1
|
Santos AA, Kretzer LG, Dourado EDR, Rosa CA, Stambuk BU, Alves SL. Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains. Braz J Microbiol 2024:10.1007/s42770-024-01609-2. [PMID: 39739240 DOI: 10.1007/s42770-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S. cerevisiae strains were engineered: CEN.PK-X-Bgl1YL, expressing the periplasmic β-glucosidase BGL1 from Yarrowia lipolytica; and CEN.PK-X-B7-T2, co-expressing the intracellular β-glucosidase SpBGL7 from Spathaspora passalidarum and the cellobiose transporter MgCBT2 from Meyerozyma guilliermondii. Both engineered strains were able to grown in media with cellobiose and to ferment this disaccharide. However, CEN.PK-X-Bgl1YL, which hydrolyzes cellobiose extracellularly, exhibited faster growth and superior batch fermentation performance. Furthermore, enzymatic and transport activities revealed that sugar uptake was possibly the limiting factor in cellobiose fermentation by CEN.PK-X-B7-T2. Since extracellular hydrolysis with the periplasmic β-glucosidase was more efficient for cellobiose fermentation, we integrated the BGL1 gene into two industrial xylose-fermenting S. cerevisiae strains. The resulting strains (MP-C5H1-Bgl1YL and MP-P5-Bgl1YL) efficiently co-consumed ∼ 22 g L- 1 of cellobiose and ∼ 22 g L- 1 of xylose in 24 h, achieving high ethanol production levels (∼ 17 g L- 1 titer, ∼ 0.50 g L- 1 h- 1 volumetric productivity, and 0.40 g g- 1 ethanol yield). Our findings suggest that the expression of periplasmic β-glucosidases in S. cerevisiae could be an effective strategy to overcome the disaccharide transport problem, thus enabling efficient cellobiose fermentation or even cellobiose-xylose co-fermentation.
Collapse
Affiliation(s)
- Angela A Santos
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Leonardo G Kretzer
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Erika D R Dourado
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Boris U Stambuk
- Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Sérgio L Alves
- Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil.
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
de Oliveira Pereira I, Dos Santos ÂA, Guimarães NC, Lima CS, Zanella E, Matsushika A, Rabelo SC, Stambuk BU, Ienczak JL. First- and second-generation integrated process for bioethanol production: Fermentation of molasses diluted with hemicellulose hydrolysate by recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 2024; 121:1314-1324. [PMID: 38178588 DOI: 10.1002/bit.28648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L-1 h-1, 0.39 g g-1 of ethanol yield, and 44.5 g L-1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co-fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co-fermentation employing a recombinant yeast.
Collapse
Affiliation(s)
- Isabela de Oliveira Pereira
- Department of Chemical Engineering and Food Engineering (EQA), Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ângela A Dos Santos
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Nick C Guimarães
- Department of Chemical Engineering and Food Engineering (EQA), Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cleilton S Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo (USP), Lorena, Brazil
| | - Eduardo Zanella
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, College of Agriculture Sciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaciane L Ienczak
- Department of Chemical Engineering and Food Engineering (EQA), Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Tadioto V, Deoti JR, Müller C, de Souza BR, Fogolari O, Purificação M, Giehl A, Deoti L, Lucaroni AC, Matsushika A, Treichel H, Stambuk BU, Alves Junior SL. Prospecting and engineering yeasts for ethanol production under inhibitory conditions: an experimental design analysis. Bioprocess Biosyst Eng 2022:10.1007/s00449-022-02812-x. [DOI: 10.1007/s00449-022-02812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
|
4
|
Knychala MM, dos Santos AA, Kretzer LG, Gelsleichter F, Leandro MJ, Fonseca C, Stambuk BU. Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8010084. [PMID: 35050024 PMCID: PMC8778384 DOI: 10.3390/jof8010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover.
Collapse
Affiliation(s)
- Marilia M. Knychala
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - Angela A. dos Santos
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Leonardo G. Kretzer
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Fernanda Gelsleichter
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Maria José Leandro
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - César Fonseca
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- Discovery, R&D, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Boris U. Stambuk
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Correspondence: ; Tel.: +55-48-3721-4449
| |
Collapse
|