1
|
Herrero-Lobo R, Torres Franco AF, Lebrero R, Rodero MDR, Muñoz R. Evaluation of the influence of the gas residence time and biomass concentration on methane bioconversion to ectoines in a novel Taylor flow bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123592. [PMID: 39657477 DOI: 10.1016/j.jenvman.2024.123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
Today, the use of biogas to produce more sustainable bioproducts is attracting an increasing attention in the quest for a circular economy. This work aims at optimizing the biosynthesis of high value bioproducts such as ectoine and hydroxyectoine from methane using a high mass transfer Taylor flow reactor and a methanotrophic consortium. The influence of the gas residence time (30-240 min) and concentration of microorganisms (0.1-1.8 g TSS·L-1) on methane bioconversion and ectoine production was evaluated. The maximum methane bioconversion efficiency reached was ∼90% at a gas residence time of 240 min. Biological limitation in the reactor was observed at concentrations below 0.5 g total suspended solids (TSS)·L-1. The intracellular ectoine and hydroxyectoine content did not experience large variations with the gas residence time and biomass concentration. The maximum ectoine content was 49.0 ± 16.1 mgEC·gTSS-1 at a gas residence time of 240 min and a biomass concentration of 0.7 g TSS·L-1. The maximum hydroxyectoine content was 13.0 ± 3.6 and 12.7 ± 2.2 mgHE·gTSS-1 at a gas residence time of 240 min and biomass concentrations of 1.8 and 1.2 g TSS·L-1, respectively. Methylophaga and Methylomicrobium were the dominant methanotrophs in the bioreactor regardless of the gas residence time and biomass concentration. Microorganisms belonging to the genera Paracoccus, Methylophaga, Methylomicrobium and Nitratireductor have been identified as ectoines producers or have been found to possess genes responsible for ectoines synthesis.
Collapse
Affiliation(s)
- Raquel Herrero-Lobo
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain
| | - Andrés Felipe Torres Franco
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain.
| |
Collapse
|
2
|
Constantin M, Chioncel MF, Petrescu L, Vrancianu CO, Paun M, Cristian RE, Sidoroff M, Dionisie MV, Chifiriuc MC. From rock to living systems: Lanthanides toxicity and biological interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117494. [PMID: 39647373 DOI: 10.1016/j.ecoenv.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Since the discovery of lanthanides, the expanding range of applications and the growing demand for lanthanides in different aspects of life have escalated their dispersion in the environment, raising concerns about their impact on the living world. This review explores the interaction between lanthanides and different groups of living organisms (bacteria, algae, lichens, plants, invertebrates, and low vertebrates), reflecting the current state of scientific knowledge. We have aimed to provide a comprehensive overview of relevant studies, highlight existing gaps, and suggest potential areas for future research to enhance the understanding of this topic.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, Bucharest 060031, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania.
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania.
| | - Mihaela Paun
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Faculty of Administration and Business, University of Bucharest, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Manuela Sidoroff
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania
| | | | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| |
Collapse
|
3
|
Rakitin AL, Kulichevskaya IS, Beletsky AV, Mardanov AV, Dedysh SN, Ravin NV. Verrucomicrobia of the Family Chthoniobacteraceae Participate in Xylan Degradation in Boreal Peat Soils. Microorganisms 2024; 12:2271. [PMID: 39597660 PMCID: PMC11596606 DOI: 10.3390/microorganisms12112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The phylum Verrucomicrobiota is one of the main groups of soil prokaryotes, which remains poorly represented by cultivated organisms. The major recognized role of Verrucomicrobiota in soils is the degradation of plant-derived organic matter. These bacteria are particularly abundant in peatlands, where xylan-type hemicelluloses represent one of the most actively decomposed peat constituents. The aim of this work was to characterize the microorganisms capable of hydrolyzing xylan under the anoxic conditions typical of peatland soils. The laboratory incubation of peat samples with xylan resulted in the pronounced enrichment of several phylotypes affiliated with the Verrucomicrobiota, Firmicutes, and Alphaproteobacteria. Sequencing of the metagenome of the enrichment culture allowed us to recover high-quality metagenome-assembled genomes (MAGs) assigned to the genera Caproiciproducens, Clostridium, Bacillus (Firmicutes), and Rhizomicrobium (Alphaproteobacteria), Cellulomonas (Actinobacteriota) and the uncultured genus-level lineage of the family Chthoniobacteraceae (Verrucomicrobiota). The latter bacterium, designated "Candidatus Chthoniomicrobium xylanophilum" SH-KS-3, dominated in the metagenome and its MAG was assembled as a complete closed chromosome. An analysis of the SH-KS-3 genome revealed potential endo-1,4-beta-xylanases, as well as xylan beta-1,4-xylosidases and other enzymes involved in xylan utilization. A genome analysis revealed the absence of aerobic respiration and predicted chemoheterotrophic metabolism with the capacity to utilize various carbohydrates, including cellulose, and to perform fermentation or nitrate reduction. An analysis of other MAGs suggested that Clostridium and Rhizomicrobium could play the role of primary xylan degraders while other community members probably took advantage of the availability of xylo-oligosaccharides and xylose or utilized low molecular weight organics.
Collapse
Affiliation(s)
- Andrey L. Rakitin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Irina S. Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia (S.N.D.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia (S.N.D.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
4
|
Beals DG, Munn JJ, Puri AW. Methane-oxidizing bacterial community dynamics in sub-alpine forest soil. Microbiol Spectr 2024; 12:e0083424. [PMID: 39287454 PMCID: PMC11537040 DOI: 10.1128/spectrum.00834-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial activities in sub-alpine forest soil influence global cycling of the potent greenhouse gas methane. Understanding the dynamics of methane-oxidizing bacterial communities, particularly the roles of potentially active versus total microbial populations, is necessary for reducing uncertainty in global methane budget estimates. However, our understanding of the factors influencing methane cycling in forest soils is limited by our lack of knowledge about the biology of the microbes involved and how these communities are shaped by their environment. Here, we compared the composition and potential activity of microbial communities using 16S rRNA gene amplicon sequencing of total genomic DNA (gDNA) and potentially active complementary DNA (cDNA) from shallow soil in Red Butte Canyon (Salt Lake City, Utah, USA). We compared riparian and upland soils at two time points in the growing season and found distinct differences in both the community composition of the gDNA and cDNA libraries and the potential drivers of these community structures. Aerobic methane-oxidizing bacteria (methanotrophs) were detected in all samples, with cDNA libraries containing a higher average relative abundance and diversity of methanotrophs compared to gDNA libraries. Methane flux at the sample sites did not significantly correlate to the relative abundance (gDNA) or potential activity (cDNA) of methanotrophs. In the cDNA libraries, there were significant positive correlations between the abundance of Methylococcaceae family methanotrophs and several non-methanotrophic methylotrophs previously found to be associated with methane-oxidizing bacterial communities. These findings suggest a complex relationship between methane-cycling bacterial communities and methane flux and highlight the need for further in situ studies to understand the environmental and ecological influences of these microbial consortia. IMPORTANCE Methane-oxidizing bacteria are found in diverse soil and sediment environments and play an important role in mitigating flux of this potent greenhouse gas into the atmosphere. However, it is unclear how these bacteria and their associated communities are structured in the environment and how their activity ultimately influences methane flux. In this work, we examine the composition and structure of methane-oxidizing bacterial communities in sub-alpine forest soil and find soil- and time-specific differences between the stable and potentially active populations. We also find that the potentially active populations of certain methanotrophs and non-methanotrophs are positively correlated. This work provides a step toward refining our understanding of microbially mediated biogeochemical cycles.
Collapse
Affiliation(s)
- Delaney G. Beals
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - J. Jackson Munn
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
6
|
Gontijo JB, Paula FS, Bieluczyk W, França AG, Navroski D, Mandro JA, Venturini AM, Asselta FO, Mendes LW, Moura JMS, Moreira MZ, Nüsslein K, Bohannan BJM, Bodelier PLE, Rodrigues JLM, Tsai SM. Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios. ENVIRONMENTAL MICROBIOME 2024; 19:48. [PMID: 39020395 PMCID: PMC11256501 DOI: 10.1186/s40793-024-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Fabiana S Paula
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Wanderlei Bieluczyk
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Aline G França
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Deisi Navroski
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Fernanda O Asselta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Lucas W Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - José M S Moura
- Instituto de Formação Interdisciplinar e Intercultural, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - Marcelo Z Moreira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Paul L E Bodelier
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, GE, The Netherlands
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
7
|
Bicaldo IEC, Padilla KSAR, Tu TH, Chen WT, Mendoza-Pascual MU, Vicera CVB, de Leon JR, Poblete KN, Austria ES, Lopez MLD, Kobayashi Y, Shiah FK, Papa RDS, Okuda N, Wang PL, Lin LH. The methane-oxidizing microbial communities of three maar lakes in tropical monsoon Asia. Front Microbiol 2024; 15:1410666. [PMID: 39044952 PMCID: PMC11263035 DOI: 10.3389/fmicb.2024.1410666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Methane-oxidizing bacteria (MOB) is a group of planktonic microorganisms that use methane as their primary source of cellular energy. For tropical lakes in monsoon Asia, there is currently a knowledge gap on MOB community diversity and the factors influencing their abundance. Herewith, we present a preliminary assessment of the MOB communities in three maar lakes in tropical monsoon Asia using Catalyzed Reporter Deposition, Fluorescence In-Situ Hybridization (CARD-FISH), 16S rRNA amplicon sequencing, and pmoA gene sequencing. Correlation analysis between MOB abundances and lakes' physicochemical parameters following seasonal monsoon events were performed to explain observed spatial and temporal patterns in MOB diversity. The CARD-FISH analyses detected the three MOB types (I, II, and NC10) which aligned with the results from 16S rRNA amplicons and pmoA gene sequencing. Among community members based on 16S rRNA genes, Proteobacterial Type I MOB (e.g., Methylococcaceae and Methylomonadaceae), Proteobacterial Type II (Methylocystaceae), Verrucomicrobial (Methylacidiphilaceae), Methylomirabilota/NC10 (Methylomirabilaceae), and archaeal ANME-1a were found to be the dominant methane-oxidizers in three maar lakes. Analysis of microbial diversity and distribution revealed that the community compositions in Lake Yambo vary with the seasons and are more distinct during the stratified period. Temperature, DO, and pH were significantly and inversely linked with type I MOB and Methylomirabilota during stratification. Only MOB type I was influenced by monsoon changes. This research sought to establish a baseline for the diversity and ecology of planktonic MOB in tropical monsoon Asia to better comprehend their contribution to the CH4 cycle in tropical freshwater ecosystems.
Collapse
Affiliation(s)
- Iona Eunice C. Bicaldo
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Karol Sophia Agape R. Padilla
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
- Department of Science and Technology, Science Education Institute, Taguig, Philippines
| | - Tzu-Hsuan Tu
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan Ting Chen
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
| | - Milette U. Mendoza-Pascual
- Department of Environmental Science, School of Science and Engineering, Ateneo Research Institute for Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | | | - Justine R. de Leon
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, University of Santo Tomas, Manila, Philippines
| | | | | | - Mark Louie D. Lopez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Yuki Kobayashi
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Fuh-Kwo Shiah
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Rey Donne S. Papa
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, University of Santo Tomas, Manila, Philippines
| | - Noboru Okuda
- Center for Ecological Research, Kyoto University, Shiga, Japan
- Research Center for Inland Seas, Kobe University, Kobe, Japan
- Research Institute for Humanity and Nature, Kamigamo Motoyama, Kita Ward, Kyoto, Japan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Angius F, Cremers G, Frank J, Witkowski C, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM, Berben T. Gene-centered metagenome analysis of Vulcano Island soil (Aeolian archipelago, Italy) reveals diverse microbial key players in methane, hydrogen and sulfur cycles. Antonie Van Leeuwenhoek 2024; 117:94. [PMID: 38954064 PMCID: PMC11219375 DOI: 10.1007/s10482-024-01995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.
Collapse
Affiliation(s)
- Federica Angius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Geert Cremers
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jeroen Frank
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Caitlyn Witkowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
- School of Earth Sciences, Wills Memorial Building, University of Bristol, Queens Road, Clifton, BS8 1RJ, UK
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Theo A van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
11
|
Lienhart PH, Rohra V, Clement C, Toppen LC, DeCola AC, Rizzo DM, Scarborough MJ. Landfill intermediate cover soil microbiomes and their potential for mitigating greenhouse gas emissions revealed through metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171697. [PMID: 38492594 DOI: 10.1016/j.scitotenv.2024.171697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Landfills are a major source of anthropogenic methane emissions and have been found to produce nitrous oxide, an even more potent greenhouse gas than methane. Intermediate cover soil (ICS) plays a key role in reducing methane emissions but may also result in nitrous oxide production. To assess the potential for microbial methane oxidation and nitrous oxide production, long sequencing reads were generated from ICS microbiome DNA and reads were functionally annotated for 24 samples across ICS at a large landfill in New York. Further, incubation experiments were performed to assess methane consumption and nitrous oxide production with varying amounts of ammonia supplemented. Methane was readily consumed by microbes in the composite ICS and all incubations with methane produced small amounts of nitrous oxide even when ammonia was not supplemented. Incubations without methane produced significantly less nitrous oxide than those incubated with methane. In incubations with methane added, the observed specific rate of methane consumption was 0.776 +/- 0.055 μg CH4 g dry weight (DW) soil-1 h-1 and the specific rate of nitrous oxide production was 3.64 × 10-5 +/- 1.30 × 10-5 μg N2O g DW soil-1 h-1. The methanotrophs Methylobacter and an unclassified genus within the family Methlyococcaceae were present in the original ICS samples and the incubation samples, and their abundance increased during incubations with methane. Genes encoding particulate methane monooxygenase/ ammonia monooxygenase (pMMO) were much more abundant than genes encoding soluble methane monooxygenase (sMMO) across the landfill ICS. Genes encoding proteins that convert hydroxylamine to nitrous oxide were not highly abundant in the ICS or incubation metagenomes. In total, these results suggest that although ammonia oxidation via methanotrophs may result in low levels of nitrous oxide production, ICS microbial communities have the potential to greatly reduce the overall global warming potential of landfill emissions.
Collapse
Affiliation(s)
- Peyton H Lienhart
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Venus Rohra
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Courtney Clement
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Lucinda C Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States.
| | - Amy C DeCola
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States; Gund Institute for Environment, University of Vermont, Burlington, VT, United States.
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States; Gund Institute for Environment, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
12
|
Liao T, Wang S, Zhang H, Stüeken EE, Luo H. Dating Ammonia-Oxidizing Bacteria with Abundant Eukaryotic Fossils. Mol Biol Evol 2024; 41:msae096. [PMID: 38776415 PMCID: PMC11135946 DOI: 10.1093/molbev/msae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Evolution of a complete nitrogen (N) cycle relies on the onset of ammonia oxidation, which aerobically converts ammonia to nitrogen oxides. However, accurate estimation of the antiquity of ammonia-oxidizing bacteria (AOB) remains challenging because AOB-specific fossils are absent and bacterial fossils amenable to calibrate molecular clocks are rare. Leveraging the ancient endosymbiosis of mitochondria and plastid, as well as using state-of-the-art Bayesian sequential dating approach, we obtained a timeline of AOB evolution calibrated largely by eukaryotic fossils. We show that the first AOB evolved in marine Gammaproteobacteria (Gamma-AOB) and emerged between 2.1 and 1.9 billion years ago (Ga), thus postdating the Great Oxidation Event (GOE; 2.4 to 2.32 Ga). To reconcile the sedimentary N isotopic signatures of ammonia oxidation occurring near the GOE, we propose that ammonia oxidation likely occurred at the common ancestor of Gamma-AOB and Gammaproteobacterial methanotrophs, or the actinobacterial/verrucomicrobial methanotrophs which are known to have ammonia oxidation activities. It is also likely that nitrite was transported from the terrestrial habitats where ammonia oxidation by archaea took place. Further, we show that the Gamma-AOB predated the anaerobic ammonia-oxidizing (anammox) bacteria, implying that the emergence of anammox was constrained by the availability of dedicated ammonia oxidizers which produce nitrite to fuel anammox. Our work supports a new hypothesis that N redox cycle involving nitrogen oxides evolved rather late in the ocean.
Collapse
Affiliation(s)
- Tianhua Liao
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Eva E Stüeken
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, Queen's Terrace, KY16 9TS, UK
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
13
|
Cao W, Zhao J, Cai Y, Mo Y, Ma J, Zhang G, Jiang X, Jia Z. Ridge with no-tillage facilitates microbial N 2 fixation associated with methane oxidation in rice soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171172. [PMID: 38402982 DOI: 10.1016/j.scitotenv.2024.171172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the greenhouse gas methane emission, particularly prevalent in flooded wetlands. The implementation of ridge with no-tillage practices within a rice-rape rotation system proves effective in overcoming the restrictive redox conditions associated with waterlogging. This approach enhances capillary water availability from furrows, especially during periods of low rainfall, thereby supporting plant growth on the ridges. However, the microbe-mediated accumulation of soil organic carbon and nitrogen remains insufficiently understood under this agricultural practice, particularly concerning methane oxidation, which holds ecological and agricultural significance in the rice fields. In this study, the ridge and ditch soils from a 28-year-old ridge with no-tillage rice field experiment were utilized for incubation with 13C-CH4 and 15NN2 to estimate the methane-oxidizing and N2-fixing potentials. Our findings reveal a significantly higher net production of fresh soil organic carbon in the ridge compared to the ditch soil during methane oxidation, with values of 626 and 543 μg 13C g-1 dry weight soil, respectively. Additionally, the fixed 15N exhibited a twofold increase in the ridge soil (14.1 μg 15N g-1 dry weight soil) compared to the ditch soil. Interestingly, the result of DNA-based stable isotope probing indicated no significant differences in active MOB and N2 fixers between ridge and ditch soils. Both Methylocystis-like type II and Methylosarcina/Methylomonas-like type I MOB catalyzed methane into organic biomass carbon pools. Soil N2-fixing activity was associated with the 15N-labeling of methane oxidizers and non-MOB, such as methanol oxidizers (Hyphomicrobium) and conventional N2 fixers (Burkholderia). Methane oxidation also fostered microbial interactions, as evidenced by co-occurrence patterns. These results underscore the dual role of microbial methane oxidation - not only as a recognized sink for the potent greenhouse gas methane but also as a source of soil organic carbon and bioavailable nitrogen. This emphasizes the pivotal role of microbial methane metabolism in contributing to soil carbon and nitrogen accumulation in ridge with no-tillage systems.
Collapse
Affiliation(s)
- Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Institute for Food and Agricultural Sciences (IFAS), Department of Microbiology & Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, USA
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yongliang Mo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, PR China
| | - Jingjing Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, PR China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xianjun Jiang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, PR China.
| |
Collapse
|
14
|
Liu C, Schmitz RA, Pol A, Hogendoorn C, Verhagen D, Peeters SH, van Alen TA, Cremers G, Mesman RA, Op den Camp HJM. Active coexistence of the novel gammaproteobacterial methanotroph 'Ca. Methylocalor cossyra' CH1 and verrucomicrobial methanotrophs in acidic, hot geothermal soil. Environ Microbiol 2024; 26:e16602. [PMID: 38454738 DOI: 10.1111/1462-2920.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2 , CH4 , H2 S and H2 . These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name 'Candidatus Methylocalor cossyra' CH1.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Schmitz
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arjan Pol
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Daniël Verhagen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Theo A van Alen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Mesman
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim PJ, Horn MA, Ho A. Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture. FEMS Microbiol Ecol 2024; 100:fiae008. [PMID: 38327184 PMCID: PMC10872700 DOI: 10.1093/femsec/fiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.
Collapse
Affiliation(s)
- Jiyeon Lim
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Helena Wehmeyer
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Tanja Heffner
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Meret Aeppli
- Environmental Engineering Institute IIE-ENAC, Laboratory SOIL, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH 1950 Sion, Switzerland
| | - Wenyu Gu
- Environmental Engineering Institute IIE-ENAC, Laboratory MICROBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Adrian Ho
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| |
Collapse
|
16
|
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. THE ISME JOURNAL 2024; 18:wrae102. [PMID: 38861460 PMCID: PMC11195481 DOI: 10.1093/ismejo/wrae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Vojtěch Tláskal
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid 47011, Spain
- Institute of Sustainable Processes, Valladolid 47011, Spain
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Justus Amuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
17
|
Wang S, Chen X, Li W, Gong W, Wang Z, Cao W. Grazing exclusion alters soil methane flux and methanotrophic and methanogenic communities in alpine meadows on the Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1293720. [PMID: 38164400 PMCID: PMC10757936 DOI: 10.3389/fmicb.2023.1293720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Grazing exclusion (GE) is an effective measure for restoring degraded grassland ecosystems. However, the effect of GE on methane (CH4) uptake and production remains unclear in dominant bacterial taxa, main metabolic pathways, and drivers of these pathways. This study aimed to determine CH4 flux in alpine meadow soil using the chamber method. The in situ composition of soil aerobic CH4-oxidizing bacteria (MOB) and CH4-producing archaea (MPA) as well as the relative abundance of their functional genes were analyzed in grazed and nongrazed (6 years) alpine meadows using metagenomic methods. The results revealed that CH4 fluxes in grazed and nongrazed plots were -34.10 and -22.82 μg‧m-2‧h-1, respectively. Overall, 23 and 10 species of Types I and II MOB were identified, respectively. Type II MOB comprised the dominant bacteria involved in CH4 uptake, with Methylocystis constituting the dominant taxa. With regard to MPA, 12 species were identified in grazed meadows and 3 in nongrazed meadows, with Methanobrevibacter constituting the dominant taxa. GE decreased the diversity of MPA but increased the relative abundance of dominated species Methanobrevibacter millerae from 1.47 to 4.69%. The proportions of type I MOB, type II MOB, and MPA that were considerably affected by vegetation and soil factors were 68.42, 21.05, and 10.53%, respectively. Furthermore, the structural equation models revealed that soil factors (available phosphorus, bulk density, and moisture) significantly affected CH4 flux more than vegetation factors (grass species number, grass aboveground biomass, grass root biomass, and litter biomass). CH4 flux was mainly regulated by serine and acetate pathways. The serine pathway was driven by soil factors (0.84, p < 0.001), whereas the acetate pathway was mainly driven by vegetation (-0.39, p < 0.05) and soil factors (0.25, p < 0.05). In conclusion, our findings revealed that alpine meadow soil is a CH4 sink. However, GE reduces the CH4 sink potential by altering vegetation structure and soil properties, especially soil physical properties.
Collapse
Affiliation(s)
- Shilin Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Xindong Chen
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- Key Laboratory of Development of Forage Germplasm in the Qinghai-Tibetan Plateau of Qinghai Province, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhengwen Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wenxia Cao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
19
|
Awala SI, Gwak JH, Kim Y, Seo C, Strazzulli A, Kim SG, Rhee SK. Methylacidiphilum caldifontis gen. nov., sp. nov., a thermoacidophilic methane-oxidizing bacterium from an acidic geothermal environment, and descriptions of the family Methylacidiphilaceae fam. nov. and order Methylacidiphilales ord. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37791995 DOI: 10.1099/ijsem.0.006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Strain IT6T, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud-water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6T had three complete pmoCAB operons encoding particulate methane monooxygenase and genes encoding group 1d and 3b [NiFe] hydrogenases. Simple carbon-carbon substrates such as ethanol, 2-propanol, acetone, acetol and propane-1,2-diol were used as alternative electron donors and carbon sources. Optimal growth occurred at 50-55°C and between pH 2.0-3.0. The major fatty acids were C18 : 0, C15 : 0 anteiso, C14 : 0 iso, C16 : 0 and C14 : 0, and the main polar lipids were phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, diphosphatidylglycerol, some unidentified phospholipids and glycolipids, and other unknown polar lipids. Strain IT6T has a genome size of 2.19 Mbp and a G+C content of 40.70 mol%. Relative evolutionary divergence using 120 conserved single-copy marker genes (bac120) and phylogenetic analyses based on bac120 and 16S rRNA gene sequences showed that strain IT6T is affiliated with members of the proposed order 'Methylacidiphilales' of the class Verrucomicrobiia in the phylum Verrucomicrobiota. It shared a 16S rRNA gene sequence identity of >96 % with cultivated isolates in the genus 'Methylacidiphilum' of the family 'Methylacidiphilaceae', which are thermoacidophilic methane-oxidizing bacteria. 'Methylacidiphilum sp.' Phi (100 %), 'Methylacidiphilum infernorum' V4 (99.02 %) and 'Methylacidiphilum sp.' RTK17.1 (99.02 %) were its closest relatives. Its physiological and genomic properties were consistent with those of other isolated 'Methylacidiphilum' species. Based on these results, we propose the name Methylacidiphilum caldifontis gen. nov., sp. nov. to accommodate strain IT6T (=KCTC 92103T=JCM 39288T). We also formally propose that the names Methylacidiphilaceae fam. nov. and Methylacidiphilales ord. nov. to accommodate the genus Methylacidiphilum gen. nov.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Chanmee Seo
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Song-Gun Kim
- University of Science and Technology, Yuseong-gu, Daejeon 305-850, Republic of Korea
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
20
|
Shinjo R, Oe F, Nakagawa K, Murase J, Asakawa S, Watanabe T. Type-specific quantification of particulate methane monooxygenase gene of methane-oxidizing bacteria at the oxic-anoxic interface of a surface paddy soil by digital PCR. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:392-403. [PMID: 37078408 PMCID: PMC10472520 DOI: 10.1111/1758-2229.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating methane emissions from paddy fields. In this study, we developed a differential quantification method for the copy number of pmoA genes of type Ia, Ib, and IIa MOB in paddy field soil using chip-based digital PCR. Three probes specific to the pmoA of type Ia, Ib, and IIa MOB worked well in digital PCR quantification when genomic DNA of MOB isolates and PCR-amplified DNA fragments of pmoA were examined as templates. When pmoA genes in the surface soil layer of a flooded paddy were quantified by digital PCR, the copy numbers of type Ia, Ib, and IIa MOB were 105 -106 , 105 -106 , and 107 copies g-1 dry soil, respectively, with the highest values in the top 0-2-mm soil layer. Especially, the copy numbers of type Ia and Ib MOB increased by 240% and 380% at the top layer after soil flooding, suggesting that the soil circumstances at the oxic-anoxic interfaces were more preferential for growth of type I MOB than type II MOB. Thus, type I MOB likely play an important role in the methane consumption at the surface paddy soil.
Collapse
Affiliation(s)
- Rina Shinjo
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Fumika Oe
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Koki Nakagawa
- School of Agricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Jun Murase
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Susumu Asakawa
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| | - Takeshi Watanabe
- Graduate School of Bioagricultural SciencesNagoya University, ChikusaNagoya464‐8601Japan
| |
Collapse
|
21
|
Ratnadevi CM, Erikstad HA, Kruse T, Birkeland NK. Methylacidiphilum kamchatkense gen. nov., sp. nov., an extremely acidophilic and moderately thermophilic methanotroph belonging to the phylum Verrucomicrobiota. Int J Syst Evol Microbiol 2023; 73. [PMID: 37755432 DOI: 10.1099/ijsem.0.006060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The thermo-acidophilic aerobic methanotrophic Verrucomicrobia bacterium, designated strain Kam1T was isolated from an acidic geothermal mud spring in Kamchatka, Russia. Kam1T is Gram-stain-negative, with non-motile cells and non-spore-forming rods, and a diameter of 0.45-0.65 µm and length of 0.8-1.0 µm. Its growth is optimal at the temperature of 55 °C (range, 37-60 °C) and pH of 2.5 (range, pH 1-6), and its maximal growth rate is ~0.11 h-1 (doubling time ~6.3 h). Its cell wall contains peptidoglycan with meso-diaminopimelic acid. In addition to growing on methane and methanol, strain Kam1T grows on acetone and 2-propanol. Phylogenetically, it forms a distinct group together with other Methylacidiphilum strains and with the candidate genus Methylacidimicrobium as a sister group. These findings support the classification of the strain Kam1T as a representative of a novel species and genus of the phylum Verrucomicrobiota. For this strain, we propose the name Methylacidiphilum kamchatkense sp. nov. as the type species within Methylacidiphilum gen. nov. Strain Kam1T (JCM 30608T=KCTC 4682T) is the type strain.
Collapse
Affiliation(s)
| | - Helge-André Erikstad
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Thomas Kruse
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
- Present address: NORCE, Industrial biotechnology, Prof. Olav Hanssensvei 15, 4021 Stavanger, Norway
| | | |
Collapse
|
22
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields. Front Microbiol 2023; 14:1253773. [PMID: 37720161 PMCID: PMC10502179 DOI: 10.3389/fmicb.2023.1253773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 μmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 μmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.
Collapse
Affiliation(s)
- Karen M. Houghton
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Matthew B. Stott
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| |
Collapse
|
23
|
Heffner T, Brami SA, Mendes LW, Kaupper T, Hannula ES, Poehlein A, Horn MA, Ho A. Interkingdom interaction: the soil isopod Porcellio scaber stimulates the methane-driven bacterial and fungal interaction. ISME COMMUNICATIONS 2023; 3:62. [PMID: 37355679 PMCID: PMC10290665 DOI: 10.1038/s43705-023-00271-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Porcellio scaber (woodlice) are (sub-)surface-dwelling isopods, widely recognized as "soil bioengineers", modifying the edaphic properties of their habitat, and affecting carbon and nitrogen mineralization that leads to greenhouse gas emissions. Yet, the impact of soil isopods on methane-cycling processes remains unknown. Using P. scaber as a model macroinvertebrate in a microcosm study, we determined how the isopod influences methane uptake and the associated interaction network in an agricultural soil. Stable isotope probing (SIP) with 13C-methane was combined to a co-occurrence network analysis to directly link activity to the methane-oxidizing community (bacteria and fungus) involved in the trophic interaction. Compared to microcosms without the isopod, P. scaber significantly induced methane uptake, associated to a more complex bacteria-bacteria and bacteria-fungi interaction, and modified the soil nutritional status. Interestingly, 13C was transferred via the methanotrophs into the fungi, concomitant to significantly higher fungal abundance in the P. scaber-impacted soil, indicating that the fungal community utilized methane-derived substrates in the food web along with bacteria. Taken together, results showed the relevance of P. scaber in modulating methanotrophic activity with implications for bacteria-fungus interaction.
Collapse
Affiliation(s)
- Tanja Heffner
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Semi A Brami
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Lucas W Mendes
- University of São Paulo CENA-USP, Center for Nuclear Energy in Agriculture, Avenida Centenario, 303, 13416-000, Piracicaba (SP), Brazil
| | - Thomas Kaupper
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Emilia S Hannula
- Leiden University, Department of Environmental Biology, Institute of Environmental Sciences, Einsteinweg 2, 2333CC, Leiden, the Netherlands
| | - Anja Poehlein
- Georg-August University Göttingen, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Marcus A Horn
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Adrian Ho
- Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
24
|
Liu C, Angius F, Pol A, Mesman RA, Versantvoort W, Op den Camp HJM. Identification and characterization of an abundant lipoprotein from Methylacidiphilum fumariolicum SolV. Arch Microbiol 2023; 205:261. [PMID: 37306788 DOI: 10.1007/s00203-023-03603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor into bacterial cell membranes. These lipoproteins play essential roles in a wide variety of physiological processes. Based on transcriptome analysis of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV, we identified a highly expressed lipoprotein, WP_009060351 (139 amino acids), in its genome. The first 86 amino acids are specific for the methanotrophic genera Methylacidiphilum and Methylacidmicrobium, while the last 53 amino acids are present only in lipoproteins of members from the phylum Verrucomicrobiota (Hedlund). Heterologous expression of WP_009060351 in Escherichia coli revealed a 25-kDa dimeric protein and a 60-kDa tetrameric protein. Immunoblotting showed that WP_009060351 was present in the total membrane protein and peptidoglycan fractions of M. fumariolicum SolV. The results suggest an involvement of lipoprotein WP_009060351 in the linkage between the outer membrane and the peptidoglycan.
Collapse
Affiliation(s)
- Changqing Liu
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Federica Angius
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Arjan Pol
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Rob A Mesman
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Faculty of Science, Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Schmitz RA, Peeters SH, Mohammadi SS, Berben T, van Erven T, Iosif CA, van Alen T, Versantvoort W, Jetten MSM, Op den Camp HJM, Pol A. Simultaneous sulfide and methane oxidation by an extremophile. Nat Commun 2023; 14:2974. [PMID: 37221165 DOI: 10.1038/s41467-023-38699-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Hydrogen sulfide (H2S) and methane (CH4) are produced in anoxic environments through sulfate reduction and organic matter decomposition. Both gases diffuse upwards into oxic zones where aerobic methanotrophs mitigate CH4 emissions by oxidizing this potent greenhouse gas. Although methanotrophs in myriad environments encounter toxic H2S, it is virtually unknown how they are affected. Here, through extensive chemostat culturing we show that a single microorganism can oxidize CH4 and H2S simultaneously at equally high rates. By oxidizing H2S to elemental sulfur, the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV alleviates the inhibitory effects of H2S on methanotrophy. Strain SolV adapts to increasing H2S by expressing a sulfide-insensitive ba3-type terminal oxidase and grows as chemolithoautotroph using H2S as sole energy source. Genomic surveys revealed putative sulfide-oxidizing enzymes in numerous methanotrophs, suggesting that H2S oxidation is much more widespread in methanotrophs than previously assumed, enabling them to connect carbon and sulfur cycles in novel ways.
Collapse
Affiliation(s)
- Rob A Schmitz
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Stijn H Peeters
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Sepehr S Mohammadi
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Timo van Erven
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Carmen A Iosif
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
27
|
Hwangbo M, Shao Y, Hatzinger PB, Chu KH. Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 37041665 DOI: 10.1111/1758-2229.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH4 ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH4 , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH4 monooxygenases via a process known as cometabolism. Under neutral pH conditions, anaerobic bioremediation via carbon source addition is a commonly used and highly effective approach to treat CVOCs in groundwater. However, complete dechlorination of CVOCs is typically inhibited at low pH. Acidophilic methanotrophs have recently been observed to degrade a range of CVOCs at pH < 5.5, suggesting that cometabolic treatment may be an option for CVOCs and other contaminants in acidic aquifers. This paper provides an overview of the occurrence, diversity, and physiological activities of methanotrophs in acidic environments and highlights the potential application of these organisms for enhancing contaminant biodegradation and bioremediation.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yiru Shao
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul B Hatzinger
- Aptim Federal Services, LLC, 17 Princess Road, Lawrenceville, New Jersey, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
28
|
Wang J, Zhao Y, Zhou M, Hu J, Hu B. Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161437. [PMID: 36623660 DOI: 10.1016/j.scitotenv.2023.161437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The greenhouse gas methane in soils has been considered to be consumed mainly by aerobic methane-oxidizing bacteria for a long time. In the last decades, the discovery of anaerobic methanotrophs greatly complemented the methane cycle, but their contribution rates and ecological significance in soils remain undescribed. In this work, the soil samples from forest, grassland and cropland in four different climatic regions were collected to investigate these conventional and novel methanotrophs. A dual-core microbial methane sink, responsible for over 80 % of soil methane emission reduction, was unveiled. The aerobic core was performed by aerobic methanotrophic bacteria in topsoil, who played important roles in stabilizing bacterial communities. The anaerobic core was denitrifying methanotrophs in anoxic soils, including denitrifying methanotrophic bacteria from NC10 phylum and denitrifying methanotrophic archaea from ANME-2d clade. They were ubiquitous in terrestrial soils and potentially led to around 50 % of the total methane removal. Human activities such as livestock farming and rice cultivation further promoted the contribution rates of these denitrifying methanotrophs. This work elucidated the emission reduction contribution of different methanotrophs in the continental setting, which would help to reduce uncertainties in the estimations of the soil methane emission.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
29
|
Synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under methanethiol stress. Appl Microbiol Biotechnol 2023; 107:3099-3111. [PMID: 36933079 DOI: 10.1007/s00253-023-12472-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
Methanotrophs are able to metabolize volatile organic sulfur compounds (VOSCs), excrete organic carbon during CH4 oxidation, and influence microbial community structure and function of the ecosystem. In return, microbial community structure and environmental factors can affect the growth metabolism of methanotrophs. In this study, Methylomonas koyamae and Hyphomicrobium methylovorum were used for model organisms, and methanethiol (MT) was chosen for a typical VOSC to investigate the synergy effects under VOSC stress. The results showed that when Hyphomicrobium methylovorum was co-cultured with Methylomonas koyamae in the medium with CH4 used as the carbon source, the co-culture had better MT tolerance relative to Methylomonas koyamae and oxidized all CH4 within 120 h, even at the initial MT concentration of 2000 mg m-3. The optimal co-culture ratios of Methylomonas koyamae to Hyphomicrobium methylovorum were 4:1-12:1. Although MT could be converted spontaneously to dimethyl disulfide (DMDS), H2S, and CS2 in air, faster losses of MT, DMDS, H2S, and CS2 were observed in each strain mono-culture and the co-culture. Compared with Hyphomicrobium methylovorum, MT was degraded more quickly in the Methylomonas koyamae culture. During the co-culture, the CH4 oxidation process of Methylomonas koyamae could provide carbon and energy sources for the growth of Hyphomicrobium methylovorum, while Hyphomicrobium methylovorum oxidized MT to help Methylomonas koyamae detoxify. These findings are helpful to understand the synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under MT stress and enrich the role of methanotrophs in the sulfur biogeochemical cycle. KEY POINTS: • The co-culture of Methylomonas and Hyphomicrobium has better tolerance to CH3SH. • Methylomonas can provide carbon sources for the growth of Hyphomicrobium. • The co-culture of Methylomonas and Hyphomicrobium enhances the removal of CH4 and CH3SH.
Collapse
|
30
|
Xie T, Liu X, Xu Y, Bryson S, Zhao L, Huang K, Huang S, Li X, Yang Q, Dong H, Winkler MKH. Coupling methanotrophic denitrification to anammox in a moving bed biofilm reactor for nitrogen removal under hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158795. [PMID: 36115405 DOI: 10.1016/j.scitotenv.2022.158795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous removal of ammonium and nitrate was achieved in a methane-fed moving bed biofilm reactor (MBBR). In the reactor, methanotrophic microorganisms oxidized methane under hypoxic conditions likely to methanol, hence providing an electron donor to denitrifiers to reduce nitrate to nitrite that then allowed anaerobic ammonium oxidizing bacteria (Anammox) to remove excess ammonium as N2. The ammonium and nitrate removal rates reached 72.09 ± 5.81 mgNH4+-N/L/d and 62.61 ± 4.17 mgNO3--N/L/d when the MBBR was operated in continuous mode. Nitrate removal by the methane-fed mixed consortia was confirmed in a batch test revealing a CH4/NO3- molar removal ratio of 1.15. The functional populations were unveiled by FISH analysis and 16S rRNA gene sequencing, which showed that the biofilm was dominated by Anammox bacteria (Candidatus Kuenenia) and diverse taxa associated with the capacity for denitrification: aerobic methanotrophs (Methylobacter, Methylomonas, and unclassified Methylococcaceae), methylotrophic denitrifiers (Opitutaceae and Methylophilaceae), and other heterotrophic denitrifiers (Ignavibacteriaceae, Anaerolineaceae, Comamonadaceae, Rhodocyclaceae and Thauera). Neither DAMO archaea nor DAMO bacteria were found in the sequencing analysis, indicating that more unknown community members possess the metabolic capacity of methanotrophic denitrification.
Collapse
Affiliation(s)
- Ting Xie
- School of Materials and Environment, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyu Liu
- School of Materials and Environment, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Yiming Xu
- School of Materials and Environment, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Samuel Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle 98105, USA
| | - Lu Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle 98105, USA
| | - Kai Huang
- School of Materials and Environment, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Shiqi Huang
- School of Materials and Environment, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082, China.
| | - Qi Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha 410082, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
31
|
Yao X, Wang J, Hu B. How methanotrophs respond to pH: A review of ecophysiology. Front Microbiol 2023; 13:1034164. [PMID: 36687570 PMCID: PMC9853399 DOI: 10.3389/fmicb.2022.1034164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023] Open
Abstract
Varying pH globally affects terrestrial microbial communities and biochemical cycles. Methanotrophs effectively mitigate methane fluxes in terrestrial habitats. Many methanotrophs grow optimally at neutral pH. However, recent discoveries show that methanotrophs grow in strongly acidic and alkaline environments. Here, we summarize the existing knowledge on the ecophysiology of methanotrophs under different pH conditions. The distribution pattern of diverse subgroups is described with respect to their relationship with pH. In addition, their responses to pH stress, consisting of structure-function traits and substrate affinity traits, are reviewed. Furthermore, we propose a putative energy trade-off model aiming at shedding light on the adaptation mechanisms of methanotrophs from a novel perspective. Finally, we take an outlook on methanotrophs' ecophysiology affected by pH, which would offer new insights into the methane cycle and global climate change.
Collapse
Affiliation(s)
- Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China,Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China,*Correspondence: Baolan Hu ✉
| |
Collapse
|
32
|
Howe KL, Seitz KW, Campbell LG, Baker BJ, Thrash JC, Rabalais NN, Rogener MK, Joye SB, Mason OU. Metagenomics and metatranscriptomics reveal broadly distributed, active, novel methanotrophs in the Gulf of Mexico hypoxic zone and in the marine water column. FEMS Microbiol Ecol 2022; 99:6909064. [PMID: 36520069 PMCID: PMC9874027 DOI: 10.1093/femsec/fiac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 12/23/2022] Open
Abstract
The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.
Collapse
Affiliation(s)
- Kathryn L Howe
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, United States
| | - Kiley W Seitz
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, 78373, Port Aransas, United States
| | - Lauren G Campbell
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, 32306, Tallahassee, United States
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, 78373, Port Aransas, United States,Department of Integrative Biology, University of Texas at Austin, 78712, Austin, United States
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, 90089, Los Angeles, United States
| | - Nancy N Rabalais
- Department of Oceanography and Coastal Sciences, Louisiana State University, 70803, Baton Rouge, United States,Louisiana Universities Marine Consortium, 70344, Chauvin, United States
| | - Mary-Kate Rogener
- Department of Marine Sciences, University of Georgia, 30602, Athens, United States
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 30602, Athens, United States
| | - Olivia U Mason
- Corresponding author: Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, United States. E-mail:
| |
Collapse
|
33
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Neira G, Vergara E, Holmes DS. Genome-guided prediction of acid resistance mechanisms in acidophilic methanotrophs of phylogenetically deep-rooted Verrucomicrobia isolated from geothermal environments. Front Microbiol 2022; 13:900531. [PMID: 36212841 PMCID: PMC9543262 DOI: 10.3389/fmicb.2022.900531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2–3) and moderately thermophilic conditions (50–60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including “first line of defense” mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the “second line of defense” where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes
| |
Collapse
|
35
|
Venturini AM, Dias NMS, Gontijo JB, Yoshiura CA, Paula FS, Meyer KM, Nakamura FM, da França AG, Borges CD, Barlow J, Berenguer E, Nüsslein K, Rodrigues JLM, Bohannan BJM, Tsai SM. Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. ENVIRONMENTAL RESEARCH 2022; 212:113139. [PMID: 35337832 DOI: 10.1016/j.envres.2022.113139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH4) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH4 cycle. To better predict the responses of soil CH4-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils. Gas samples were collected periodically for gas chromatography analysis, and methanogenic archaeal and methanotrophic bacterial communities were assessed using quantitative PCR and metagenomics. Positive and negative daily CH4 fluxes were observed for forest and pasture, indicating that these soils can act as both CH4 sources and sinks. Cumulative emissions and the abundance of methanogenesis-related genes and taxonomic groups were affected by land use, moisture, and their interaction. Pasture soils at 100% FC had the highest abundance of methanogens and CH4 emissions, 22 times higher than forest soils under the same treatment. Higher ratios of methanogens to methanotrophs were found in pasture than in forest soils, even at field capacity conditions. Land use and moisture were significant factors influencing the composition of methanogenic and methanotrophic communities. The diversity and evenness of methanogens did not change throughout the experiment. In contrast, methanotrophs exhibited the highest diversity and evenness in pasture soils at 100% FC. Taken together, our results suggest that increased moisture exacerbates soil CH4 emissions and microbial responses driven by land-use change in the Amazon. This is the first report on the microbial CH4 cycle in Amazonian upland soils that combined one-month gas measurements with advanced molecular methods.
Collapse
Affiliation(s)
- Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil; Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, 08544, USA.
| | - Naissa M S Dias
- Environmental Biogeochemistry Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil; Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, SP, 05508-120, Brazil
| | - Kyle M Meyer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA; Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| | - Fernanda M Nakamura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Aline G da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Clovis D Borges
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK; Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jorge L M Rodrigues
- Department of Land, Air, and Water Resources, University of California - Davis, Davis, CA, 95616, USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
36
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
37
|
The Proteobacterial Methanotroph Methylosinus trichosporium OB3b Remodels Membrane Lipids in Response to Phosphate Limitation. mBio 2022; 13:e0024722. [PMID: 35575546 PMCID: PMC9239053 DOI: 10.1128/mbio.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P). P is the principal nutrient constraining plant and microbial productivity in many ecosystems, ranging from agricultural land to the open ocean. Using a model methanotrophic bacterium, Methylosinus trichosporium OB3b, we demonstrate here that this bacterium can produce P-free glycolipids to replace membrane phospholipids in response to P limitation. The formation of the glycolipid monoglucuronic acid diacylglycerol requires plcP-agt genes since the plcP-agt mutant is unable to produce this glycolipid. This plcP-agt-mediated lipid remodeling pathway appears to be important for M. trichosporium OB3b to cope with P stress, and the mutant grew significantly slower under P limitation. Interestingly, comparative genomics analysis shows that the ability to perform lipid remodeling appears to be a conserved trait in proteobacterial methanotrophs; indeed, plcP is found in all proteobacterial methanotroph genomes, and plcP transcripts from methanotrophs are readily detectable in metatranscriptomics data sets. Together, our study provides new insights into the adaptation to P limitation in this ecologically important group of bacteria.
Collapse
|
38
|
Ouboter HT, Berben T, Berger S, Jetten MSM, Sleutels T, Ter Heijne A, Welte CU. Methane-Dependent Extracellular Electron Transfer at the Bioanode by the Anaerobic Archaeal Methanotroph " Candidatus Methanoperedens". Front Microbiol 2022; 13:820989. [PMID: 35495668 PMCID: PMC9039326 DOI: 10.3389/fmicb.2022.820989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by "Candidatus Methanoperedens" archaea at the anode of a bioelectrochemical system (BES) poised at 0 V vs. standard hydrogen electrode (SHE), in this way measuring current as a direct proxy of EET by this community. After inoculation of the BES, the maximum current density was 274 mA m-2 (stable current up to 39 mA m-2). Concomitant conversion of 13CH4 into 13CO2 demonstrated that current production was methane-dependent, with 38% of the current attributed directly to methane supply. Based on the current production and methane uptake in a closed system, the Coulombic efficiency was about 17%. Polarization curves demonstrated that the current was limited by microbial activity at potentials above 0 V. The metatranscriptome of the inoculum was mined for the expression of c-type cytochromes potentially used for EET, which led to the identification of several multiheme c-type cytochrome-encoding genes among the most abundant transcripts in "Ca. Methanoperedens." Our study provides strong indications of EET in ANME archaea and describes a system in which ANME-mediated EET can be investigated under laboratory conditions, which provides new research opportunities for mechanistic studies and possibly the generation of axenic ANME cultures.
Collapse
Affiliation(s)
- Heleen T Ouboter
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Tom Berben
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Stefanie Berger
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Mike S M Jetten
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Tom Sleutels
- Wetsus, European Center of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | | | - Cornelia U Welte
- Institute for Water and Wetland Research, Department of Microbiology, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
39
|
Schmitz RA, Mohammadi SS, van Erven T, Berben T, Jetten MSM, Pol A, Op den Camp HJM. Methanethiol Consumption and Hydrogen Sulfide Production by the Thermoacidophilic Methanotroph Methylacidiphilum fumariolicum SolV. Front Microbiol 2022; 13:857442. [PMID: 35422776 PMCID: PMC9003020 DOI: 10.3389/fmicb.2022.857442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Methanotrophs aerobically oxidize methane to carbon dioxide to make a living and are known to degrade various other short chain carbon compounds as well. Volatile organic sulfur compounds such as methanethiol (CH3SH) are important intermediates in the sulfur cycle. Although volatile organic sulfur compounds co-occur with methane in various environments, little is known about how these compounds affect methanotrophy. The enzyme methanethiol oxidase catalyzing the oxidation of methanethiol has been known for decades, but only recently the mtoX gene encoding this enzyme was identified in a methylotrophic bacterium. The presence of a homologous gene in verrucomicrobial methanotrophs prompted us to examine how methanotrophs cope with methanethiol. Here, we show that the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV consumes methanethiol and produces H2S, which is concurrently oxidized. Consumption of methanethiol is required since methanethiol inhibits methane oxidation. Cells incubated with ∼15 μM methanethiol from the start clearly showed inhibition of growth. After depletion of methanethiol, growth resumed within 1 day. Genes encoding a putative methanethiol oxidase were found in a variety of methanotrophs. Therefore, we hypothesize that methanethiol degradation is a widespread detoxification mechanism in methanotrophs in a range of environments.
Collapse
Affiliation(s)
- Rob A Schmitz
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands.,Environmental Chemistry, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Sepehr S Mohammadi
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands
| | - Timo van Erven
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
40
|
Kaupper T, Mendes LW, Poehlein A, Frohloff D, Rohrbach S, Horn MA, Ho A. The methane-driven interaction network in terrestrial methane hotspots. ENVIRONMENTAL MICROBIOME 2022; 17:15. [PMID: 35382875 PMCID: PMC8981696 DOI: 10.1186/s40793-022-00409-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Biological interaction affects diverse facets of microbial life by modulating the activity, diversity, abundance, and composition of microbial communities. Aerobic methane oxidation is a community function, with emergent community traits arising from the interaction of the methane-oxidizers (methanotrophs) and non-methanotrophs. Yet little is known of the spatial and temporal organization of these interaction networks in naturally-occurring complex communities. We hypothesized that the assembled bacterial community of the interaction network in methane hotspots would converge, driven by high substrate availability that favors specific methanotrophs, and in turn influences the recruitment of non-methanotrophs. These environments would also share more co-occurring than site-specific taxa. RESULTS We applied stable isotope probing (SIP) using 13C-CH4 coupled to a co-occurrence network analysis to probe trophic interactions in widespread methane-emitting environments, and over time. Network analysis revealed predominantly unique co-occurring taxa from different environments, indicating distinctly co-evolved communities more strongly influenced by other parameters than high methane availability. Also, results showed a narrower network topology range over time than between environments. Co-occurrence pattern points to Chthoniobacter as a relevant yet-unrecognized interacting partner particularly of the gammaproteobacterial methanotrophs, deserving future attention. In almost all instances, the networks derived from the 13C-CH4 incubation exhibited a less connected and complex topology than the networks derived from the unlabelledC-CH4 incubations, likely attributable to the exclusion of the inactive microbial population and spurious connections; DNA-based networks (without SIP) may thus overestimate the methane-dependent network complexity. CONCLUSION We demonstrated that site-specific environmental parameters more strongly shaped the co-occurrence of bacterial taxa than substrate availability. Given that members of the interactome without the capacity to oxidize methane can exert interaction-induced effects on community function, understanding the co-occurrence pattern of the methane-driven interaction network is key to elucidating community function, which goes beyond relating activity to community composition, abundances, and diversity. More generally, we provide a methodological strategy that substantiates the ecological linkages between potentially interacting microorganisms with broad applications to elucidate the role of microbial interaction in community function.
Collapse
Affiliation(s)
- Thomas Kaupper
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo CENA-USP, Piracicaba, SP, Brazil
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, George-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Daria Frohloff
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Stephan Rohrbach
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
41
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
42
|
Chau THT, Nguyen AD, Lee EY. Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:7. [PMID: 35418298 PMCID: PMC8764830 DOI: 10.1186/s13068-022-02105-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was questioned. Methylomonas sp. DH-1, a type I methanotroph containing pmo operon without the existence of its pmoD, has been deployed as a biocatalyst for the gas-to-liquid bioconversion of methane and propane to methanol and acetone. Thus, Methylomonas sp. DH-1 is a suitable host for investigation. The PmoD-expressed Methylomonas sp. DH-1 can also be deployed for acetol production, a well-known intermediate for various industrial applications. Microbial production of acetol is a sustainable approach attracted attention so far. RESULTS In this study, bioinformatics analyses elucidated that novel protein PmoD is a C-terminal transmembrane-helix membrane with the proposed function as a transport protein. Furthermore, the whole-cell biocatalyst was constructed in Methylomonas sp. DH-1 by co-expression the PmoD of Methylacidiphilum sp. IT6 with the endogenous pMMO to enable acetone oxidation. Under optimal conditions, the maximum accumulation, and specific productivity of acetol were 18.291 mM (1.35 g/L) and 0.317 mmol/g cell/h, respectively. The results showed the first coupling activity of pMMO with a heterologous protein PmoD, validated the involvement of PmoD in acetone oxidation, and demonstrated an unprecedented production of acetol from acetone in type I methanotrophic biocatalyst. From the data achieved in batch cultivation conditions, an assimilation pathway of acetone via acetol as the key intermediate was also proposed. CONCLUSION Using bioinformatics tools, the protein PmoD has been elucidated as the membrane protein with the proposed function as a transport protein. Furthermore, results from the assays of PmoD-heteroexpressed Methylomonas sp. DH-1 as a whole-cell biocatalyst validated the coupling activity of PmoD with pMMO to convert acetone to acetol, which also unlocks the potential of this recombinant biocatalyst for acetol production. The proposed acetone-assimilated pathway in the recombinant Methylomonas sp. DH-1, once validated, can extend the metabolic flexibility of Methylomonas sp. DH-1.
Collapse
Affiliation(s)
- Tin Hoang Trung Chau
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
43
|
Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Microorganisms 2022; 10:microorganisms10010142. [PMID: 35056591 PMCID: PMC8779874 DOI: 10.3390/microorganisms10010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9 °C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.
Collapse
|
44
|
Wang B, Stirling E, He Z, Ma B, Zhang H, Zheng X, Xiao F, Yan Q. Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149723. [PMID: 34438138 DOI: 10.1016/j.scitotenv.2021.149723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
Small ponds have become a hotspot of greenhouse gas emissions, but our understanding of methane (CH4) cycling and its biological regulation in small polluted ponds remains limited. To assess how pollution affects CH4 content, we investigated dissolved CH4 concentrations, water and sediments properties, methanogenic and methanotrophic communities in two types of small polluted ponds. Compared with low pollution (LP) ponds, high pollution (HP) ponds showed significantly (P < 0.05) higher dissolved CH4 in water. Sequencing of methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) genes showed that HP led to significant (P < 0.05) shifts of CH4-cycling microbial communities, with increased Shannon index of sediment methanogenic communities and water methanotrophic communities. There were also strong negative associations (P < 0.05) between dissolved CH4 concentrations and interdomain methanogen-methanotroph network connectivity in water and sediments, respectively. The partial least squares path modeling indicated that dissolved oxygen, total organic carbon, ammonium nitrogen and nitrate nitrogen of water, and total nitrogen and total carbon of sediment, and CH4-cycling microbes could regulate the CH4 content. This study clarified the effects of environmental deterioration on CH4 cycling in small ponds, highlighting the use of methanogen-methanotroph network connectivity to assess the CH4 production.
Collapse
Affiliation(s)
- Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Peat-Inhabiting Verrucomicrobia of the Order Methylacidiphilales Do Not Possess Methanotrophic Capabilities. Microorganisms 2021; 9:microorganisms9122566. [PMID: 34946166 PMCID: PMC8706344 DOI: 10.3390/microorganisms9122566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
Methanotrophic verrucomicrobia of the order Methylacidiphilales are known as extremely acidophilic, thermophilic or mesophilic bacteria that inhabit acidic geothermal ecosystems. The occurrence of verrucomicrobial methanotrophs in other types of acidic environments remains an open question. Notably, Methylacidiphilales-affiliated 16S rRNA gene sequences are commonly retrieved from acidic (pH 3.5–5.5) peatlands. In this study, we compared the patterns of verrucomicrobial diversity in four acidic raised bogs and six neutral fens located in European North Russia. Methylacidiphilales-like 16S rRNA gene reads displaying 83–86% similarity to 16S rRNA gene sequences of currently described verrucomicrobial methanotrophs were recovered exclusively from raised bogs. Laboratory incubation of peat samples with 10% methane for 3 weeks resulted in the pronounced increase of a relative abundance of alphaproteobacterial methanotrophs, while no response was detected for Methylacidiphilales-affiliated bacteria. Three metagenome-assembled genomes (MAGs) of peat-inhabiting Methylacidiphilales bacteria were reconstructed and examined for the presence of genes encoding methane monooxygenase enzymes and autotrophic carbon fixation pathways. None of these genomic determinants were detected in assembled MAGs. Metabolic reconstructions predicted a heterotrophic metabolism, with a potential to hydrolyze several plant-derived polysaccharides. As suggested by our analysis, peat-inhabiting representatives of the Methylacidiphilales are acidophilic aerobic heterotrophs, which comprise a sister family of the methanotrophic Methylacidiphilaceae.
Collapse
|
46
|
Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021; 12:e0170821. [PMID: 34544276 PMCID: PMC8546591 DOI: 10.1128/mbio.01708-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 μmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
Collapse
|
47
|
Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes. Front Microbiol 2021; 12:669937. [PMID: 34456882 PMCID: PMC8397446 DOI: 10.3389/fmicb.2021.669937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
48
|
Awala SI, Gwak JH, Kim YM, Kim SJ, Strazzulli A, Dunfield PF, Yoon H, Kim GJ, Rhee SK. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME JOURNAL 2021; 15:3636-3647. [PMID: 34158629 PMCID: PMC8630023 DOI: 10.1038/s41396-021-01037-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. “Methylacidiphilum” isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yong-Man Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hyeokjun Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
49
|
Picone N, Blom P, Hogendoorn C, Frank J, van Alen T, Pol A, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Metagenome Assembled Genome of a Novel Verrucomicrobial Methanotroph From Pantelleria Island. Front Microbiol 2021; 12:666929. [PMID: 34093485 PMCID: PMC8170126 DOI: 10.3389/fmicb.2021.666929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Verrucomicrobial methanotrophs are a group of aerobic bacteria isolated from volcanic environments. They are acidophiles, characterized by the presence of a particulate methane monooxygenase (pMMO) and a XoxF-type methanol dehydrogenase (MDH). Metagenomic analysis of DNA extracted from the soil of Favara Grande, a geothermal area on Pantelleria Island, Italy, revealed the presence of two verrucomicrobial Metagenome Assembled Genomes (MAGs). One of these MAGs did not phylogenetically classify within any existing genus. After extensive analysis of the MAG, we propose the name of "Candidatus Methylacidithermus pantelleriae" PQ17 gen. nov. sp. nov. The MAG consisted of 2,466,655 bp, 71 contigs and 3,127 predicted coding sequences. Completeness was found at 98.6% and contamination at 1.3%. Genes encoding the pMMO and XoxF-MDH were identified. Inorganic carbon fixation might use the Calvin-Benson-Bassham cycle since all genes were identified. The serine and ribulose monophosphate pathways were incomplete. The detoxification of formaldehyde could follow the tetrahydrofolate pathway. Furthermore, "Ca. Methylacidithermus pantelleriae" might be capable of nitric oxide reduction but genes for dissimilatory nitrate reduction and nitrogen fixation were not identified. Unlike other verrucomicrobial methanotrophs, genes encoding for enzymes involved in hydrogen oxidation could not be found. In conclusion, the discovery of this new MAG expands the diversity and metabolism of verrucomicrobial methanotrophs.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Theo van Alen
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Antonina L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Walter D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| |
Collapse
|