1
|
Miyada MG, Choi Y, Stepanauskas R, Woyke T, La Clair JJ, Burkart MD. Fluorometric Analysis of Carrier-Protein-Dependent Biosynthesis through a Conformationally Sensitive Solvatochromic Pantetheinamide Probe. ACS Chem Biol 2024; 19:1416-1425. [PMID: 38909314 DOI: 10.1021/acschembio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.
Collapse
Affiliation(s)
- Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
2
|
Lo HY, Wink K, Nitz H, Kästner M, Belder D, Müller JA, Kaster AK. scMAR-Seq: a novel workflow for targeted single-cell genomics of microorganisms using radioactive labeling. mSystems 2023; 8:e0099823. [PMID: 37982643 PMCID: PMC10734494 DOI: 10.1128/msystems.00998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE A central question in microbial ecology is which member of a community performs a particular metabolism. Several sophisticated isotope labeling techniques are available for analyzing the metabolic function of populations and individual cells in a community. However, these methods are generally either insufficiently sensitive or throughput-limited and thus have limited applicability for the study of complex environmental samples. Here, we present a novel approach that combines highly sensitive radioisotope tracking, microfluidics, high-throughput sorting, and single-cell genomics to simultaneously detect and identify individual microbial cells based solely on their in situ metabolic activity, without prior information on community structure.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Konstantin Wink
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Henrike Nitz
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Detlev Belder
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Jochen A. Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Džunková M, La Clair JJ, Tyml T, Doud D, Schulz F, Piquer-Esteban S, Porcel Sanchis D, Osborn A, Robinson D, Louie KB, Bowen BP, Bowers RM, Lee J, Arnau V, Díaz-Villanueva W, Stepanauskas R, Gosliner T, Date SV, Northen TR, Cheng JF, Burkart MD, Woyke T. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. MICROBIOME 2023; 11:130. [PMID: 37312139 DOI: 10.1186/s40168-023-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential. To overcome these challenges, we used a fluorescent pantetheine probe, which produces a fluorescent CoA-analog employed in biosynthesis of secondary metabolites, to label and capture bacterial symbionts actively producing these compounds in the mantle of the nudibranch Doriopsilla fulva. RESULTS We recovered the genome of Candidatus Doriopsillibacter californiensis from the Ca. Tethybacterales order, an uncultured lineage of sponge symbionts not found in nudibranchs previously. It forms part of the core skin microbiome of D. fulva and is nearly absent in its internal organs. We showed that crude extracts of D. fulva contained secondary metabolites that were consistent with the presence of a beta-lactone encoded in Ca. D. californiensis genome. Beta-lactones represent an underexplored group of secondary metabolites with pharmaceutical potential that have not been reported in nudibranchs previously. CONCLUSIONS Altogether, this study shows how probe-based, targeted sorting approaches can capture bacterial symbionts producing secondary metabolites in vivo. Video Abstract.
Collapse
Affiliation(s)
- Mária Džunková
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Devin Doud
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Piquer-Esteban
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Andrew Osborn
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Robinson
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ben P Bowen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert M Bowers
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Janey Lee
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vicente Arnau
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | - Wladimiro Díaz-Villanueva
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | | | | | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- San Francisco State University, San Francisco, CA, USA
| | - Trent R Northen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA.
| |
Collapse
|
4
|
Karlo J, Dhillon AK, Siddhanta S, Singh SP. Monitoring of microbial proteome dynamics using Raman stable isotope probing. JOURNAL OF BIOPHOTONICS 2023; 16:e202200341. [PMID: 36527375 DOI: 10.1002/jbio.202200341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Abnormal protein kinetics could be a cause of several diseases associated with essential life processes. An accurate understanding of protein dynamics and turnover is essential for developing diagnostic or therapeutic tools to monitor these changes. Raman spectroscopy in combination with stable isotope probes (SIP) such as carbon-13, and deuterium has been a breakthrough in the qualitative and quantitative study of various metabolites. In this work, we are reporting the utility of Raman-SIP for monitoring dynamic changes in the proteome at the community level. We have used 13 C-labeled glucose as the only carbon source in the medium and verified its incorporation in the microbial biomass in a time-dependent manner. A visible redshift in the Raman spectral vibrations of major biomolecules such as nucleic acids, phenylalanine, tyrosine, amide I, and amide III were observed. Temporal changes in the intensity of these bands demonstrating the feasibility of protein turnover monitoring were also verified. Kanamycin, a protein synthesis inhibitor was used to assess the feasibility of identifying effects on protein turnover in the cells. Successful application of this work can provide an alternate/adjunct tool for monitoring proteome-level changes in an objective and nondestructive manner.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
5
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
6
|
Krukenberg V, Reichart NJ, Spietz RL, Hatzenpichler R. Microbial Community Response to Polysaccharide Amendment in Anoxic Hydrothermal Sediments of the Guaymas Basin. Front Microbiol 2021; 12:763971. [PMID: 34956126 PMCID: PMC8703129 DOI: 10.3389/fmicb.2021.763971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Organic-rich, hydrothermal sediments of the Guaymas Basin are inhabited by diverse microbial communities including many uncultured lineages with unknown metabolic potential. Here we investigated the short-term effect of polysaccharide amendment on a sediment microbial community to identify taxa involved in the initial stage of macromolecule degradation. We incubated anoxic sediment with cellulose, chitin, laminarin, and starch and analyzed the total and active microbial communities using bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Our results show a response of an initially minor but diverse population of Clostridia particularly after amendment with the lower molecular weight polymers starch and laminarin. Thus, Clostridia may readily become key contributors to the heterotrophic community in Guaymas Basin sediments when substrate availability and temperature range permit their metabolic activity and growth, which expands our appreciation of the potential diversity and niche differentiation of heterotrophs in hydrothermally influenced sediments. BONCAT-FACS, although challenging in its application to complex samples, detected metabolic responses prior to growth and thus can provide complementary insight into a microbial community's metabolic potential and succession pattern. As a primary application of BONCAT-FACS on a diverse deep-sea sediment community, our study highlights important considerations and demonstrates inherent limitations associated with this experimental approach.
Collapse
Affiliation(s)
- Viola Krukenberg
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Nicholas J. Reichart
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Rachel L. Spietz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
7
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
8
|
Kim WE, Charov K, Džunková M, Becraft ED, Brown J, Schulz F, Woyke T, La Clair JJ, Stepanauskas R, Burkart MD. Synthase-Selective Exploration of a Tunicate Microbiome by Activity-Guided Single-Cell Genomics. ACS Chem Biol 2021; 16:813-819. [PMID: 33955744 PMCID: PMC9884146 DOI: 10.1021/acschembio.1c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While thousands of environmental metagenomes have been mined for the presence of novel biosynthetic gene clusters, such computational predictions do not provide evidence of their in vivo biosynthetic functionality. Using fluorescent in situ enzyme assay targeting carrier proteins common to polyketide (PKS) and nonribosomal peptide synthetases (NRPS), we applied fluorescence-activated cell sorting to tunicate microbiome to enrich for microbes with active secondary metabolic capabilities. Single-cell genomics uncovered the genetic basis for a wide biosynthetic diversity in the enzyme-active cells and revealed a member of marine Oceanospirillales harboring a novel NRPS gene cluster with high similarity to phylogenetically distant marine and terrestrial bacteria. Interestingly, this synthase belongs to a larger class of siderophore biosynthetic gene clusters commonly associated with pestilence and disease. This demonstrates activity-guided single-cell genomics as a tool to guide novel biosynthetic discovery.
Collapse
Affiliation(s)
- Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Mária Džunková
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Eric D. Becraft
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States,University of North Alabama, Florence AL 35632, United States
| | - Julia Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States,Corresponding authors: (M.D.B) and (R.S.)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States,Corresponding authors: (M.D.B) and (R.S.)
| |
Collapse
|
9
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
10
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
11
|
Genome-Centric Metagenomic Insights into the Impact of Alkaline/Acid and Thermal Sludge Pretreatment on the Microbiome in Digestion Sludge. Appl Environ Microbiol 2020; 86:AEM.01920-20. [PMID: 32948522 DOI: 10.1128/aem.01920-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
Collapse
|
12
|
Microbial single-cell omics: the crux of the matter. Appl Microbiol Biotechnol 2020; 104:8209-8220. [PMID: 32845367 PMCID: PMC7471194 DOI: 10.1007/s00253-020-10844-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
Abstract Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies. Key points • Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways. • Disadvantages of metagenome-assembled genomes are overcome by single-cell omics. • Functional analysis of single cells explores the heterogeneity of gene expression. • Technical challenges still limit this field, thus prompting new method developments.
Collapse
|
13
|
Dam HT, Vollmers J, Sobol MS, Cabezas A, Kaster AK. Targeted Cell Sorting Combined With Single Cell Genomics Captures Low Abundant Microbial Dark Matter With Higher Sensitivity Than Metagenomics. Front Microbiol 2020; 11:1377. [PMID: 32793124 PMCID: PMC7387413 DOI: 10.3389/fmicb.2020.01377] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Rare members of environmental microbial communities are often overlooked and unexplored, primarily due to the lack of techniques capable of acquiring their genomes. Chloroflexi belong to one of the most understudied phyla, even though many of its members are ubiquitous in the environment and some play important roles in biochemical cycles or biotechnological applications. We here used a targeted cell-sorting approach, which enables the selection of specific taxa by fluorescent labeling and is compatible with subsequent single-cell genomics, to enrich for rare Chloroflexi species from a wastewater-treatment plant and obtain their genomes. The combined workflow was able to retrieve a substantially higher number of novel Chloroflexi draft genomes with much greater phylogenetical diversity when compared to a metagenomics approach from the same sample. The method offers an opportunity to access genetic information from rare biosphere members which would have otherwise stayed hidden as microbial dark matter and can therefore serve as an essential complement to cultivation-based, metagenomics, and microbial community-focused research approaches.
Collapse
Affiliation(s)
- Hang T Dam
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Leibniz Institute DSMZ, Brunswick, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Leibniz Institute DSMZ, Brunswick, Germany
| | - Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Angela Cabezas
- Instituto Tecnológico Regional Centro Sur, Universidad Tecnológica, Durazno, Uruguay
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
14
|
Abstract
The human oral cavity is one of the first environments where microbes have been discovered and studied since the dawn of microbiology. Nevertheless, approximately 200 types of bacteria from the oral microbiota have remained uncultured in the laboratory. Some are associated with a healthy oral microbial community, while others are linked to oral diseases, from dental caries to gum disease. Single-cell genomics has enabled inferences on the physiology, virulence, and evolution of such uncultured microorganisms and has further enabled isolation and cultivation of several novel oral bacteria, including the discovery of novel interspecies interactions. This review summarizes some of the more recent advances in this field, which is rapidly moving toward physiologic characterization of single cells and ultimately cultivation of the yet uncultured. A combination of traditional microbiological approaches with genomic-based physiologic predictions and isolation strategies may lead to the oral microbiome being the first complex microbial community to have all its members cultivable in the laboratory. Studying the biology of the individual microbes when in association with other members of the community, in controlled laboratory conditions and in vivo, should lead to a better understanding of oral dysbiosis and its prevention and reversion.
Collapse
Affiliation(s)
- M Balachandran
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - K L Cross
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - M Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
15
|
Abstract
Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this "uncultivated majority" remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages.IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism.
Collapse
|
16
|
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 2020; 18:241-256. [PMID: 32055027 DOI: 10.1038/s41579-020-0323-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
17
|
Doud DFR, Bowers RM, Schulz F, De Raad M, Deng K, Tarver A, Glasgow E, Vander Meulen K, Fox B, Deutsch S, Yoshikuni Y, Northen T, Hedlund BP, Singer SW, Ivanova N, Woyke T. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME JOURNAL 2019; 14:659-675. [PMID: 31754206 PMCID: PMC7031533 DOI: 10.1038/s41396-019-0557-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022]
Abstract
Assigning a functional role to a microorganism has historically relied on cultivation of isolates or detection of environmental genome-based biomarkers using a posteriori knowledge of function. However, the emerging field of function-driven single-cell genomics aims to expand this paradigm by identifying and capturing individual microbes based on their in situ functions or traits. To identify and characterize yet uncultivated microbial taxa involved in cellulose degradation, we developed and benchmarked a function-driven single-cell screen, which we applied to a microbial community inhabiting the Great Boiling Spring (GBS) Geothermal Field, northwest Nevada. Our approach involved recruiting microbes to fluorescently labeled cellulose particles, and then isolating single microbe-bound particles via fluorescence-activated cell sorting. The microbial community profiles prior to sorting were determined via bulk sample 16S rRNA gene amplicon sequencing. The flow-sorted cellulose-bound microbes were subjected to whole genome amplification and shotgun sequencing, followed by phylogenetic placement. Next, putative cellulase genes were identified, expressed and tested for activity against derivatives of cellulose and xylose. Alongside typical cellulose degraders, including members of the Actinobacteria, Bacteroidetes, and Chloroflexi, we found divergent cellulases encoded in the genome of a recently described candidate phylum from the rare biosphere, Goldbacteria, and validated their cellulase activity. As this genome represents a species-level organism with novel and phylogenetically distinct cellulolytic activity, we propose the name Candidatus ‘Cellulosimonas argentiregionis’. We expect that this function-driven single-cell approach can be extended to a broad range of substrates, linking microbial taxonomy directly to in situ function.
Collapse
Affiliation(s)
- Devin F R Doud
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Robert M Bowers
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Frederik Schulz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Markus De Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Angela Tarver
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Evan Glasgow
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kirk Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sam Deutsch
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Yasuo Yoshikuni
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Natalia Ivanova
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA.
| |
Collapse
|
18
|
Caputo A, Fournier PE, Raoult D. Genome and pan-genome analysis to classify emerging bacteria. Biol Direct 2019; 14:5. [PMID: 30808378 PMCID: PMC6390601 DOI: 10.1186/s13062-019-0234-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background In the recent years, genomic and pan-genomic studies have become increasingly important. Culturomics allows to study human microbiota through the use of different culture conditions, coupled with a method of rapid identification by MALDI-TOF, or 16S rRNA. Bacterial taxonomy is undergoing many changes as a consequence. With the help of pan-genomic analyses, species can be redefined, and new species definitions generated. Results Genomics, coupled with culturomics, has led to the discovery of many novel bacterial species or genera, including Akkermansia muciniphila and Microvirga massiliensis. Using the genome to define species has been applied within the genus Klebsiella. A discontinuity or an abrupt break in the core/pan-genome ratio can uncover novel species. Conclusions Applying genomic and pan-genomic analyses to the reclassification of other bacterial species or genera will be important in the future of medical microbiology. The pan-genome is one of many new innovative tools in bacterial taxonomy. Reviewers This article was reviewed by William Martin, Eric Bapteste and James Mcinerney. Open peer review Reviewed by William Martin, Eric Bapteste and James Mcinerney.
Collapse
Affiliation(s)
- Aurélia Caputo
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
19
|
Bhatia SK, Bhatia RK, Choi YK, Kan E, Kim YG, Yang YH. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 2018; 38:1209-1229. [PMID: 29764204 DOI: 10.1080/07388551.2018.1471445] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| | - Ravi Kant Bhatia
- c Department of Biotechnology , Himachal Pradesh University , Shimla , India
| | - Yong-Keun Choi
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Eunsung Kan
- d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Yun-Gon Kim
- e Department of Chemical Engineering , Soongsil University , Seoul , South Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| |
Collapse
|
20
|
The trajectory of microbial single-cell sequencing. Nat Methods 2017; 14:1045-1054. [DOI: 10.1038/nmeth.4469] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
|