1
|
Wettstadt S, Marcos-Torres FJ, Otero-Asman JR, García-Puente A, Ortega Á, Llamas MA. Bacterial TonB-dependent transducers interact with the anti-σ factor in absence of the inducing signal protecting it from proteolysis. PLoS Biol 2024; 22:e3002920. [PMID: 39621812 PMCID: PMC11637429 DOI: 10.1371/journal.pbio.3002920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor. TBDTs contain an extra N-terminal domain known as signaling domain (SD) required for the signal transfer activity of these receptors. In the current CSS model, presence of the signal allows the interaction between the TBDT and the anti-σ factor in the periplasm, promoting the proteolysis of the anti-σ factor and in turn the σECF-dependent transcription of response genes, including the TBDT gene. However, recent evidence shows that σECF activity does not depend on this interaction, suggesting that the contact between these 2 proteins fulfills a different role. Using the P. aeruginosa Fox CSS system as model, we show here that the SD of the FoxA TBDT already interacts with the C-terminal domain of the FoxR anti-σ factor in absence of the signal. This interaction protects FoxR from proteolysis in turn preventing transcription of σFoxI-dependent genes. By structural modeling of the FoxR/FoxASD interaction, we have identified the interaction sites between these 2 proteins and provide the molecular details of this interaction. We furthermore show that to exert this protective role, FoxA undergoes proteolytic cleavage, denoting a change in the paradigm of the current CSS model.
Collapse
Affiliation(s)
- Sarah Wettstadt
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J. Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Joaquín R. Otero-Asman
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alicia García-Puente
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
2
|
Braun V. Substrate Uptake by TonB-Dependent Outer Membrane Transporters. Mol Microbiol 2024; 122:929-947. [PMID: 39626085 DOI: 10.1111/mmi.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024]
Abstract
TonB is an essential component of an energy-generating system that powers active transport across the outer membrane (OM) of compounds that are too large or too scarce to diffuse through porins. The TonB-dependent OM transport proteins (TBDTs) consist of β barrels forming pores that are closed by plugs. The binding of TonB to TBDTs elicits plug movement, which opens the pores and enables nutrient translocation from the cell surface into the periplasm. TonB is also involved in the uptake of certain proteins, particularly toxins, through OM proteins that differ structurally from TBDTs. TonB binds to a sequence of five residues, designated as the TonB box, which is conserved in all TBDTs. Energy from the proton motive force (pmf) of the cytoplasmic membrane is transmitted to TonB by two proteins, ExbB and ExbD. These proteins form an energy-transmitting protein complex consisting of five ExbB proteins, forming a pore that encloses the ExbD dimer. This review discusses the structural changes that occur in TBDTs upon interaction with TonB, as well as the interaction of ExbB-ExbD with TonB, which is required to transmit the energy of the pmf and thereby open TBDT pores. TonB facilitates import of a wide range of substrates.
Collapse
|
3
|
de Assis Noman G, Lacerda de Moura BE, Vieira ML. Leptospiral LipL45 lipoprotein undergoes processing and shares structural similarities with bacterial sigma regulators. Biochem Biophys Res Commun 2024; 717:150057. [PMID: 38718568 DOI: 10.1016/j.bbrc.2024.150057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Leptospirosis is a widespread zoonotic infectious disease of human and veterinary concern caused by pathogenic spirochetes of the genus Leptospira. To date, little progress towards understanding leptospiral pathogenesis and identification of virulence factors has been made, which is the main bottleneck for developing effective measures against the disease. Some leptospiral proteins, including LipL32, Lig proteins, LipL45, and LipL21, are being considered as potential virulence factors or vaccine candidates. However, their function remains to be established. LipL45 is the most expressed membrane lipoprotein in leptospires, upregulated when the bacteria are transferred to temperatures resembling the host, expressed during infection, suppressed after culture attenuation, and known to suffer processing in vivo and in vitro, generating fragments. Based on body of evidence, we hypothesized that the LipL45 processing might occur by an auto-cleavage event, deriving two fragments. The results presented here, based on bioinformatics, structure modeling analysis, and experimental data, corroborate that LipL45 processing probably includes a self-catalyzed non-proteolytic event and suggest the participation of LipL45 in cell-surface signaling pathways, as the protein shares structural similarities with bacterial sigma regulators. Our data indicate that LipL45 might play an important role in response to environmental conditions, with possible function in the adaptation to the host.
Collapse
Affiliation(s)
- Gabriel de Assis Noman
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Programa de Pós-graduação Em Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | | | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Programa de Pós-graduação Em Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Ge X, Zhou Y, Jin H, Liu K, Zhu K, Yu Y, Xue J, Wang Q, Du X, Wang H, Xiang Y, Li W, Tian S, Yan Z, Qiu S. Genomic insights and antimicrobial resistance profiles of CRKP and non-CRKP isolates in a Beijing geriatric medical center: emphasizing the blaKPC-2 carrying high-risk clones and their spread. Front Microbiol 2024; 15:1359340. [PMID: 38414769 PMCID: PMC10897042 DOI: 10.3389/fmicb.2024.1359340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Background The escalating resistance of Klebsiella pneumoniae, a prevalent pathogen in healthcare settings, especially its carbapenem-resistant K. pneumoniae (CRKP), to a wide array of antibiotics, notably β-lactams, constitutes a formidable challenge for healthcare and global public health management. Methods This research compared the resistance phenotypes and genomic profiles of CRKP and Non-CRKP isolates in a Beijing hospital, focusing on high-risk blaKPC-2 gene-bearing CRKP clones and the structure of mobile genetic elements facilitating their spread across hospital departments. Forty K. pneumoniae isolates were collected from various departments of the hospital and subjected to antimicrobial susceptibility testing and whole-genome sequencing to analyze their resistance phenotypes and genomic features. Results The study revealed that among the 31 CRKP isolates, ST11 is the most common sequence type, with K47 and OL101 being the dominant capsule types, primarily observed in the respiratory department. In terms of antimicrobial susceptibility: 87.5% of the isolates exhibited multidrug resistance (MDR), with a high resistance rate of 30% against tigecycline. All CRKP isolates demonstrated resistance to multiple drug classes (≥5 CLSI classes). Non-CRKP isolates also showed high resistance rates to minocycline and doxycycline (77.8%). the ST11-KL47-OL101 type emerged as the predominant clone among the CRKP isolates carrying the blaKPC-2 gene. This dominance appears to be mediated by the pKpnR03_2 plasmid, which harbors not only blaKPC-2 and rmtb but also gene clusters pertinent to iron transport and arsenic resistance. These isolates, clustering in the C3 clade of the phylogenetic tree, exhibited minor genetic variations and close evolutionary relationships, suggesting a plasmid-driven spread across various hospital departments. Conclusion In summary, our study highlights the extensive spread of antibiotic-resistant K. pneumoniae across various departments in our hospital, with a particular emphasis on the dominant clonal proliferation of the ST11-KL47-OL101 CRKP strain. This finding underscores the significant role of plasmid-mediated gene transfer in the evolution and dissemination of resistant strains within hospital environments. The study emphasizes the necessity for ongoing surveillance of antibiotic resistance and genomic analysis in hospital settings to effectively monitor and manage these challenges.
Collapse
Affiliation(s)
- Xin Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yu Zhou
- Department of Laboratory Medicine, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Hang Jin
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangkang Liu
- Academy of Military Medical Sciences, Beijing, China
| | - Kunpeng Zhu
- Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, China
| | - Yulong Yu
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingzhuang Xue
- Beijing University of Chemical Technology, Beijing, China
| | - Qi Wang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Wang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ying Xiang
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wenjun Li
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Sai Tian
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhongqiang Yan
- Department of Disease Prevention and Control, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Shaofu Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Zhao C, Duan X, Liu C, Huang H, Wu M, Zhang X, Chen Y. Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and S. oneidensis MR-1 in the Presence of Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18306-18316. [PMID: 37043541 DOI: 10.1021/acs.est.2c09341] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Antibiotics often coexist with other pollutants (e.g., nitrate) in an aquatic environment, and their simultaneous biological removal has attracted widespread interest. We have found that sulfamethoxazole (SMX) and nitrate can be efficiently removed by the coculture of a model denitrifier (Paracoccus denitrificans, Pd) and Shewanella oneidensis MR-1 (So), and SMX degradation is affected by NADH production and electron transfer. In this paper, the mechanism of a coculture promoting NADH production and electron transfer was investigated by proteomic analysis and intermediate experiments. The results showed that glutamine and lactate produced by Pd were captured by So to synthesize thiamine and heme, and the released thiamine was taken up by Pd as a cofactor of pyruvate and ketoglutarate dehydrogenase, which were related to NADH generation. Additionally, Pd acquired heme, which facilitated electron transfer as heme, was the important composition of complex III and cytochrome c and the iron source of iron sulfur clusters, the key component of complex I in the electron transfer chain. Further investigation revealed that lactate and glutamine generated by Pd prompted So chemotactic moving toward Pd, which helped the two bacteria effectively obtain their required substances. Obviously, metabolite cross-feeding promoted NADH production and electron transfer, resulting in efficient SMX biodegradation by Pd and So in the presence of nitrate. Its feasibility was finally verified by the coculture of an activated sludge denitrifier and So.
Collapse
Affiliation(s)
- Chunxia Zhao
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meirou Wu
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and ReSource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|