1
|
Ou H, Zhang P, Wang X, Lin M, Li Y, Wang G. Gaining insights into the responses of individual yeast cells to ethanol fermentation using Raman tweezers and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124584. [PMID: 38838600 DOI: 10.1016/j.saa.2024.124584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Saccharomyces cerevisiae is the most common microbe used for the industrial production of bioethanol, and it encounters various stresses that inhibit cell growth and metabolism during fermentation. However, little is currently known about the physiological changes that occur in individual yeast cells during ethanol fermentation. Therefore, in this work, Raman spectroscopy and chemometric techniques were employed to monitor the metabolic changes of individual yeast cells at distinct stages during high gravity ethanol fermentation. Raman tweezers was used to acquire the Raman spectra of individual yeast cells. Multivariate curve resolution-alternating least squares (MCR-ALS) and principal component analysis were employed to analyze the Raman spectra dataset. MCR-ALS extracted the spectra of proteins, phospholipids, and triacylglycerols and their relative contents in individual cells. Changes in intracellular biomolecules showed that yeast cells undergo three distinct physiological stages during fermentation. In addition, heterogeneity among yeast cells significantly increased in the late fermentation period, and different yeast cells may respond to ethanol stress via different mechanisms. Our findings suggest that the combination of Raman tweezers and chemometrics approaches allows for characterizing the dynamics of molecular components within individual cells. This approach can serve as a valuable tool in investigating the resistance mechanism and metabolic heterogeneity of yeast cells during ethanol fermentation.
Collapse
Affiliation(s)
- Haisheng Ou
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China; College of Physics Science and Technology, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China
| | - Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaochun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Manman Lin
- School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yuanpeng Li
- College of Physics Science and Technology, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China
| | - Guiwen Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China.
| |
Collapse
|
2
|
da Costa MVA, Sousa ACR, Batista AG, Paula FEGM, Cardozo MV, Vargas SR, Philippini RR, Bragança CRS. Innovative pathways for ethanol production: Harnessing xylose's bioenergy potential using Brazilian wild isolated yeasts. BIORESOURCE TECHNOLOGY 2024; 404:130930. [PMID: 38838833 DOI: 10.1016/j.biortech.2024.130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Marcus Vinicius Astolfo da Costa
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Ana Carolina Rodrigues Sousa
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Arthur Gasseta Batista
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Fernanda Elisa Gomes Miranda Paula
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Marita Vedovelli Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | - Sarah Regina Vargas
- Laboratory of Applied Biotechnology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil
| | | | - Caio Roberto Soares Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, UEMG, Rua Sabará, 164, Centro, CEP: 37900-004, Passos, MG, Brazil.
| |
Collapse
|
3
|
Mohamed H, Naz T, Liu Q, Li S, Wang X, Song Y. Fed-batch fermentation of Mucor circinelloides reveals significant improvement in biomass and lipid accumulation through performance evaluation, chemical analysis, and expression profiling. BIORESOURCE TECHNOLOGY 2024; 398:130540. [PMID: 38452954 DOI: 10.1016/j.biortech.2024.130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
This study aimed to improve the lipid and biomass yields of Mucor circinelloides WJ11 by implementing four different fed-batch fermentation strategies, varied in time and glucose concentration (S1-S4). The S1 fermentation strategy yielded the highest biomass, lipid, and fatty acid content (22 ± 0.7 g/L, 53 ± 1.2 %, and 28 ± 1.6 %) after 120 and 144 h, respectively. The γ-linolenic acid titer of 0.75 ± 0.0 g/L was greatest in S3 after 48 h. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the transcription of key genes involved in lipid accumulation. The glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase genes showed increased expression levels. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the biochemical profile during fermentation strategies. Optimal abiotic factors for production efficiency included pH 6.5, 25-26 °C, 15 % (v/v) inoculum, 500 rpm, 20 %-30 % dissolved oxygen, and 120 h fermentation. Glucose co-feeding offers valuable insights to develop effective fermentation strategies for lipid production.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tahira Naz
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Shaoqi Li
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiuwen Wang
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|