1
|
Li M, Qiu Y, Zhu D, Xu X, Tian S, Wang J, Yu Y, Ren Y, Gong G, Zhang H, Xu Y, Zhang J. Editing eIF4E in the Watermelon Genome Using CRISPR/Cas9 Technology Confers Resistance to ZYMV. Int J Mol Sci 2024; 25:11468. [PMID: 39519021 PMCID: PMC11546804 DOI: 10.3390/ijms252111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Watermelon is one of the most important cucurbit crops, but its production is seriously affected by viral infections. Although eIF4E proteins have emerged as the major mediators of the resistance to viral infections, the mechanism underlying the contributions of eIF4E to watermelon disease resistance remains unclear. In this study, three CleIF4E genes and one CleIF(iso)4E gene were identified in the watermelon genome. Among these genes, CleIF4E1 was most similar to other known eIF4E genes. To investigate the role of CleIF4E1, CRISPR/Cas9 technology was used to knock out CleIF4E1 in watermelon. One selected mutant line had an 86 bp deletion that resulted in a frame-shift and the expression of a truncated protein. The homozygous mutant exhibits developmental defects in plant growth, leaf morphology and reduced yield. Furthermore, the mutant was protected against the zucchini yellow mosaic virus, but not the cucumber green mottled mosaic virus. In summary, this study preliminarily clarified the functions of eIF4E proteins in watermelon. The generated data will be useful for elucidating eIF4E-related disease resistance mechanisms in watermelon. The tissue-specific editing of CleIF4E1 in future studies may help to prevent adverse changes to watermelon fertility.
Collapse
Affiliation(s)
- Maoying Li
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yanhong Qiu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Dongyang Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiulan Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Shouwei Tian
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Jinfang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yongtao Yu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yi Ren
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Guoyi Gong
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Haiying Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yong Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| |
Collapse
|
2
|
Valli AA, Domingo-Calap ML, González de Prádena A, García JA, Cui H, Desbiez C, López-Moya JJ. Reconceptualizing transcriptional slippage in plant RNA viruses. mBio 2024; 15:e0212024. [PMID: 39287447 PMCID: PMC11481541 DOI: 10.1128/mbio.02120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA viruses have evolved sophisticated strategies to exploit the limited encoded information within their typically compact genomes. One of them, named transcriptional slippage (TS), is characterized by the appearance of indels in nascent viral RNAs, leading to changes in the open reading frame (ORF). Although members of unrelated viral families express key proteins via TS, the available information about this phenomenon is still limited. In potyvirids (members of the Potyviridae family), TS has been defined by the insertion of an additional A at An motifs (n ≥ 6) in newly synthesized transcripts at a low frequency, modulated by nucleotides flanking the A-rich motif. Here, by using diverse experimental approaches and a collection of plant/virus combinations, we discover cases not following this definition. In summary, we observe (i) a high rate of single-nucleotide deletions at slippage motifs, (ii) overlapping ORFs acceded by slippage at an U8 stretch, and (iii) changes in slippage rates induced by factors not related to cognate viruses. Moreover, a survey of whole-genome sequences from potyvirids shows a widespread occurrence of species-specific An/Un (n ≥ 6) motifs. Even though many of them, but not all, lead to the production of truncated proteins rather than access to overlapping ORFs, these results suggest that slippage motifs appear more frequently than expected and play relevant roles during virus evolution. Considering the potential of this phenomenon to expand the viral proteome by acceding to overlapping ORFs and/or producing truncated proteins, a re-evaluation of TS significance during infections of RNA viruses is required.IMPORTANCETranscriptional slippage (TS) is used by RNA viruses as another strategy to maximize the coding information in their genomes. This phenomenon is based on a peculiar feature of viral replicases: they may produce indels in a small fraction of newly synthesized viral RNAs when transcribing certain motifs and then produce alternative proteins due to a change of the reading frame or truncated products by premature termination. Here, using plant-infecting RNA viruses as models, we discover cases expanding on previously established features of plant virus TS, prompting us to reconsider and redefine this expression strategy. An interesting conclusion from our study is that TS might be more relevant during RNA virus evolution and infection processes than previously assumed.
Collapse
Affiliation(s)
| | - María Luisa Domingo-Calap
- Center for Research in Agricultural Genomics (CRAG-CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Spain
- Evolving Therapeutics SL., Parc Científic de la Universitat de València, Paterna, Spain
| | | | | | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan, China
| | | | - Juan José López-Moya
- Center for Research in Agricultural Genomics (CRAG-CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Spain
| |
Collapse
|
3
|
Pasin F, Uranga M, Charudattan R, Kwon CT. Deploying deep Solanaceae domestication and virus biotechnology knowledge to enhance food system performance and diversity. HORTICULTURE RESEARCH 2024; 11:uhae205. [PMID: 39286357 PMCID: PMC11403206 DOI: 10.1093/hr/uhae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
Our knowledge of crop domestication, genomics, and of the plant virosphere unevenly represents the taxonomic distribution of the global biodiversity, and, as we show here, is significantly enriched for the Solanaceae. Within the family, potato, tomato, eggplant, pepper, and over 100 lesser-known edible species play important nutrition and cultural roles in global and local food systems. Technologies using engineered viruses are transitioning from proof-of-concept applications in model plants to the precise trait breeding of Solanaceae crops. Leveraging this accumulated knowledge, we highlight the potential of virus-based biotechnologies for fast-track improvement of Solanaceae crop production systems, contributing to enhanced global and local human nutrition and food security.
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3001 Heverlee, Belgium
| | - Raghavan Charudattan
- Plant Pathology Department, University of Florida, 32609 Gainesville, FL, USA
- BioProdex, Inc., 32609 Gainesville, FL, USA
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, 17104 Yongin, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, 17104 Yongin, Republic of Korea
| |
Collapse
|
4
|
Hajizadeh M, Ben Mansour K, Gibbs AJ. A Genetic Study of Spillovers in the Bean Common Mosaic Subgroup of Potyviruses. Viruses 2024; 16:1351. [PMID: 39339828 PMCID: PMC11436247 DOI: 10.3390/v16091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Nine viruses of the bean common mosaic virus subgroup of potyviruses are major international crop pathogens, but their phylogenetically closest relatives from non-crop plants have mostly been found only in SE Asia and Oceania, which is thus likely to be their "centre of emergence". We have compared over 700 of the complete genomic ORFs of the crop pandemic and the non-crop viruses in various ways. Only one-third of crop virus genomes are non-recombinant, but more than half the non-crop virus genomes are. Four of the viruses were from crops domesticated in the Old World (Africa to SE Asia), and the other five were from New World crops. There was a temporal signal in only three of the crop virus datasets, but it confirmed that the most recent common ancestors of all the crop viruses were before inter-continental marine trade started after 1492 CE, whereas all the crown clusters of the phylogenies are from after that date. The non-crop virus datasets are genetically more diverse than those of the crop viruses, and Tajima's D analyses showed that their populations were contracting, and only one of the crop viruses had a significantly expanding population. dN/dS analyses showed that most of the genes and codons in all the viruses were under significant negative selection, and the few that were under significant positive selection were mostly in the PIPO-encoding region of the P3 protein, or the PIPO protein itself. Interestingly, more positively selected codons were found in non-crop than in crop viruses, and, as the hosts of the former were taxonomically more diverse than the latter, this may indicate that the positively selected codons are involved in host range determination; AlphaFold3 modelling was used to investigate this possibility.
Collapse
Affiliation(s)
- Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Karima Ben Mansour
- Ecology, Diagnostics and Genetic Resources of Agriculturally Important Viruses, Fungi and Phytoplasmas, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Sun Z, Wu YX, Liu LZ, Tian YP, Li XD, Geng C. P3N-PIPO but not P3 is the avirulence determinant in melon carrying the Wmr resistance against watermelon mosaic virus, although they contain a common genetic determinant. J Virol 2024; 98:e0050724. [PMID: 38775482 PMCID: PMC11237411 DOI: 10.1128/jvi.00507-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024] Open
Abstract
Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yu-Xuan Wu
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ling-Zhi Liu
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yan-Ping Tian
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiang-Dong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, China
| | - Chao Geng
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
6
|
Zhu H, Okiyama T, Mishina K, Kikuchi S, Sassa H, Komatsuda T, Kato T, Oono Y. Identification of Barley yellow mosaic virus Isolates Breaking rym3 Resistance in Japan. Genes (Basel) 2024; 15:697. [PMID: 38927633 PMCID: PMC11203024 DOI: 10.3390/genes15060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
In early spring 2018, significant mosaic disease symptoms were observed for the first time on barley leaves (Hordeum vulgare L., cv. New Sachiho Golden) in Takanezawa, Tochigi Prefecture, Japan. This cultivar carries the resistance gene rym3 (rym; resistance to yellow mosaic). Through RNA-seq analysis, Barley yellow mosaic virus (BaYMV-Takanezawa) was identified in the roots of all five plants (T01-T05) in the field. Phylogenetic analysis of RNA1, encompassing known BaYMV pathotypes I through V, revealed that it shares the same origin as isolate pathotype IV (BaYMV-Ohtawara pathotype). However, RNA2 analysis of isolates revealed the simultaneous presence of two distinct BaYMV isolates, BaYMV-Takanezawa-T01 (DRR552862, closely related to pathotype IV) and BaYMV-Takanezawa-T02 (DRR552863, closely related to pathotype III). The amino acid sequences of the BaYMV-Takanezawa isolates displayed variations, particularly in the VPg and N-terminal region of CP, containing mutations not found in other domains of the virus genome. Changes in the CI (RNA1 amino acid residue 459) and CP (RNA1 amino acid residue 2138) proteins correlated with pathogenicity. These findings underscore the importance of monitoring and understanding the genetic diversity of BaYMV for effective disease management strategies in crop breeding.
Collapse
Affiliation(s)
- Hongjing Zhu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan; (H.Z.); (K.M.)
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| | - Takeshi Okiyama
- Tochigi Prefectural Agricultural Experiment Station, Kawaraya-cho 1080, Utsunomiya 320-0002, Japan; (T.O.); (T.K.)
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan; (H.Z.); (K.M.)
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| | - Takao Komatsuda
- Shandong Academy of Agricultural Sciences (SAAS), Crop Research Institute, 202 Gongyebei Road, Licheng District, Jinan 250100, China;
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, Kawaraya-cho 1080, Utsunomiya 320-0002, Japan; (T.O.); (T.K.)
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan; (H.Z.); (K.M.)
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| |
Collapse
|
7
|
Gogile A, Kebede M, Kidanemariam D, Abraham A. Identification of yam mosaic virus as the main cause of yam mosaic diseases in Ethiopia. Heliyon 2024; 10:e26387. [PMID: 38449648 PMCID: PMC10915350 DOI: 10.1016/j.heliyon.2024.e26387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Yam (Dioscorea spp.) is a staple food crop with cultural, nutritional and economic significance for millions of small-scale farmers in sub-Saharan Africa. While various virus-like symptoms such as mosaic and chlorosis are frequently observed in yam fields in Ethiopia, little information is available on the prevalence, distribution, and molecular characteristics of viruses causing these symptoms. The aim of this study was to investigate the incidence and distribution of yam viruses and determine the primary cause of yam mosaic diseases (YMD) in Ethiopia. Both symptomatic (n = 280) and asymptomatic (n = 110) yam leaf samples were collected and tested for potyviruses using ACP-ELISA. In addition, the symptomatic leaf samples were screened for yam mosaic virus (YMV), yam mild mosaic virus (YMMV), and cucumber mosaic virus (CMV) by DAS-ELISA. Subsequently, total RNA was extracted from 130 leaf samples comprising 94 symptomatic and 36 asymptomatic samples representing the different study areas. The representative RT-PCR amplicons (n = 6) were Sanger sequenced. The ACP-ELISA and DAS-ELISA results showed 9.2%, and 12.9% YMV infection, respectively, while the RT-PCR analysis showed 28.5% YMV positivity rate. Both CMV and YMMV were not detected in any of the samples tested. Thus, YMV is confirmed as the primary cause of YMD in Ethiopia. YMV isolates from Ethiopia shared 92-93% nucleotide identity among themselves and 85-99% with other YMV isolates from the GenBank. Phylogenetic analysis revealed that YMV isolates from Ethiopia, South America, and west-central Africa have the most recent common ancestor, while isolates from China and Japan are clustered as sister groups. This study enhances our understanding of YMV's genetic diversity and provides valuable information regarding the first report of YMV in Ethiopia.
Collapse
Affiliation(s)
- Ashebir Gogile
- Department of Biotechnology, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Wolaita Sodo University, P.O.Box 138, Wolaita Sodo, Ethiopia
| | - Misrak Kebede
- Department of Biotechnology, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Dawit Kidanemariam
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Adane Abraham
- Department of Biotechnology, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
8
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
9
|
Nweze JE, Schweichhart JS, Angel R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ Microbiol 2024; 26:e16586. [PMID: 38356108 DOI: 10.1111/1462-2920.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Millipedes are important detritivores harbouring a diverse microbiome. Previous research focused on bacterial and archaeal diversity, while the virome remained neglected. We elucidated the DNA and RNA viral diversity in the hindguts of two model millipede species with distinct microbiomes: the tropical Epibolus pulchripes (methanogenic, dominated by Bacillota) and the temperate Glomeris connexa (non-methanogenic, dominated by Pseudomonadota). Based on metagenomic and metatranscriptomic assembled viral genomes, the viral communities differed markedly and preferentially infected the most abundant prokaryotic taxa. The majority of DNA viruses were Caudoviricetes (dsDNA), Cirlivirales (ssDNA) and Microviridae (ssDNA), while RNA viruses consisted of Leviviricetes (ssRNA), Potyviridae (ssRNA) and Eukaryotic viruses. A high abundance of subtypes I-C, I-B and II-C CRISPR-Cas systems was found, primarily from Pseudomonadota, Bacteroidota and Bacillota. In addition, auxiliary metabolic genes that modulate chitin degradation, vitamins and amino acid biosynthesis and sulphur metabolism were also detected. Lastly, we found low virus-to-microbe-ratios and a prevalence of lysogenic viruses, supporting a Piggyback-the-Winner dynamic in both hosts.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Johannes Sergej Schweichhart
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
10
|
Mahillon M, Brodard J, Dubuis N, Gugerli P, Blouin AG, Schumpp O. Mixed infection of ITPase-encoding potyvirid and secovirid in Mercurialis perennis: evidences for a convergent euphorbia-specific viral counterstrike. Virol J 2024; 21:6. [PMID: 38178191 PMCID: PMC10768138 DOI: 10.1186/s12985-023-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Justine Brodard
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Nathalie Dubuis
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Paul Gugerli
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Arnaud G Blouin
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Research Group Virology, Bacteriology and Phytoplasmology, Plant Protection Department, Agroscope, Nyon, Switzerland.
| |
Collapse
|
11
|
Yan D, Han K, Lu Y, Peng J, Rao S, Wu G, Liu Y, Chen J, Zheng H, Yan F. The nanovirus U2 protein suppresses RNA silencing via three conserved cysteine residues. MOLECULAR PLANT PATHOLOGY 2024; 25:e13394. [PMID: 37823358 PMCID: PMC10782648 DOI: 10.1111/mpp.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Nanoviruses have multipartite, circular, single-stranded DNA genomes and cause huge production losses in legumes and other crops. No viral suppressor of RNA silencing (VSR) has yet been reported from a member of the genus Nanovirus. Here, we demonstrate that the nanovirus U2 protein is a VSR. The U2 protein of milk vetch dwarf virus (MDV) suppressed the silencing of the green fluorescent protein (GFP) gene induced by single-stranded and double-stranded RNA, and the systemic spread of the GFP silencing signal. An electrophoretic mobility shift assay showed that the U2 protein was able to bind double-stranded 21-nucleotide small interfering RNA (siRNA). The cysteine residues at positions 43, 79 and 82 in the MDV U2 protein are critical to its nuclear localization, self-interaction and siRNA-binding ability, and were essential for its VSR activity. In addition, expression of the U2 protein via a potato virus X vector induced more severe necrosis symptoms in Nicotiana benthamiana leaves. The U2 proteins of other nanoviruses also acted as VSRs, and the three conserved cysteine residues were indispensable for their VSR activity.
Collapse
Affiliation(s)
- Dankan Yan
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yong Liu
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesChangshaChina
| | - Jianping Chen
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
12
|
Yue J, Lu Y, Sun Z, Guo Y, San León D, Pasin F, Zhao M. Methyltransferase-like (METTL) homologues participate in Nicotiana benthamiana antiviral responses. PLANT SIGNALING & BEHAVIOR 2023; 18:2214760. [PMID: 37210738 PMCID: PMC10202045 DOI: 10.1080/15592324.2023.2214760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Methyltransferase (MTase) enzymes catalyze the addition of a methyl group to a variety of biological substrates. MTase-like (METTL) proteins are Class I MTases whose enzymatic activities contribute to the epigenetic and epitranscriptomic regulation of multiple cellular processes. N6-adenosine methylation (m6A) is a common chemical modification of eukaryotic and viral RNA whose abundance is jointly regulated by MTases and METTLs, demethylases, and m6A binding proteins. m6A affects various cellular processes including RNA degradation, post-transcriptional processing, and antiviral immunity. Here, we used Nicotiana benthamiana and plum pox virus (PPV), an RNA virus of the Potyviridae family, to investigated the roles of MTases in plant-virus interaction. RNA sequencing analysis identified MTase transcripts that are differentially expressed during PPV infection; among these, accumulation of a METTL gene was significantly downregulated. Two N. benthamiana METTL transcripts (NbMETTL1 and NbMETTL2) were cloned and further characterized. Sequence and structural analyses of the two encoded proteins identified a conserved S-adenosyl methionine (SAM) binding domain, showing they are SAM-dependent MTases phylogenetically related to human METTL16 and Arabidopsis thaliana FIONA1. Overexpression of NbMETTL1 and NbMETTL2 caused a decrease of PPV accumulation. In sum, our results indicate that METTL homologues participate in plant antiviral responses.
Collapse
Affiliation(s)
- Jianying Yue
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Lu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenqi Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuqing Guo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - David San León
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Xu HM, He EQ, Yang ZL, Bi ZW, Bao WQ, Sun SR, Lu JJ, Gao SJ. Phylogeny and Genetic Divergence among Sorghum Mosaic Virus Isolates Infecting Sugarcane. PLANTS (BASEL, SWITZERLAND) 2023; 12:3759. [PMID: 37960115 PMCID: PMC10648118 DOI: 10.3390/plants12213759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Sorghum mosaic virus (SrMV, the genus Potyvirus of the family Potyviridae) is a causal agent of common mosaic in sugarcane and poses a threat to the global sugar industry. In this study, a total of 901 sugarcane leaf samples with mosaic symptom were collected from eight provinces in China and were detected via RT-PCR using a primer pair specific to the SrMV coat protein (CP). These leaf samples included 839 samples from modern cultivars (Saccharum spp. hybrids) and 62 samples from chewing cane (S. officinarum). Among these, 632 out of 901 (70.1%) samples were tested positive for SrMV. The incidences of SrMV infection were 72.3% and 40.3% in modern cultivars and chewing cane, respectively. Phylogenetic analysis showed that all tested SrMV isolates were clustered into three clades consisting of six phylogenetic groups based on 306 CP sequences (this study = 265 and GenBank database = 41). A total of 10 SrMV isolates from South America (the United States and Argentina) along with 106 isolates from China were clustered in group D, while the remaining 190 SrMV isolates from Asia (China and Vietnam) were dispersed in five groups. The SrMV isolates in group F were limited to Yunnan province in China, and those in group A were spread over eight provinces. A significant genetic heterogeneity was elucidated in the nucleotide sequence identities of all SrMV CPs, ranging from 69.0% to 100%. A potential recombination event was postulated among SrMV isolates based on CP sequences. All tested SrMV CPs underwent dominant negative selection. Geographical isolation (South America vs. Asia) and host types (modern cultivars vs. chewing cane) are important factors promoting the genetic differentiation of SrMV populations. Overall, this study contributes to the global understanding of the genetic evolution of SrMV and provides a valuable resource for the epidemiology and management of the mosaic in sugarcane.
Collapse
Affiliation(s)
- Hui-Mei Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.-M.X.); (Z.-W.B.); (W.-Q.B.)
| | - Er-Qi He
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, China;
| | - Zu-Li Yang
- Laibin Academy of Agricultural Sciences, Laibin 546100, China;
| | - Zheng-Wang Bi
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.-M.X.); (Z.-W.B.); (W.-Q.B.)
| | - Wen-Qing Bao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.-M.X.); (Z.-W.B.); (W.-Q.B.)
| | - Sheng-Ren Sun
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, China;
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.-M.X.); (Z.-W.B.); (W.-Q.B.)
| |
Collapse
|
14
|
Choi D, Hahn Y. Quantitative Analysis of RNA Polymerase Slippages for Production of P3N-PIPO Trans-frame Fusion Proteins in Potyvirids. J Microbiol 2023; 61:917-927. [PMID: 37843796 DOI: 10.1007/s12275-023-00083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Potyvirids, members of the family Potyviridae, produce the P3N-PIPO protein, which is crucial for the cell-to-cell transport of viral genomic RNAs. The production of P3N-PIPO requires an adenine (A) insertion caused by RNA polymerase slippage at a conserved GAAAAAA (GA6) sequence preceding the PIPO open reading frame. Presently, the slippage rate of RNA polymerase has been estimated in only a few potyvirids, ranging from 0.8 to 2.1%. In this study, we analyzed publicly available plant RNA-seq data and identified 19 genome contigs from 13 distinct potyvirids. We further investigated the RNA polymerase slippage rates at the GA6 motif. Our analysis revealed that the frequency of the A insertion variant ranges from 0.53 to 4.07% in 11 potyviruses (genus Potyvirus). For the two macluraviruses (genus Macluravirus), the frequency of the A insertion variant was found to be 0.72% and 10.96% respectively. Notably, the estimated RNA polymerase slippage rates for 12 out of the 13 investigated potyvirids were reported for the first time in this study. Our findings underscore the value of plant RNA-seq data for quantitative analysis of potyvirid genome variants, specifically at the GA6 slippage site, and contribute to a more comprehensive understanding of the RNA polymerase slippage phenomenon in potyvirids.
Collapse
Affiliation(s)
- Dongjin Choi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
15
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
17
|
Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, Ranson NA, López-Moya JJ. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Commun Biol 2023; 6:433. [PMID: 37076658 PMCID: PMC10115852 DOI: 10.1038/s42003-023-04799-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.
Collapse
Affiliation(s)
- Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire, OX11 0DE, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
18
|
Rodamilans B, Hadersdorfer J, Berki Z, García B, Neumüller M, García JA. The Mechanism of Resistance of EUROPEAN Plum to Plum pox virus Mediated by Hypersensitive Response Is Linked to VIRAL NIa and Its Protease Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1609. [PMID: 37111834 PMCID: PMC10147044 DOI: 10.3390/plants12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Plum pox virus (PPV) infects Prunus trees across the globe, causing the serious Sharka disease. Breeding programs in the past 20 years have been successful, generating plum varieties hypersensitive to PPV that show resistance in the field. Recently, a single tree displaying typical PPV symptoms was detected in an orchard of resistant plums. The tree was eradicated, and infected material was propagated under controlled conditions to study the new PPV isolate. Performing overlapping PCR analysis, the viral sequence was reconstructed, cloned and tested for infectivity in different 'Jojo'-based resistant plums. The results confirmed that the isolate, named PPV-D 'Herrenberg' (PPVD-H), was able to infect all these varieties. Analyses of chimeras between PPVD-H and a PPV-D standard isolate (PPVD) revealed that the NIa region of PPD-H, carrying three amino acid changes, was enough to break the resistance of these plums. Experiments with single and double mutants showed that all changes were essential to preserve the escaping phenotype. Additionally, one of the changes at the VPg-NIapro junction suggested the involvement of controlled endopeptidase cleavage in the viral response. Transient expression experiments in Nicotiana benthamiana confirmed that NIa cleavage in PPVD-H was reduced, compared to PPVD, linking the observed behavior to an NIa cleavage modulation.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Johannes Hadersdorfer
- School of Life Sciences Weihenstephan, Technical University of Munich, Dürnast 2, D-85354 Freising, Germany
| | - Zita Berki
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Michael Neumüller
- Bavarian Centre of Pomology and Fruit Breeding, Am Süßbach 1, D-85399 Hallbergmoos, Germany
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
19
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
20
|
Pasin F. Assembly of plant virus agroinfectious clones using biological material or DNA synthesis. STAR Protoc 2022; 3:101716. [PMID: 36149792 PMCID: PMC9519601 DOI: 10.1016/j.xpro.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Infectious clone technology is universally applied for biological characterization and engineering of viruses. This protocol describes procedures that implement synthetic biology advances for streamlined assembly of virus infectious clones. Here, I detail homology-based cloning using biological material, as well as SynViP assembly using type IIS restriction enzymes and chemically synthesized DNA fragments. The assembled virus clones are based on compact T-DNA binary vectors of the pLX series and are delivered to host plants by Agrobacterium-mediated inoculation. For complete details on the use and execution of this protocol, please refer to Pasin et al. (2017, 2018) and Pasin (2021).
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain.
| |
Collapse
|
21
|
Guo G, Li MJ, Lai JL, Du ZY, Liao QS. Development of tobacco rattle virus-based platform for dual heterologous gene expression and CRISPR/Cas reagent delivery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111491. [PMID: 36216296 DOI: 10.1016/j.plantsci.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
A large number of viral delivery systems have been developed for characterizing functional genes and producing heterologous recombinant proteins in plants, and but most of them are unable to co-express two fusion-free foreign proteins in the whole plant for extended periods of time. In this study, we modified tobacco rattle virus (TRV) as a TRVe dual delivery vector, using the strategy of gene substitution. The reconstructed TRVe had the capability to simultaneously produce two fusion-free foreign proteins at the whole level of Nicotiana benthamiana, and maintained the genetic stability for the insert of double foreign genes. Moreover, TRVe allowed systemic expression of two foreign proteins with the total lengths up to ∼900 aa residues. In addition, Cas12a protein and crRNA were delivered by the TRVe expression system for site-directed editing of genomic DNA in N. benthamiana 16c line constitutively expressing green fluorescent protein (GFP). Taker together, the TRV-based delivery system will be a simple and powerful means to rapidly co-express two non-fused foreign proteins at the whole level and facilitate functional genomics studies in plants.
Collapse
Affiliation(s)
- Ge Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Meng-Jiao Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jia-Liang Lai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhi-You Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Qian-Sheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
22
|
Yue J, Wei Y, Sun Z, Chen Y, Wei X, Wang H, Pasin F, Zhao M. AlkB RNA demethylase homologues and N 6 -methyladenosine are involved in Potyvirus infection. MOLECULAR PLANT PATHOLOGY 2022; 23:1555-1564. [PMID: 35700092 PMCID: PMC9452765 DOI: 10.1111/mpp.13239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/28/2023]
Abstract
Proteins of the alkylation B (AlkB) superfamily show RNA demethylase activity removing methyl adducts from N6 -methyladenosine (m6 A). m6 A is a reversible epigenetic mark of RNA that regulates human virus replication but has unclear roles in plant virus infection. We focused on Potyvirus-the largest genus of plant RNA viruses-and report here the identification of AlkB domains within P1 of endive necrotic mosaic virus (ENMV) and an additional virus of a putative novel species within Potyvirus. We show that Nicotiana benthamiana m6 A levels are reduced by infection of plum pox virus (PPV) and potato virus Y (PVY). The two potyviruses lack AlkB and the results suggest a general involvement of RNA methylation in potyvirus infection and evolution. Methylated RNA immunoprecipitation sequencing of virus-infected samples showed that m6 A peaks are enriched in plant transcript 3' untranslated regions and in discrete internal and 3' terminal regions of PPV and PVY genomes. Down-regulation of N. benthamiana AlkB homologues of the plant-specific ALKBH9 clade caused a significant decrease in PPV and PVY accumulation. In summary, our study provides evolutionary and experimental evidence that supports the m6 A implication and the proviral roles of AlkB homologues in Potyvirus infection.
Collapse
Affiliation(s)
- Jianying Yue
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Yao Wei
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Zhenqi Sun
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Yahan Chen
- College of Plant ProtectionGansu Agricultural UniversityLanzhouChina
| | - Xuefeng Wei
- Development of Fine ChemicalsGuizhou UniversityGuizhouChina
| | - Haijuan Wang
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València (CSIC‐UPV)ValenciaSpain
- School of ScienceUniversity of PaduaPaduaItaly
| | - Mingmin Zhao
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
23
|
AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci 2022; 23:ijms231911531. [PMID: 36232831 PMCID: PMC9570173 DOI: 10.3390/ijms231911531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant–pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19–TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24–TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis–TuMV pathosystem.
Collapse
|
24
|
Simultaneously induced mutations in eIF4E genes by CRISPR/Cas9 enhance PVY resistance in tobacco. Sci Rep 2022; 12:14627. [PMID: 36028578 PMCID: PMC9418239 DOI: 10.1038/s41598-022-18923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Tobacco is an important commercial crop and a rich source of alkaloids for pharmaceutical and agricultural applications. However, its yield can be reduced by up to 70% due to virus infections, especially by a potyvirus Potato virus Y (PVY). The replication of PVY relies on host factors, and eukaryotic translation initiation factor 4Es (eIF4Es) have already been identified as recessive resistance genes against potyviruses in many plant species. To investigate the molecular basis of PVY resistance in the widely cultivated allotetraploid tobacco variety K326, we developed a dual guide RNA CRISPR/Cas9 system for combinatorial gene editing of two clades, eIF4E1 (eIF4E1-S and eIF4E1-T) and eIF4E2 (eIF4E2-S and eIF4E2-T) in the eIF4E gene family comprising six members in tobacco. We screened for CRISPR/Cas9-induced mutations by heteroduplex analysis and Sanger sequencing, and monitored PVYO accumulation in virus challenged regenerated plants by DAS-ELISA both in T0 and T1 generations. We found that all T0 lines carrying targeted mutations in the eIF4E1-S gene displayed enhanced resistance to PVYO confirming previous reports. More importantly, our combinatorial approach revealed that eIF4E1-S is necessary but not sufficient for complete PVY resistance. Only the quadruple mutants harboring loss-of-function mutations in eIF4E1-S, eIF4E1-T, eIF4E2-S and eIF4E2-T showed heritable high-level resistance to PVYO in tobacco. Our work highlights the importance of understanding host factor redundancy in virus replication and provides a roadmap to generate virus resistance by combinatorial CRISPR/Cas9-mediated editing in non-model crop plants with complex genomes.
Collapse
|
25
|
Prajapati MR, Manav A, Singhal P, Sidharthan VK, Sirohi U, Kumar M, Bharti MK, Singh J, Kumar P, Kumar R, Prakash S, Baranwal VK. Complete Genomic RNA Sequence of Tuberose Mild Mosaic Virus and Tuberose Mild Mottle Virus Acquired by High-Throughput Sequencing. Pathogens 2022; 11:pathogens11080861. [PMID: 36014982 PMCID: PMC9412269 DOI: 10.3390/pathogens11080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberose (Polianthes tuberosa) is an ornamental flowering crop of the Amaryllidaceae family. Tuberose mild mosaic virus (TuMMV) and tuberose mild mottle virus (TuMMoV), members of the genus Potyvirus, are ubiquitously distributed in most tuberose growing countries worldwide with low biological incidence. Here, we report the first coding-complete genomic RNA of TuMMV and TuMMoV obtained through high-throughput sequencing (HTS) and further, the presence of both the viruses were confirmed using virus-specific primers in RT-PCR assays. Excluding the poly (A) tail, the coding-complete genomic RNA of TuMMV and TuMMoV was 9485 and 9462 nucleotides (nts) in length, respectively, and contained a single large open reading frame (ORF). Polyprotein encoded by both the viral genomes contained nine putative cleavage sites. BLASTn analysis of TuMMV and TuMMoV genomes showed 72.40–76.80% and 67.95–77% nucleotide sequence similarities, respectively, with the existing potyviral sequences. Phylogenetic analysis based on genome sequences showed that TuMMV and TuMMoV clustered in a distinct clade to other potyviruses. Further studies are required to understand the mechanism of symptom development, distribution, genetic variability, and their possible threat to tuberose production in India.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Aakansha Manav
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Pankhuri Singhal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Venkidusamy K Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad 500100, Telangana, India
| | - Ujjwal Sirohi
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Mahesh Kumar Bharti
- College of Veterinary and Animal Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Jitender Singh
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Ravindra Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Satya Prakash
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|