%, which was slightly lower than that of culture method (95.8%). As for drug resistance, the results of nucleotide MALDI-TOF-MS exhibited good consistence with culture methods for rifampin, isoniazid, ethambutol, and streptomycin. CONCLUSION Nucleotide MALDI-TOF-MS detection has a good clinical performance for rapid detection of MTB and drug sensitivity to rifampin, isoniazid, ethambutol, and streptomycin directly on respiratory specimens.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Bailan Xu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Yichuan Lin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Xia Yang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Jingfeng Tong
- Shanghai Conlight Medical Co., Ltd, Shanghai, China.
| | | |
Collapse
|
4
|
Ufimtseva EG, Eremeeva NI. Drug-Tolerant Mycobacterium tuberculosis Adopt Different Survival Strategies in Alveolar Macrophages of Patients with Pulmonary Tuberculosis. Int J Mol Sci 2023; 24:14942. [PMID: 37834390 PMCID: PMC10573496 DOI: 10.3390/ijms241914942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The rapid spread of drug-resistant M. tuberculosis (Mtb) strains and the phenomenon of phenotypic tolerance to drugs present challenges toward achieving the goal of tuberculosis (TB) elimination worldwide. By using the ex vivo cultures of alveolar macrophages obtained from lung tissues of TB patients after intensive antimicrobial chemotherapy before surgery, different subpopulations of multidrug-tolerant Mtb with a spectrum of phenotypic and growth features were identified in the same TB lesions. Our results are indicative of not only passive mechanisms generating nonheritable resistance of Mtb to antibiotics, which are associated mainly with a lack of Mtb growth, but also some active mechanisms of Mtb persistence, such as cell wall and metabolic pathway remodeling. In one of the subpopulations, non-acid-fast Mtb have undergone significant reprogramming with the restoration of acid-fastness, lipoarabinomannan expression and replication in host cells of some patients after withdrawal of anti-TB drugs. Our data indicate the universal stress protein Rv2623 as a clinically relevant biomarker of Mtb that has lost acid-fastness in human lungs. The studies of Mtb survival, persistence, dormancy, and resumption and the identification of biomarkers characterizing these phenomena are very important concerning the development of vaccines and drug regimens with individualized management of patients for overcoming the resistance/tolerance crisis in anti-TB therapy.
Collapse
Affiliation(s)
- Elena G Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630117 Novosibirsk, Russia
| | - Natalya I Eremeeva
- Institute of Disinfectology, F.F. Erisman Federal Scientific Center of Hygiene of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being, 18a Nauchniy Proezd, 117246 Moscow, Russia
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039 Yekaterinburg, Russia
| |
Collapse
|
5
|
Jaiswal N, Kumar A. A soft-computation hybrid method for search of the antibiotic-resistant gene in Mycobacterium tuberculosis for promising drug target identification and antimycobacterial lead discovery. BIOINFORMATICS ADVANCES 2023; 3:vbad090. [PMID: 37521310 PMCID: PMC10382254 DOI: 10.1093/bioadv/vbad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Tuberculosis (TB) control programs were already piloted before the COVID-19 pandemic commenced and the global TB response was amplified by the pandemic. To combat the global TB epidemic, drug repurposing, novel drug discovery, identification and targeting of the antimicrobial resistance (AMR) genes, and addressing social determinants of TB are required. The study aimed to identify AMR genes in Mycobacterium tuberculosis (MTB) and a new anti-mycobacterial drug candidate. In this research, we used a few software to explore some AMR genes as a target protein in MTB and identified some potent antimycobacterial agents. We used Maestro v12.8 software, along with STRING v11.0, KEGG and Pass Server databases to gain a deeper understanding of MTB AMR genes as drug targets. Computer-aided analysis was used to identify mtrA and katG AMR genes as potential drug targets to depict some antimycobacterial drug candidates. Based on docking scores of -4.218 and -6.161, carvacrol was identified as a potent inhibitor against both drug targets. This research offers drug target identification and discovery of antimycobacterial leads, a unique and promising approach to combating the challenge of antibiotic resistance in Mycobacterium, and contributes to the development of a potential futuristic solution.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh 492010, India
| | | |
Collapse
|
6
|
Zhang S, Chen X, Lin Z, Tan Y, Liang B, Pan Y, Huang M, Su B, Hu X, Xu Y, Li Q. Quantification of Isoniazid-Heteroresistant Mycobacterium tuberculosis Using Droplet Digital PCR. J Clin Microbiol 2023; 61:e0188422. [PMID: 37195177 PMCID: PMC10281145 DOI: 10.1128/jcm.01884-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The quantitative detection of drug-resistance mutations in Mycobacterium tuberculosis (MTB) is critical for determining the drug resistance status of a sample. We developed a drop-off droplet digital PCR (ddPCR) assay targeting all major isoniazid (INH)-resistant mutations. The ddPCR assay consisted of three reactions: reaction A detects mutations at katG S315; reaction B detects inhA promoter mutations; and reaction C detects ahpC promoter mutations. All reactions could quantify 1%-50% of mutants in the presence of the wild-type, ranging from 100 to 50,000 copies/reaction. Clinical evaluation with 338 clinical isolates yielded clinical sensitivity of 94.5% (95% confidence interval [CI] = 89.1%-97.3%) and clinical specificity of 97.6% (95% CI = 94.6%-99.0%) compared with the traditional drug susceptibility testing (DST). Further clinical evaluation using 194 nucleic acid-positive MTB sputum samples revealed clinical sensitivity of 87.8% (95% CI = 75.8%-94.3%) and clinical specificity of 96.5% (95% CI = 92.2%-98.5%) in comparison with DST. All the mutant and heteroresistant samples detected by the ddPCR assay but susceptible by DST were confirmed by combined molecular assays, including Sanger sequencing, mutant-enriched Sanger sequencing and a commercial melting curve analysis-based assay. Finally, the ddPCR assay was used to monitor longitudinally the INH-resistance status and the bacterial load in nine patients undergoing treatment. Overall, the developed ddPCR assay could be an indispensable tool for quantification of INH-resistant mutations in MTB and bacterial loads in patients.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Chen
- The Pulmonary Hospital of Fuzhou in Fujian Province, Fuzhou, Fujian, China
| | - Zhonghui Lin
- The Pulmonary Hospital of Fuzhou in Fujian Province, Fuzhou, Fujian, China
| | - Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Bin Liang
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuying Pan
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingxiang Huang
- The Pulmonary Hospital of Fuzhou in Fujian Province, Fuzhou, Fujian, China
| | - Biyi Su
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Xiaoman Hu
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Usui M, Yoshii Y, Thiriet-Rupert S, Ghigo JM, Beloin C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun Biol 2023; 6:275. [PMID: 36928386 PMCID: PMC10020551 DOI: 10.1038/s42003-023-04601-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| | - Yutaka Yoshii
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| |
Collapse
|
9
|
Grote A, Earl AM. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr Opin Microbiol 2022; 70:102197. [PMID: 36063686 PMCID: PMC11333989 DOI: 10.1016/j.mib.2022.102197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
Abstract
Many bacterial pathogens can form persistent infections, providing an infectious reservoir, which allows for infection of new hosts. Currently, the molecular mechanisms and evolutionary dynamics driving persistence are still not well-understood. High-throughput sequencing methods have enabled the study of within-host evolution of persistent bacterial pathogens, revealing common trends among bacterial species in how they adapt to persist. We will focus on trends emerging from longitudinal human-cohort studies, including i) genome-size reduction, ii) metabolic adaptation to the host, iii) antimicrobial resistance, iv) changes in virulence and the bacterial cell surface, and v) hypermutation, and comment on where the field should focus going forward.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Witzany C, Regoes RR, Igler C. Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proc Biol Sci 2022; 289:20221300. [PMID: 36350213 PMCID: PMC9653239 DOI: 10.1098/rspb.2022.1300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
To curb the rising threat of antimicrobial resistance, we need to understand the routes to antimicrobial treatment failure. Bacteria can survive treatment by using both genetic and phenotypic mechanisms to diminish the effect of antimicrobials. We assemble empirical data showing that, for example, Pseudomonas aeruginosa infections frequently contain persisters, transiently non-growing cells unaffected by antibiotics (AB) and hyper-mutators, mutants with elevated mutation rates, and thus higher probability of genetic resistance emergence. Resistance, persistence and hyper-mutation dynamics are difficult to disentangle experimentally. Hence, we use stochastic population modelling and deterministic fitness calculations to investigate the relative importance of genetic and phenotypic mechanisms for immediate treatment failure and establishment of prolonged, chronic infections. We find that persistence causes 'hidden' treatment failure with very low cell numbers if antimicrobial concentrations prevent growth of genetically resistant cells. Persister cells can regrow after treatment is discontinued and allow for resistance evolution in the absence of AB. This leads to different mutational routes during treatment and relapse of an infection. By contrast, hyper-mutation facilitates resistance evolution during treatment, but rarely contributes to treatment failure. Our findings highlight the time and concentration dependence of different bacterial mechanisms to escape AB killing, which should be considered when designing 'failure-proof' treatments.
Collapse
Affiliation(s)
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Huang CC, Tan Q, Becerra MC, Calderon R, Chiang SS, Contreras C, Lecca L, Jimenez J, Perez-Velez CM, Roya-Pabon CL, Yataco R, Xu H, Zhang Z, Murray M. The Contribution of Chest Radiography to the Clinical Management of Children Exposed to Tuberculosis. Am J Respir Crit Care Med 2022; 206:892-900. [PMID: 35608549 PMCID: PMC9799275 DOI: 10.1164/rccm.202202-0259oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023] Open
Abstract
Rationale: Although World Health Organization guidelines emphasize contact investigation for tuberculosis (TB)-exposed children, data that support chest radiography as a useful tool are lacking. Objectives: We evaluated the diagnostic and prognostic information of chest radiography in children exposed to TB and measured the efficacy of isoniazid preventive therapy (IPT) in those with relevant radiographic abnormalities. Methods: Between September 2009 and August 2012, we enrolled 4,468 TB-exposed children who were screened by tuberculin skin testing, symptom assessment, and chest radiography. Those negative for TB disease were followed for 1 year for the occurrence of new TB diagnoses. We assessed the protective efficacy of IPT in children with and without abnormal chest radiographs. Measurements and Main Results: Compared with asymptomatic children with normal chest films, asymptomatic children with abnormal radiographs were 25.1-fold more likely to have coprevalent TB (95% confidence interval [CI], 1.02-613.76) and 26.7-fold more likely to be diagnosed with incident TB disease during follow-up (95% CI, 10.44-68.30). Among the 29 symptom-negative and CXR-abnormal child contacts, 20% (3/15) of the isoniazid recipients developed incident TB, compared with 57% (8/14) of those who did not receive IPT (82% IPT efficacy). Conclusions: Our results strongly support the use of chest radiography as a routine screening tool for the evaluation of child TB contacts, which is readily available. Radiographic abnormalities not usually considered suggestive of TB may indicate incipient or subclinical disease, although TB preventive treatment is adequate in most cases.
Collapse
Affiliation(s)
- Chuan-Chin Huang
- Division of Global Health Equity, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| | - Qi Tan
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Respiratory and Critical Care Medicine and
| | - Mercedes C. Becerra
- Division of Global Health Equity, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Silvia S. Chiang
- Department of Pediatrics, Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Center for International Health Research, Rhode Island Hospital, Providence, Rhode Island
| | | | - Leonid Lecca
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
- Socios En Salud Sucursal, Lima, Peru
| | | | - Carlos M. Perez-Velez
- Tuberculosis Clinic, Pima County Health Department, Tucson, Arizona
- Division of Infectious Diseases, College of Medicine, University of Arizona, Tucson, Arizona; and
| | | | | | - Hai Xu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zibiao Zhang
- Division of Global Health Equity, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Megan Murray
- Division of Global Health Equity, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
12
|
Eoh H, Liu R, Lim J, Lee JJ, Sell P. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:958240. [PMID: 36072228 PMCID: PMC9441700 DOI: 10.3389/fcimb.2022.958240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world’s deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a “persister” state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.
Collapse
|
13
|
Shultis MW, Mulholland CV, Berney M. Are all antibiotic persisters created equal? Front Cell Infect Microbiol 2022; 12:933458. [PMID: 36061872 PMCID: PMC9428696 DOI: 10.3389/fcimb.2022.933458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic persisters are a sub-population of bacteria able to survive in the presence of bactericidal antibiotic despite the lack of heritable drug resistance mechanisms. This phenomenon exists across many bacterial species and is observed for many different antibiotics. Though these bacteria are often described as “multidrug persisters” very few experiments have been carried out to determine the homogeneity of a persister population to different drugs. Further, there is much debate in the field as to the origins of a persister cell. Is it formed spontaneously? Does it form in response to stress? These questions are particularly pressing in the field of Mycobacterium tuberculosis, where persisters may play a crucial role in the required length of treatment and the development of multidrug resistant organisms. Here we aim to interpret the known mechanisms of antibiotic persistence and how they may relate to improving treatments for M. tuberculosis, exposing the gaps in knowledge that prevent us from answering the question: Are all antibiotic persisters created equal?
Collapse
|
14
|
Dookie N, Khan A, Padayatchi N, Naidoo K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front Microbiol 2022; 13:775030. [PMID: 35401475 PMCID: PMC8988194 DOI: 10.3389/fmicb.2022.775030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The World Health Organization’s End TB Strategy prioritizes universal access to an early diagnosis and comprehensive drug susceptibility testing (DST) for all individuals with tuberculosis (TB) as a key component of integrated, patient-centered TB care. Next generation whole genome sequencing (WGS) and its associated technology has demonstrated exceptional potential for reliable and comprehensive resistance prediction for Mycobacterium tuberculosis isolates, allowing for accurate clinical decisions. This review presents a descriptive analysis of research describing the potential of WGS to accelerate delivery of individualized care, recent advances in sputum-based WGS technology and the role of targeted sequencing for resistance detection. We provide an update on recent research describing the mechanisms of resistance to new and repurposed drugs and the dynamics of mixed infections and its potential implication on TB diagnosis and treatment. Whilst the studies reviewed here have greatly improved our understanding of recent advances in this arena, it highlights significant challenges that remain. The wide-spread introduction of new drugs in the absence of standardized DST has led to rapid emergence of drug resistance. This review highlights apparent gaps in our knowledge of the mechanisms contributing to resistance for these new drugs and challenges that limit the clinical utility of next generation sequencing techniques. It is recommended that a combination of genotypic and phenotypic techniques is warranted to monitor treatment response, curb emerging resistance and further dissemination of drug resistance.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Navisha Dookie,
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC), CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
15
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
16
|
Adefisayo OO, Dupuy P, Nautiyal A, Bean JM, Glickman MS. Division of labor between SOS and PafBC in mycobacterial DNA repair and mutagenesis. Nucleic Acids Res 2021; 49:12805-12819. [PMID: 34871411 PMCID: PMC8682763 DOI: 10.1093/nar/gkab1169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
DNA repair systems allow microbes to survive in diverse environments that compromise chromosomal integrity. Pathogens such as Mycobacterium tuberculosis must contend with the genotoxic host environment, which generates the mutations that underlie antibiotic resistance. Mycobacteria encode the widely distributed SOS pathway, governed by the LexA repressor, but also encode PafBC, a positive regulator of the transcriptional DNA damage response (DDR). Although the transcriptional outputs of these systems have been characterized, their full functional division of labor in survival and mutagenesis is unknown. Here, we specifically ablate the PafBC or SOS pathways, alone and in combination, and test their relative contributions to repair. We find that SOS and PafBC have both distinct and overlapping roles that depend on the type of DNA damage. Most notably, we find that quinolone antibiotics and replication fork perturbation are inducers of the PafBC pathway, and that chromosomal mutagenesis is codependent on PafBC and SOS, through shared regulation of the DnaE2/ImuA/B mutasome. These studies define the complex transcriptional regulatory network of the DDR in mycobacteria and provide new insight into the regulatory mechanisms controlling the genesis of antibiotic resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Oyindamola O Adefisayo
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Astha Nautiyal
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - James M Bean
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Michael S Glickman
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| |
Collapse
|
17
|
Zhou W, Yang B, Zou Y, Rahman K, Cao X, Lei Y, Lai R, Fu ZF, Chen X, Cao G. Screening of Compounds for Anti-tuberculosis Activity, and in vitro and in vivo Evaluation of Potential Candidates. Front Microbiol 2021; 12:658637. [PMID: 34276592 PMCID: PMC8278749 DOI: 10.3389/fmicb.2021.658637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a debilitating infectious disease responsible for more than one million deaths per year. The emergence of drug-resistant TB poses an urgent need for the development of new anti-TB drugs. In this study, we screened a library of over 4,000 small molecules and found that orbifloxacin and the peptide AK15 possess significant bactericidal activity against Mycobacterium tuberculosis (Mtb) in vitro. Orbifloxacin also showed an effective ability on the clearance of intracellular Mtb and protect mice from a strong inflammatory response but not AK15. Moreover, we identified 17 nucleotide mutations responsible for orbifloxacin resistance by whole-genome sequencing. A critical point mutation (D94G) of the DNA gyrase (gyrA) gene was found to be the key role of resistance to orbifloxacin. The computational docking revealed that GyrA D94G point mutation can disrupt the orbifloxacin–protein gyrase interactions mediated by magnesium ion bridge. Overall, this study indicated the potential ability of orbifloxacin as an anti-tuberculosis drug, which can be used either alone or in combination with first-line antibiotics to achieve more effective therapy on TB.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khaista Rahman
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production (CICSPPS), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Igler C, Rolff J, Regoes R. Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics, and treatment regimens. eLife 2021; 10:64116. [PMID: 34001313 PMCID: PMC8184216 DOI: 10.7554/elife.64116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: (i) a single mutation, which provides a large resistance benefit, or (ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling, we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.
Collapse
Affiliation(s)
- Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|