1
|
Petrokilidou C, Pavlou E, Velegraki A, Simou A, Marsellou I, Filis G, Bassukas ID, Gaitanis G, Kourkoumelis N. Characterization and Differentiation of Candida auris on Dixon's Agar Using Raman Spectroscopy. Pathogens 2024; 13:978. [PMID: 39599531 PMCID: PMC11597615 DOI: 10.3390/pathogens13110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Candida auris, an emerging multidrug-resistant fungal pathogen, poses significant challenges in healthcare settings due to its high misidentification rate and resilience to treatments. Despite advancements in diagnostic tools, a gap remains in rapid, cost-effective identification methods that can differentiate C. auris from other Candida species, particularly on non-standard culture media. We used Raman spectroscopy to characterize C. auris grown on modified Dixon's agar (mDixon) and differentiated it from Candida albicans and Candida parapsilosis. Key Raman spectral markers at 1171 cm-1 and 1452 cm-1, linked to mannan and β-glucan composition, differentiated C. auris into two subgroups, A and B. Despite the spectral similarities of groups A and B with C. albicans and C. parapsilosis, respectively, all Candida species were distinguishable through principal component analysis (PCA). Additionally, this study is the first to demonstrate the distinct spectral signature of mDixon agar, achieved through spatially offset Raman spectroscopy (SORS), which enables accurate discrimination between the culture medium and fungal samples. The observed inter-individual variability within C. auris, coupled with the spectral overlap between C. auris subgroups and other Candida species, highlights a major challenge in differentiating closely related fungi due to their similar molecular composition. Enhancements in spectral resolution and further fluorescence minimization from the culture medium are needed to reliably detect the subtle biochemical differences within these species. Despite these challenges, the results underscore the potential of Raman spectroscopy as a real-time, non-destructive, and complementary tool for fungal pathogen identification.
Collapse
Affiliation(s)
- Chrysoula Petrokilidou
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Eleftherios Pavlou
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | | | - Anna Simou
- Mycology Laboratory, BIOIATRIKI SA, 115 27 Athens, Greece
| | | | | | - Ioannis D. Bassukas
- Department of Skin & Venereal Diseases, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Georgios Gaitanis
- Department of Skin & Venereal Diseases, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
2
|
Ali B, Chauhan A, Kumar M, Kumar P, Carolus H, Lobo Romero C, Vergauwen R, Singh A, Banerjee A, Prakash A, Rudramurthy SM, Van Dijck P, Ibrahim AS, Prasad R. A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar. J Fungi (Basel) 2024; 10:760. [PMID: 39590679 PMCID: PMC11595932 DOI: 10.3390/jof10110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Certain species of Mucorales have been identified as causative agents of mucormycosis, a rare yet often lethal fungal infection. Notably, these fungi exhibit intrinsic resistance to common azole drugs, which target lipids. Given the pivotal role of lipids in drug resistance and their contribution to innate resistance to azoles, this study provides a comprehensive overview of key lipid classes, including sphingolipids (SLs), glycerophospholipids (GPLs), and sterols, in Rhizopus delemar 99-880, a well-characterized reference strain among Mucorales. Using shotgun lipidomics as well as liquid- and gas-chromatography-based mass spectrometric analyses, we identified the lipid intermediates and elucidated the biosynthetic pathways of SLs, PGLs, and sterols. The acidic SLs were not found, probably because the acidic branch of the SL biosynthesis pathway terminates at α-hydroxy phytoceramides, as evident by their high abundance. Intermediates in the neutral SL pathway incorporated higher levels of 16:0 fatty acid compared to other pathogenic fungi. A strikingly high phosphatidylethanolamine (PE)/phosphatdylcholine (PC) ratio was observed among GPLs. Ergosterol remains the major sterol, similar to other fungi, and our analysis confirms the existence of alternate ergosterol biosynthesis pathways. The total lipidomic profile of R. delemar 99-880 offers insights into its lipid metabolism and potential implications for studying pathogenesis and drug resistance mechanisms.
Collapse
Affiliation(s)
- Basharat Ali
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Chauhan
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Praveen Kumar
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| |
Collapse
|
3
|
Stieber H, Junghanns L, Wilhelm H, Batliner M, Aldejohann AM, Kurzai O, Martin R. The sphingolipid inhibitor myriocin increases Candida auris susceptibility to amphotericin B. Mycoses 2024; 67:e13723. [PMID: 38551121 DOI: 10.1111/myc.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The emergence of the pathogenic yeast Candida auris is of global concern due to its ability to cause hospital outbreaks and develop resistance against all antifungal drug classes. Based on published data for baker's yeast Saccharomyces cerevisiae, sphingolipid biosynthesis, which is essential for maintaining membrane fluidity and formation of lipid rafts, could offer a target for additive treatment. METHODS We analysed the susceptibility of C. auris to myriocin, which is an inhibitor of the de novo synthesis of sphingolipids in eukaryotic cells in comparison to other Candida species. In addition, we combined sublethal concentrations of myriocin with the antifungal drugs amphotericin B and fluconazole in E-tests. Consequently, the combinatory effects of myriocin and amphotericin B were examined in broth microdilution assays. RESULTS Myriocin-mediated inhibition of the sphingolipid biosynthesis affected the growth of C. auris. Sublethal myriocin concentrations increased fungal susceptibility to amphotericin B. Isolates which are phenotypically resistant (≥2 mg/L) to amphotericin B became susceptible in presence of myriocin. However, addition of myriocin had only limited effects onto the susceptibility of C. auris against fluconazole. CONCLUSIONS Our results show that inhibition of de novo sphingolipid biosynthesis increases the susceptibility of C. auris to amphotericin B. This may potentially enhance antifungal treatment options fighting this often resistant yeast pathogen.
Collapse
Affiliation(s)
- Hanna Stieber
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Lara Junghanns
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Hannah Wilhelm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Maria Batliner
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander Maximilian Aldejohann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Vanzolini T, Magnani M. Old and new strategies in therapy and diagnosis against fungal infections. Appl Microbiol Biotechnol 2024; 108:147. [PMID: 38240822 PMCID: PMC10799149 DOI: 10.1007/s00253-023-12884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| |
Collapse
|
5
|
Mondal S, Pal B, Sankaranarayanan R. Diacylglycerol metabolism and homeostasis in fungal physiology. FEMS Yeast Res 2024; 24:foae036. [PMID: 39611318 PMCID: PMC11631473 DOI: 10.1093/femsyr/foae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Diacylglycerol (DAG) is a relatively simple and primitive form of lipid, which does not possess a phospholipid headgroup. Being a central metabolite of the lipid metabolism network, DAGs are omnipresent in all life forms. While the role of DAG has been established in membrane and storage lipid biogenesis, it can impart crucial physiological functions including membrane shapeshifting, regulation of membrane protein activity, and transduction of cellular signalling as a lipid-based secondary messenger. Besides, the chemical diversity of DAGs, due to fatty acyl chain composition, has been proposed to be the basis of its functional diversity. Therefore, cells must regulate DAG level at a spatio-temporal scale for homeostasis and adaptation. The vast network of eukaryotic lipid metabolism has been unravelled majorly by studying yeast models. Here, we review the current understanding and the emerging concepts in metabolic and functional aspects of DAG regulation in yeast. The implications can be extended to understand pathogenic fungi and mammalian counterparts as well as disease aetiology.
Collapse
Affiliation(s)
- Sudipta Mondal
- CSIR – Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 50007, India
| | - Biswajit Pal
- CSIR – Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 50007, India
| | - Rajan Sankaranarayanan
- CSIR – Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 50007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Ali B, Kumar M, Kumar P, Chauhan A, Usmani SA, Rudramurthy SM, Meis JF, Chakrabarti A, Singh A, Gaur NA, Mondal AK, Prasad R. Sphingolipid diversity in Candida auris: unraveling interclade and drug resistance fingerprints. FEMS Yeast Res 2024; 24:foae008. [PMID: 38444195 PMCID: PMC10941814 DOI: 10.1093/femsyr/foae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, we explored the sphingolipid (SL) landscape in Candida auris, which plays pivotal roles in fungal biology and drug susceptibility. The composition of SLs exhibited substantial variations at both the SL class and molecular species levels among clade isolates. Utilizing principal component analysis, we successfully differentiated the five clades based on their SL class composition. While phytoceramide (PCer) was uniformly the most abundant SL class in all the isolates, other classes showed significant variations. These variations were not limited to SL class level only as the proportion of different molecular species containing variable number of carbons in fatty acid chains also differed between the isolates. Also a comparative analysis revealed abundance of ceramides and glucosylceramides in fluconazole susceptible isolates. Furthermore, by comparing drug-resistant and susceptible isolates within clade IV, we uncovered significant intraclade differences in key SL classes such as high PCer and low long chain base (LCB) content in resistant strains, underscoring the impact of SL heterogeneity on drug resistance development in C. auris. These findings shed light on the multifaceted interplay between genomic diversity, SLs, and drug resistance in this emerging fungal pathogen.
Collapse
Affiliation(s)
- Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Praveen Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| | - Anshu Chauhan
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| | - Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, 226007 India
| | | | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, 50931 Germany
| | | | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007 India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Alok K Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, 122413, India
| |
Collapse
|
7
|
Dopierała K, Syguda A, Wojcieszak M, Materna K. Effect of 1-alkyl-1-methylpiperidinium bromides on lipids of fungal plasma membrane and lung surfactant. Chem Phys Lipids 2022; 248:105240. [PMID: 36174723 DOI: 10.1016/j.chemphyslip.2022.105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 01/25/2023]
Abstract
This study aimed to investigate the potential of 1-alkyl-1-methylpiperidinium bromides as fungicides and evaluate their impact on the human respiratory system when spread in the atmosphere. We investigated the behavior of membrane lipids and model membranes in the presence of a series of amphiphilic 1-alkyl-1-methylpiperidinium bromides ([MePipCn][Br]), differing in the alkyl chain length (n = 4 - 18). The experiments were performed with the Langmuir monolayer technique using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and ergosterol (ERG)-the main components of lung surfactant and fungal plasma membrane, respectively and their mixtures with phospholipids and sterols. The mixtures were chosen as the representatives of target and non-target organisms. The surface pressure-area isotherms were obtained by compressing monolayers in the presence of [MePipCn][Br] in the subphase. The results were analyzed in terms of area expansion/contraction and compressibility. The surface activity of the studied organic salts was also studied. In addition, the monolayers were deposited on a solid surface and their topography was investigated using atomic force microscopy. This research implies that the studied compounds may destabilize efficiently the fungal plasma membrane. At the same time we demonstrated the significant impact of 1-alkyl-1-methylpiperidinium bromides on the lung surfactant layer. The interaction between [MePipCn][Br] and model membranes depends on the concentration and alkyl chain length of organic salt. The key role of contact time has been also revealed. The results may be helpful in the reasonable development of new agrochemical products aiming at the treatment of fungal infections in plants. In addition, our study indicates the significance of proper safety management while spreading the fungicides in the environment.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Anna Syguda
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Marta Wojcieszak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Katarzyna Materna
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
8
|
Untargeted lipidomics reveals the antifungal mechanism of essential oils nanoemulsion against Penicillium digitatum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Dekkerová J, Černáková L, Kendra S, Borghi E, Ottaviano E, Willinger B, Bujdáková H. Farnesol Boosts the Antifungal Effect of Fluconazole and Modulates Resistance in Candida auris through Regulation of the CDR1 and ERG11 Genes. J Fungi (Basel) 2022; 8:jof8080783. [PMID: 35893151 PMCID: PMC9332773 DOI: 10.3390/jof8080783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is considered a serious fungal pathogen frequently exhibiting a high resistance to a wide range of antifungals. In this study, a combination of the quorum-sensing molecule farnesol (FAR) and fluconazole (FLU) was tested on FLU-resistant C. auris isolates (C. auris S and C. auris R) compared to the susceptible C. auris H261. The aim was to assess the possible synergy between FAR and FLU, by reducing the FLU minimal inhibitory concentration, and to determine the mechanism underlying the conjunct effect. The results confirmed a synergic effect between FAR and FLU with a calculated FIC index of 0.75 and 0.4 for C. auris S and C. auris R, respectively. FAR modulates genes involved in azole resistance. When FAR was added to the cells in combination with FLU, a significant decrease in the expression of the CDR1 gene was observed in the resistant C. auris isolates. FAR seems to block the Cdr1 efflux pump triggering a restoration of the intracellular content of FLU. These results were supported by observed increasing accumulation of rhodamine 6G by C. auris cells. Moreover, C. auris treated with FAR showed an ERG11 gene down-regulation. Overall, these results suggest that FAR is an effective modulator of the Cdr1 efflux pump in C. auris and, in combination with FLU, enhances the activity of this azole, which might be a promising strategy to control infections caused by azole-resistant C. auris.
Collapse
Affiliation(s)
- Jaroslava Dekkerová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Elisa Borghi
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Via A. di Rudini 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Via A. di Rudini 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
- Correspondence: ; Tel.: +421-2-9014-9436
| |
Collapse
|
10
|
Kumar M, Prasad R, Singh A. High-Throughput Phospholipidomics of Candida Cells: From Sample Preparation to Data Analysis. Methods Mol Biol 2022; 2542:127-140. [PMID: 36008661 DOI: 10.1007/978-1-0716-2549-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laboratory identification of Candida species is often complicated by overlapping features. Species specificity is critical to the appropriate use of interventions.Accurate identification and quantification of lipid species in complex lipid mixtures are crucial for assigning biological functions to lipids of fungi. Recently, much has been achieved in the field of mass spectrometry, allowing high-throughput screening of simple and complex lipid structures. The next-generation, high-resolution mass spectrometers allow accurate analysis and a much broader spectrum for lipidomic studies; nonetheless, these are often expensive, and data analysis is complex, which presents a challenge in routine lipid studies. Alternatively, by coupling the ion trap with multiple reaction monitoring (MRM) in an HPLC-ESI-MS/MS (high-performance liquid chromatography-electrospray ionization tandem mass spectrometry) platform, we can achieve rapid, sensitive, and accurate quantification of lipids in Candida extracts. Moreover, the approach is simple and relatively cost-effective. Below, we discuss the key features of ion trap HPLC-ESI-MS/MS-based comparative lipidomics of Candida cells.
Collapse
Affiliation(s)
- Mohit Kumar
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, Haryana, India
- Amity Institute of Biotechnology, Amity University, Gurgaon, Haryana, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, Haryana, India.
- Amity Institute of Biotechnology, Amity University, Gurgaon, Haryana, India.
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
11
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|