1
|
Wang D, Zeng N, Li C, Li Z, Zhang N, Li B. Fungal biofilm formation and its regulatory mechanism. Heliyon 2024; 10:e32766. [PMID: 38988529 PMCID: PMC11233959 DOI: 10.1016/j.heliyon.2024.e32766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.
Collapse
Affiliation(s)
- Dandan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, PR China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| |
Collapse
|
2
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
3
|
Di Lodovico S, Petrini M, D'Amico E, Di Fermo P, Diban F, D'Arcangelo S, Piattelli A, Cellini L, Iezzi G, Di Giulio M, D'Ercole S. Complex magnetic fields represent an eco-sustainable technology to counteract the resistant Candida albicans growth without affecting the human gingival fibroblasts. Sci Rep 2023; 13:22067. [PMID: 38086849 PMCID: PMC10716184 DOI: 10.1038/s41598-023-49323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.
Collapse
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Morena Petrini
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Emira D'Amico
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Sara D'Arcangelo
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107, Murcia, Spain
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Simonetta D'Ercole
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Khan F, Jeong GJ, Javaid A, Thuy Nguyen Pham D, Tabassum N, Kim YM. Surface adherence and vacuolar internalization of bacterial pathogens to the Candida spp. cells: Mechanism of persistence and propagation. J Adv Res 2023; 53:115-136. [PMID: 36572338 PMCID: PMC10658324 DOI: 10.1016/j.jare.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The co-existence of Candida albicans with the bacteria in the host tissues and organs displays interactions at competitive, antagonistic, and synergistic levels. Several pathogenic bacteria take advantage of such types of interaction for their survival and proliferation. The chemical interaction involves the signaling molecules produced by the bacteria or Candida spp., whereas the physical attachment occurs by involving the surface proteins of the bacteria and Candida. In addition, bacterial pathogens have emerged to internalize inside the C. albicans vacuole, which is one of the inherent properties of the endosymbiotic relationship between the bacteria and the eukaryotic host. AIM OF REVIEW The interaction occurring by the involvement of surface protein from diverse bacterial species with Candida species has been discussed in detail in this paper. An in silico molecular docking study was performed between the surface proteins of different bacterial species and Als3P of C. albicans to explain the molecular mechanism involved in the Als3P-dependent interaction. Furthermore, in order to understand the specificity of C. albicans interaction with Als3P, the evolutionary relatedness of several bacterial surface proteins has been investigated. Furthermore, the environmental factors that influence bacterial pathogen internalization into the Candida vacuole have been addressed. Moreover, the review presented future perspectives for disrupting the cross-kingdom interaction and eradicating the endosymbiotic bacterial pathogens. KEY SCIENTIFIC CONCEPTS OF REVIEW With the involvement of cross-kingdom interactions and endosymbiotic relationships, the bacterial pathogens escape from the environmental stresses and the antimicrobial activity of the host immune system. Thus, the study of interactions between Candida and bacterial pathogens is of high clinical significance.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Lueyar TK, Karygianni L, Attin T, Thurnheer T. Dynamic interactions between Candida albicans and different streptococcal species in a multispecies oral biofilm. Microbiologyopen 2023; 12:e1381. [PMID: 37877656 PMCID: PMC10548025 DOI: 10.1002/mbo3.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
The oral cavity is colonized by a plethora of bacteria, fungi, and archaea, including streptococci of the mitis group (MSG) and the yeast Candida albicans. This study aims to investigate the role of streptococcal species in the development of oral biofilm and the cross-kingdom interactions between some of the members of the commensal MSG and the pathogen yeast C. albicans using a multispecies supragingival biofilm model. A total of nine different in vitro biofilms were grown, quantified with culture analyses, and visually examined with confocal laser scanning microscopy (CLSM). A four-species biofilm without any streptococcal species was used as a basic biofilm. In each subsequent inoculum, one species of MSG was added and afterward combined with Streptococcus mutans. The eight-species biofilm contained all eight strains used in this study. Culture analyses showed that the presence of S. mutans in a four-species biofilm with Streptococcus oralis or S. oralis subsp. tigurinus did not differ significantly in C. albicans colony-forming unit (CFU) counts compared to biofilms without S. mutans. However, compared to other mitis species, Streptococcus gordonii combined with S. mutans resulted in the lowest CFUs of C. albicans. Visual observation by CLSM showed that biofilms containing both S. mutans and one species of MSG seemed to induce the formation of filamentous form of C. albicans. However, when several species of MSG were combined with S. mutans, C. albicans was again found in its yeast form.
Collapse
Affiliation(s)
- Tenzin Kunchok Lueyar
- Division of Clinical Oral Microbiology and Immunology, Clinic of Conservative and Preventive DentistryCenter of Dental Medicine, University of ZurichZurichSwitzerland
| | - Lamprini Karygianni
- Division of Clinical Oral Microbiology and Immunology, Clinic of Conservative and Preventive DentistryCenter of Dental Medicine, University of ZurichZurichSwitzerland
| | - Thomas Attin
- Division of Clinical Oral Microbiology and Immunology, Clinic of Conservative and Preventive DentistryCenter of Dental Medicine, University of ZurichZurichSwitzerland
| | - Thomas Thurnheer
- Division of Clinical Oral Microbiology and Immunology, Clinic of Conservative and Preventive DentistryCenter of Dental Medicine, University of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Yacob N, Ahmad NA, Safii SH, Yunus N, Abdul Razak F. Is microbial adhesion affected by the build orientation of a 3-dimensionally printed denture base resin? J Prosthet Dent 2023:S0022-3913(23)00268-8. [PMID: 37210224 DOI: 10.1016/j.prosdent.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
STATEMENT OF PROBLEM How the build orientation of a 3-dimensionally (3D) printed denture affects microbial adhesion is unclear. PURPOSE The purpose of this in vitro study was to compare the adherence of Streptococcus spp. and Candida spp. on 3D-printed denture bases prepared at different build orientations with conventional heat-polymerized resin. MATERIAL AND METHODS Resin specimens (n=5) with standardized 28.3 mm2 surface area were 3D printed at 0 and 60 degrees, and heat-polymerized (3DP-0, 3DP-60, and HP, respectively). The specimens were placed in a Nordini artificial mouth (NAM) model and exposed to 2 mL of clarified whole saliva to create a pellicle-coated substratum. Suspensions of Streptococcus mitis and Streptococcus sanguinis, Candida albicans and Candida glabrata, and a mixed species, each at 108 cfu/mL were pumped separately into the model for 24 hours to promote microbial adhesion. The resin specimens were then removed, placed in fresh media, and sonicated to dislodge attached microbes. Each suspension (100 μL) was aliquoted and spread on agar plates for colony counting. The resin specimens were also examined under a scanning electron microscope. The interaction between types of specimen and groups of microbes was examined with 2-way ANOVA and then further analysis with Tukey honest significant test and Kruskal-Wallis post hoc tests (α=.05). RESULTS A significant interaction was observed between the 3DP-0, 3DP-60, and HP specimen types and the groups of microbes adhering to the corresponding denture resin specimens (P<.05). The difference was statistically significant among 3DP-0, 3DP-60, and HP specimens (P<.05). The adherence of candida was 3.98-times lower on the 3DP-0 than that of HP (P<.05). However, adherence of the mixed-species microbes and streptococci on the 3DP-60 were 1.75 times and 2-fold higher, respectively (P<.05). The scanning electron micrographs showed that 3DP-0 exhibited the lowest microbial adherence compared with HP and 3DP-60. CONCLUSIONS Adherence affinity of denture base resin is affected by the build orientation rather than by the group of different microbes. Three-dimensionally printed denture base resin fabricated at a 0-degree build orientation exhibited low affinity for microbial adhesion. Three-dimensionally printed dentures may reduce microbial adhesion when printed at a 0-degree build orientation.
Collapse
Affiliation(s)
- Norlela Yacob
- Graduate student, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Lecturer, Department of Conservative Dentistry & Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia
| | - Norasmatul Akma Ahmad
- Associate Professor, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Syarida Hasnur Safii
- Associate Professor, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Norsiah Yunus
- Professor, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Fathilah Abdul Razak
- Professor, Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
8
|
Khan F, Tabassum N, Jeong GJ, Jung WK, Kim YM. Inhibition of Mixed Biofilms of Candida albicans and Staphylococcus aureus by β-Caryophyllene-Gold Nanoparticles. Antibiotics (Basel) 2023; 12:antibiotics12040726. [PMID: 37107087 PMCID: PMC10134979 DOI: 10.3390/antibiotics12040726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Polymicrobial biofilms, consisting of fungal and bacterial pathogens, often contribute to the failure of antimicrobial treatment. The growing resistance of pathogenic polymicrobial biofilms to antibiotics has led to the development of alternative strategies to combat polymicrobial diseases. To this end, nanoparticles synthesized using natural molecules have received significant attention for disease treatment. Here, gold nanoparticles (AuNPs) were synthesized using β-caryophyllene, a bioactive compound isolated from various plant species. The shape, size, and zeta potential of the synthesized β-c-AuNPs were found to be non-spherical, 17.6 ± 1.2 nm, and -31.76 ± 0.73 mV, respectively. A mixed biofilm of Candida albicans and Staphylococcus aureus was used to test the efficacy of the synthesized β-c-AuNPs. The results revealed a concentration-dependent inhibition of the initial stages of formation of single-species as well as mixed biofilms. Furthermore, β-c-AuNPs also eliminated mature biofilms. Therefore, using β-c-AuNPs to inhibit biofilm and eradicate bacterial-fungal mixed biofilms represents a promising therapeutic approach for controlling polymicrobial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
9
|
Loaiza Oliva M, Morales Uchima SM, Puerta Suárez J, Mesa Arango AC, Martínez Pabón MC. Lippia origanoides derivatives in vitro evaluation on polymicrobial biofilms: Streptococcus mutans, Lactobacillus rhamnosus and Candida albicans. Arch Oral Biol 2023; 148:105656. [PMID: 36827930 DOI: 10.1016/j.archoralbio.2023.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE This work evaluated the Lippia origanoides derivatives in vitro effect on polymicrobial biofilms of Streptococcus mutans, Lactobacillus rhamnosus and Candida albicans. Additionally, the cytotoxic effect of the oils on human skin keratinocytes (HaCaT) and fibroblasts of the periodontal ligament (FLP) cell lines was evaluated. DESIGN The minimum inhibitory concentration, the inhibitory activity on monomicrobial (S. mutans) and polymicrobial biofilm (S. mutans, L. rhamnosus and C. albicans) of L. origanoides four essential oils and terpenes (thymol and carvacrol) were evaluated. The cytotoxic effect of each one of the compounds was measured, and all the tests were compared against chlorhexidine. RESULTS All the evaluated compounds reached an inhibition percentage of S. mutans monomicrobial biofilms formation of 100 % at 600 µg/mL (p < 0.0001). The highest concentration (2 MIC) eradicated 100 % of S. mutans-preformed biofilms after 5 min L. origanoides carvacrol + thymol and thymol chemotypes showed marked reductions in topography, the number of microbial cells and extracellular matrix on polymicrobial biofilm. The cytotoxic effect of the compounds was very similar to chlorhexidine. CONCLUSIONS L. origanoides essential oils have an inhibitory effect on mono and polymicrobial biofilms. The oils present a similar cytotoxic effect to chlorhexidine on HaCaT and FLP cell lines. However, including these compounds in formulations for clinical use is an exciting proposal yet to be investigated.
Collapse
Affiliation(s)
- Manuela Loaiza Oliva
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | | | - Jenniffer Puerta Suárez
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Ana Cecilia Mesa Arango
- Group of Investigative Dermatology, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
10
|
Loaiza-Oliva M, Arias-Durango L, Martínez-Pabón MC. The Cytotoxic and Inhibitory Effects of Plant Derivatives on Candida albicans Biofilms: A Scoping Review. Molecules 2022; 28:130. [PMID: 36615324 PMCID: PMC9822484 DOI: 10.3390/molecules28010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Candida albicans infections are related to biofilm formation. The increase in antifungal resistance and their adverse effects have led to the search for therapeutic options as plant derivatives. This scoping review aims to identify the current status of in vitro research on the cytotoxicity and inhibitory effects of plant derivatives on C. albicans biofilms. In this study, PRISMA items were followed. After recognition of the inclusion criteria, full texts were read and disagreements were resolved with a third party. A risk of bias assessment was performed, and information was summarized using Microsoft Office Excel. Thirty-nine papers fulfilling the selection criteria were included. The risk of bias analysis identified most of the studies as low risk. Studies evaluated plant derivatives such as extracts, essential oils, terpenes, alkaloids, flavonoids and polyphenols. Some studies evaluated the inhibition of C. albicans biofilm formation, inhibition on preformed biofilms or both. The derivatives at concentrations greater than or equal to those that have an inhibitory effect on C. albicans biofilms, without showing cytotoxicity, include magnoflorin, ellagic acid, myricetin and eucarobustol from Eucalyptus robusta and, as the works in which these derivatives were studied are of good quality, it is desirable to carry out study in other experimental phases, with methodologies that generate comparable information.
Collapse
|
11
|
Butcher MC, Short B, Veena CLR, Bradshaw D, Pratten JR, McLean W, Shaban SMA, Ramage G, Delaney C. Meta-analysis of caries microbiome studies can improve upon disease prediction outcomes. APMIS 2022; 130:763-777. [PMID: 36050830 PMCID: PMC9825849 DOI: 10.1111/apm.13272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
As one of the most prevalent infective diseases worldwide, it is crucial that we not only know the constituents of the oral microbiome in dental caries but also understand its functionality. Herein, we present a reproducible meta-analysis to effectively report the key components and the associated functional signature of the oral microbiome in dental caries. Publicly available sequencing data were downloaded from online repositories and subjected to a standardized analysis pipeline before analysis. Meta-analyses identified significant differences in alpha and beta diversities of carious microbiomes when compared to healthy ones. Additionally, machine learning and receiver operator characteristic analysis showed an ability to discriminate between healthy and disease microbiomes. We identified from importance values, as derived from random forest analyses, a group of genera, notably containing Selenomonas, Aggregatibacter, Actinomyces and Treponema, which can be predictive of dental caries. Finally, we propose the most appropriate study design for investigating the microbiome of dental caries by synthesizing the studies, which had the most accurate differentiation based on random forest modelling. In conclusion, we have developed a non-biased, reproducible pipeline, which can be applied to microbiome meta-analyses of multiple diseases, but importantly we have derived from our meta-analysis a key group of organisms that can be used to identify individuals at risk of developing dental caries based on oral microbiome inhabitants.
Collapse
Affiliation(s)
- Mark C. Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Chandra Lekha Ramalingam Veena
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | | | - William McLean
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Suror Mohamad Ahmad Shaban
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
12
|
Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11121731. [PMID: 36551388 PMCID: PMC9774821 DOI: 10.3390/antibiotics11121731] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
- Correspondence:
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala 671316, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Mahima S. Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pattnaik Subhaswaraj
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Sambalpur 768019, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
13
|
Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions. Proc Natl Acad Sci U S A 2022; 119:e2209699119. [PMID: 36191236 PMCID: PMC9565521 DOI: 10.1073/pnas.2209699119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fungi and bacteria form multicellular biofilms causing many human infections. How such distinctive microbes act in concert spatiotemporally to coordinate disease-promoting functionality remains understudied. Using multiscale real-time microscopy and computational analysis, we investigate the dynamics of fungal and bacterial interactions in human saliva and their biofilm development on tooth surfaces. We discovered structured interkingdom assemblages displaying emergent functionalities to enhance collective surface colonization, survival, and growth. Further analyses revealed an unexpected group-level surface mobility with coordinated “leaping-like” and “walking-like” motions while continuously growing. These mobile groups of growing cells promote rapid spatial spreading of both species across surfaces, causing more extensive tooth decay. Our findings show multicellular interkingdom assemblages acting like supraorganisms with functionalities that cannot be achieved without coassembly. Fungi and bacteria often engage in complex interactions, such as the formation of multicellular biofilms within the human body. Knowledge about how interkingdom biofilms initiate and coalesce into higher-level communities and which functions the different species carry out during biofilm formation remain limited. We found native-state assemblages of Candida albicans (fungi) and Streptococcus mutans (bacteria) with highly structured arrangement in saliva from diseased patients with childhood tooth decay. Further analyses revealed that bacterial clusters are attached within a network of fungal yeasts, hyphae, and exopolysaccharides, which bind to surfaces as a preassembled cell group. The interkingdom assemblages exhibit emergent functions, including enhanced surface colonization and growth rate, stronger tolerance to antimicrobials, and improved shear resistance, compared to either species alone. Notably, we discovered that the interkingdom assemblages display a unique form of migratory spatial mobility that enables fast spreading of biofilms across surfaces and causes enhanced, more extensive tooth decay. Using mutants, selective inactivation of species, and selective matrix removal, we demonstrate that the enhanced stress resistance and surface mobility arise from the exopolymeric matrix and require the presence of both species in the assemblage. The mobility is directed by fungal filamentation as hyphae extend and contact the surface, lifting the assemblage with a “forward-leaping motion.” Bacterial cell clusters can “hitchhike” on this mobile unit while continuously growing, to spread across the surface three-dimensionally and merge with other assemblages, promoting community expansion. Together, our results reveal an interkingdom assemblage in human saliva that behaves like a supraorganism, with disease-causing emergent functionalities that cannot be achieved without coassembly.
Collapse
|
14
|
Łysik D, Deptuła P, Chmielewska S, Bucki R, Mystkowska J. Degradation of Polylactide and Polycaprolactone as a Result of Biofilm Formation Assessed under Experimental Conditions Simulating the Oral Cavity Environment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7061. [PMID: 36295125 PMCID: PMC9604997 DOI: 10.3390/ma15207061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Polylactide (PLA) and polycaprolactone (PCL) are biodegradable and bioabsorbable thermoplastic polymers considered as promising materials for oral applications. However, any abiotic surface used, especially in areas naturally colonized by microorganisms, provides a favorable interface for microbial growth and biofilm development. In this study, we investigated the biofilm formation of C. krusei and S. mutans on the surface of PLA and PCL immersed in the artificial saliva. Using microscopic (AFM, CLSM) observations and spectrometric measurements, we assessed the mass and topography of biofilm that developed on PLA and PCL surfaces. Incubated up to 56 days in specially prepared saliva and microorganisms medium, solid polymer samples were examined for surface properties (wettability, roughness, elastic modulus of the surface layer), structure (molecular weight, crystallinity), and mechanical properties (hardness, tensile strength). It has been shown that biofilm, especially S. mutans, promotes polymer degradation. Our findings indicate the need for additional antimicrobial strategies for the effective oral applications of PLA and PCL.
Collapse
Affiliation(s)
- Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Piotr Deptuła
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Sylwia Chmielewska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| |
Collapse
|
15
|
Li H, Miao MX, Jia CL, Cao YB, Yan TH, Jiang YY, Yang F. Interactions between Candida albicans and the resident microbiota. Front Microbiol 2022; 13:930495. [PMID: 36204612 PMCID: PMC9531752 DOI: 10.3389/fmicb.2022.930495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic human fungal pathogen. It usually dwells in the human body as a commensal, however, once in its pathogenic state, it causes diseases ranging from debilitating superficial to life-threatening systemic infections. The switch from harmless colonizer to virulent pathogen is, in most cases, due to perturbation of the fungus-host-microbiota interplay. In this review, we focused on the interactions between C. albicans and the host microbiota in the mouth, gut, blood, and vagina. We also highlighted important future research directions. We expect that the evaluation of these interplays will help better our understanding of the etiology of fungal infections and shed new light on the therapeutic approaches.
Collapse
Affiliation(s)
- Hao Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: Tian-hua Yan,
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Yuan-ying Jiang,
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Feng Yang,
| |
Collapse
|
16
|
Cvanova M, Ruzicka F, Kukletova M, Lipovy B, Gachova D, Izakovicova Holla L, Danek Z, Hola V, Bartosova M, Jarkovsky J, Dusek L, Borilova Linhartova P. Candida species and selected behavioral factors co-associated with severe early childhood caries: Case-control study. Front Cell Infect Microbiol 2022; 12:943480. [PMID: 35959372 PMCID: PMC9357982 DOI: 10.3389/fcimb.2022.943480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Severe Early Childhood Caries (sECC) is a multifactorial disease associated with the occurrence of specific oral microorganisms and other environmental, behavioral, and genetic factors. This study aimed to construct a multivariable model including the occurrence of Candida spp. and selected behavioral factors (length of breastfeeding, serving sweet beverages and beginning of brushing child's teeth) to determine their relationships to the occurrence of sECC. In this case-control study 164 children with sECC and 147 children without dental caries were included. MALDI-TOF MS and multiplex qPCR were used to identify Candida spp. and selected bacteria in dental plaque samples, respectively. A questionnaire on oral hygiene, diet, and children's health was filled in by the parents. The constructed multivariable logistic regression model showed an independent influence of the microbial and behavioral factors in sECC etiopathogenesis. The occurrence of C. albicans and C. dubliniensis was associated with higher odds of sECC development (odds ratio, OR: 9.62 and 16.93, respectively), together with breastfeeding of 6 months or less (OR: 2.71), exposure to sweet beverages (OR: 3.77), and starting to brush child's teeth after the 12th month of age (OR: 4.10), all statistically significant (p < 0.01). Considering the high occurrence of C. albicans and C. dubliniensis in dental plaque in children with sECC, we propose them as "keystone pathogens" and risk factors for sECC. The models showed that presence of specific species of Candida in dental plaque may be a better descriptor of sECC than the mentioned behavioral factors.
Collapse
Affiliation(s)
- Michaela Cvanova
- RECETOX, Faculty of Science, Masaryk University Kotlarska 2, Brno, Czechia
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Filip Ruzicka
- Clinic of Microbiology, Institution Shared with St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martina Kukletova
- Clinic of Stomatology, Institution Shared with St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Bretislav Lipovy
- Clinic of Burns and Plastic Surgery, Institution shared with University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Daniela Gachova
- RECETOX, Faculty of Science, Masaryk University Kotlarska 2, Brno, Czechia
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdenek Danek
- RECETOX, Faculty of Science, Masaryk University Kotlarska 2, Brno, Czechia
- Clinic of Maxillofacial Surgery, Institution shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Veronika Hola
- Clinic of Microbiology, Institution Shared with St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michaela Bartosova
- Clinic of Stomatology, Institution Shared with St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiri Jarkovsky
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ladislav Dusek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Borilova Linhartova
- RECETOX, Faculty of Science, Masaryk University Kotlarska 2, Brno, Czechia
- Clinic of Stomatology, Institution Shared with St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
- Clinic of Maxillofacial Surgery, Institution shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Hwang G. In it together: Candida-bacterial oral biofilms and therapeutic strategies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:183-196. [PMID: 35218311 PMCID: PMC8957517 DOI: 10.1111/1758-2229.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
Under natural environmental settings or in the human body, the majority of microorganisms exist in complex polymicrobial biofilms adhered to abiotic and biotic surfaces. These microorganisms exhibit symbiotic, mutualistic, synergistic, or antagonistic relationships with other species during biofilm colonization and development. These polymicrobial interactions are heterogeneous, complex and hard to control, thereby often yielding worse outcomes than monospecies infections. Concerning fungi, Candida spp., in particular, Candida albicans is often detected with various bacterial species in oral biofilms. These Candida-bacterial interactions may induce the transition of C. albicans from commensal to pathobiont or dysbiotic organism. Consequently, Candida-bacterial interactions are largely associated with various oral diseases, including dental caries, denture stomatitis, periodontitis, peri-implantitis, and oral cancer. Given the severity of oral diseases caused by cross-kingdom consortia that develop hard-to-remove and highly drug-resistant biofilms, fundamental research is warranted to strategically develop cost-effective and safe therapies to prevent and treat cross-kingdom interactions and subsequent biofilm development. While studies have shed some light, targeting fungal-involved polymicrobial biofilms has been limited. This mini-review outlines the key features of Candida-bacterial interactions and their impact on various oral diseases. In addition, current knowledge on therapeutic strategies to target Candida-bacterial polymicrobial biofilms is discussed.
Collapse
Affiliation(s)
- Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding Author: Geelsu Hwang,
| |
Collapse
|
18
|
Souza JG, Costa RC, Sampaio AA, Abdo VL, Nagay BE, Castro N, Retamal-Valdes B, Shibli JA, Feres M, Barão VA, Bertolini M. Cross-kingdom microbial interactions in dental implant-related infections: is Candida albicans a new villain? iScience 2022; 25:103994. [PMID: 35313695 PMCID: PMC8933675 DOI: 10.1016/j.isci.2022.103994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Candida albicans, an oral fungal opportunistic pathogen, has shown the ability to colonize implant surfaces and has been frequently isolated from biofilms associated with dental implant-related infections, possibly due to its synergistic interactions with certain oral bacteria. Moreover, evidence suggests that this cross-kingdom interaction on implant can encourage bacterial growth, leading to increased fungal virulence and mucosal damage. However, the role of Candida in implant-related infections has been overlooked and not widely explored or even considered by most microbiological analyses and therapeutic approaches. Thus, we summarized the scientific evidence regarding the ability of C. albicans to colonize implant surfaces, interact in implant-related polymicrobial biofilms, and its possible role in peri-implant infections as far as biologic plausibility. Next, a systematic review of preclinical and clinical studies was conducted to identify the relevance and the gap in the existing literature regarding the role of C. albicans in the pathogenesis of peri-implant infections.
Collapse
Affiliation(s)
- João G.S. Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Corresponding author
| | - Raphael C. Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Aline A. Sampaio
- Department of Clinic, Pathology and Dental Surgery, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Victória L. Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Bruna E. Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Nidia Castro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Jamil A. Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Corresponding author
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
19
|
Alshanta OA, Albashaireh K, McKloud E, Delaney C, Kean R, McLean W, Ramage G. Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm 2022; 4:100072. [PMID: 35313556 PMCID: PMC8933684 DOI: 10.1016/j.bioflm.2022.100072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Om Alkhir Alshanta
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Khawlah Albashaireh
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Emily McKloud
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Christopher Delaney
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - William McLean
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Gordon Ramage
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
- Corresponding author.
| |
Collapse
|
20
|
|
21
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Priya A, Selvaraj A, Divya D, Karthik Raja R, Pandian SK. In Vitro and In Vivo Anti-infective Potential of Thymol Against Early Childhood Caries Causing Dual Species Candida albicans and Streptococcus mutans. Front Pharmacol 2021; 12:760768. [PMID: 34867378 PMCID: PMC8640172 DOI: 10.3389/fphar.2021.760768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Early childhood caries (ECC), a severe form of caries due to cross-kingdom interaction of Candida albicans and Streptococcus mutans, is a serious childhood dental disease that affects majority of the children with poor background. The present study investigated the anti-infective potential of thymol against C. albicans and S. mutans dual species for the management of ECC. Thymol, a plant derivative of the monoterpene group, has been well known for its numerous biological activities. Thymol at 300 μg/ml concentration completely arrested growth and proliferation of dual species of C. albicans and S. mutans. Rapid killing efficacy of pathogens, within a span of 2 min, was observed in the time kill assay. In addition, at sub-inhibitory concentrations, thymol effectively diminished the biofilm formation and virulence of both C. albicans and S. mutans such as yeast-to-hyphal transition, hyphal-to-yeast transition, filamentation, and acidogenicity and acidurity, respectively, in single and dual species state. qPCR analysis was consistent with virulence assays. Also, through the invertebrate model system Galleria mellonella, in vivo toxicity and efficacy of the phytocompound was assessed, and it was found that no significant toxic effect was observed. Moreover, thymol was found to be proficient in diminishing the infection under single and dual state in in vivo condition. Overall, the results from the present study illustrate the anti-infective potential of thymol against the ECC-causing dual species, C. albicans and S. mutans, and the applicability of thymol in medicated dentifrice formulation.
Collapse
Affiliation(s)
- Arumugam Priya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, India
| | | | - Dass Divya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, India
| | | | | |
Collapse
|
23
|
Zordan-Bronzel CL, Tanomaru-Filho M, Torres FFE, Chávez-Andrade GM, Rodrigues EM, Guerreiro-Tanomaru JM. Physicochemical Properties, Cytocompatibility and Antibiofilm Activity of a New Calcium Silicate Sealer. Braz Dent J 2021; 32:8-18. [PMID: 34787254 DOI: 10.1590/0103-6440202103314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/16/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the physicochemical properties, cytocompatibility and antibiofilm activity of a new calcium silicate-based endodontic sealer, Sealer Plus BC (MK Life, Brazil), in comparison with TotalFill BC Sealer (FKG Dentaire SA, Switzerland) and AH Plus (Dentsply, Germany). Setting time and flow were evaluated based on ISO 6876 standard. The pH was evaluated after different periods, and radiopacity by radiographic analysis (mmAl). Solubility (% mass loss) and volumetric change (by micro-CT) were assessed after 30 days of immersion in distilled water. Cytocompatibility was assessed by methyltetrazolium (MTT) and neutral red (NR) assays, after exposure of Saos-2 cells to the sealer extract for 24 h. An additional analysis was performed by using MTT assay after 1, 3 and 7 days of exposure of Saos-2 to the sealers 1:8 dilution extracts. Antibiofilm activity against Enterococcus faecalis and/or Candida albicans was evaluated by crystal violet assay and modified direct contact test. The physicochemical properties were analyzed using ANOVA/Tukey tests; MTT and NR data were analyzed by ANOVA and Bonferroni tests; the antimicrobial tests were analyzed by Kruskal-Wallis and Dunn tests (α=0.05). Sealer Plus BC had proper setting time, radiopacity, flow and alkalization capacity. Sealer Plus BC was significantly more soluble than AH Plus (p<0.05) and presented volumetric change similar to AH Plus and TotalFill BC (p>0.05). Sealer Plus BC presented antibiofilm activity and no cytotoxic effect. In conclusion, although Sealer Plus BC had higher solubility, this sealer showed proper physicochemical properties, cytocompatibility, and antibiofilm activity.
Collapse
Affiliation(s)
| | - Mario Tanomaru-Filho
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| | | | | | - Elisandra Marcia Rodrigues
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, SP, Brazil
| | | |
Collapse
|
24
|
Temperatures Outside the Optimal Range for Helicobacter pylori Increase Its Harboring within Candida Yeast Cells. BIOLOGY 2021; 10:biology10090915. [PMID: 34571792 PMCID: PMC8472035 DOI: 10.3390/biology10090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Helicobacter pylori is associated with the development of diverse gastric pathologies. This bacterium has been shown to invade yeast to protect itself from environmental factors such as changes in pH, the presence of antibiotics or variations in nutrients that affect their viability. However, intra-yeast H. pylori has been reported from other sources, including food, or when the storage temperature is outside the optimal growth range for H. pylori, which is 30–37 °C. It is necessary to continue investigating the environmental factors that participate in the entry of the bacteria into yeast. In this work, it was evaluated whether temperature changes promote the entry of H. pylori into Candida and whether this endosymbiosis favors bacterial viability. It was observed that H. pylori significantly increased its invasiveness to yeast when these two microorganisms were co-cultured under 40 °C. The results support that H. pylori invades yeasts to protect itself from stressful environments, favoring its viability in these environments. In addition, it can be suggested that this microorganism would use yeast as a transmission vehicle, thereby contributing to its dissemination in the population. However, the latter still needs to be confirmed. Abstract Helicobacter pylori is capable of entering into yeast, but the factors driving this endosymbiosis remain unknown. This work aimed to determine if temperatures outside the optimal range for H. pylori increase its harboring within Candida. H. pylori strains were co-cultured with Candida strains in Brucella broth supplemented with 5% fetal bovine serum and incubated at 4, 25, 37 or 40 °C. After co-culturing, yeasts containing bacteria-like bodies (Y-BLBs) were observed by optical microscopy, and the bacterium were identified as H. pylori by FISH. The H. pylori 16S rRNA gene was amplified from the total DNA of Y-BLBs. The viability of intra-yeast H. pylori cells was confirmed using a viability assay. All H. pylori strains were capable of entering into all Candida strains assayed. The higher percentages of Y-BLBs are obtained at 40 °C with any of the Candida strains. H pylori also increased its harboring within yeast in co-cultures incubated at 25 °C when compared to those incubated at 37 °C. In conclusion, although H. pylori grew significantly at 40 °C, this temperature increased its harboring within Candida. The endosymbiosis between both microorganisms is strain-dependent and permits bacterial cells to remain viable under the stressing environmental conditions assayed.
Collapse
|
25
|
Hu Y, Niu Y, Ye X, Zhu C, Tong T, Zhou Y, Zhou X, Cheng L, Ren B. Staphylococcus aureus Synergized with Candida albicans to Increase the Pathogenesis and Drug Resistance in Cutaneous Abscess and Peritonitis Murine Models. Pathogens 2021; 10:pathogens10081036. [PMID: 34451500 PMCID: PMC8398722 DOI: 10.3390/pathogens10081036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
The mixed species of Staphylococcus aureus and Candida albicans can cause infections on skin, mucosa or bloodstream; however, mechanisms of their cross-kingdom interactions related to pathogenesis and drug resistance are still not clear. Here an increase of S. aureus proliferation and biofilm formation was observed in S. aureus and C. albicans dual-species culture, and the synergistic pathogenic effect was then confirmed in both local (cutaneous abscess) and systemic infection (peritonitis) murine models. According to the transcriptome analysis of the dual-species culture, virulence factors of S. aureus were significantly upregulated. Surprisingly, the beta-lactams and vancomycin-resistant genes in S. aureus as well as azole-resistant genes in C. albicans were also significantly increased. The synergistic effects on drug resistance to both antibacterial and antifungal agents were further proved both in vitro and in cutaneous abscess and peritonitis murine models treated by methicillin, vancomycin and fluconazole. The synergistic interactions between S. aureus and C. albicans on pathogenesis and drug resistance highlight the importance of targeting the microbial interactions in polyspecies-associated infections.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Ting Tong
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
- Correspondence: (X.Z.); (L.C.); (B.R.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
- Correspondence: (X.Z.); (L.C.); (B.R.)
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
- Correspondence: (X.Z.); (L.C.); (B.R.)
| |
Collapse
|
26
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
27
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
28
|
Luo Y, McAuley DF, Fulton CR, Sá Pessoa J, McMullan R, Lundy FT. Targeting Candida albicans in dual-species biofilms with antifungal treatment reduces Staphylococcus aureus and MRSA in vitro. PLoS One 2021; 16:e0249547. [PMID: 33831044 PMCID: PMC8031443 DOI: 10.1371/journal.pone.0249547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/20/2021] [Indexed: 11/18/2022] Open
Abstract
Polymicrobial biofilms consisting of fungi and bacteria are frequently formed on endotracheal tubes and may contribute to development of ventilator associated pneumonia (VAP) in critically ill patients. This study aimed to determine the role of early Candida albicans biofilms in supporting dual-species (dual-kingdom) biofilm formation with respiratory pathogens in vitro, and investigated the effect of targeted antifungal treatment on bacterial cells within the biofilms. Dual-species biofilm formation between C. albicans and three respiratory pathogens commonly associated with VAP (Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus) was studied using quantitative PCR. It was shown that early C. albicans biofilms enhanced the numbers of E. coli and S. aureus (including methicillin resistant S. aureus; MRSA) but not P. aeruginosa within dual-species biofilms. Transwell assays demonstrated that contact with C. albicans was required for the increased bacterial cell numbers observed. Total Internal Reflection Fluorescence microscopy showed that both wild type and hyphal-deficient C. albicans provided a scaffold for initial bacterial adhesion in dual species biofilms. qPCR results suggested that further maturation of the dual-species biofilm significantly increased bacterial cell numbers, except in the case of E.coli with hyphal-deficient C. albicans (Ca_gcn5Δ/Δ). A targeted preventative approach with liposomal amphotericin (AmBisome®) resulted in significantly decreased numbers of S. aureus in dual-species biofilms, as determined by propidium monoazide-modified qPCR. Similar results were observed when dual-species biofilms consisting of clinical isolates of C. albicans and MRSA were treated with liposomal amphotericin. However, reductions in E. coli numbers were not observed following liposomal amphotericin treatment. We conclude that early C. albicans biofilms have a key supporting role in dual-species biofilms by enhancing bacterial cell numbers during biofilm maturation. In the setting of increasing antibiotic resistance, an important and unexpected consequence of antifungal treatment of dual-species biofilms, is the additional benefit of decreased growth of multi-drug resistant bacteria such as MRSA, which could represent a novel future preventive strategy.
Collapse
Affiliation(s)
- Yu Luo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health & Social Care Trust, Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, United Kingdom
| | - Catherine R. Fulton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joana Sá Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ronan McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
30
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
31
|
Clinical Characteristics and Relevance of Oral Candida Biofilm in Tongue Smears. J Fungi (Basel) 2021; 7:jof7020077. [PMID: 33499213 PMCID: PMC7912297 DOI: 10.3390/jof7020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
Dimorphic Candida exist as commensal yeast carriages or infiltrate hyphae in the oral cavity. Here, we investigated the clinical relevance of Candida hyphae in non-pseudomembranous oral candidiasis (OC) by smears of tongue biofilms. We conducted a retrospective study of 2829 patients who had had tongue smears regardless of OC suspicion. Clinical characteristics were evaluated using a novel method of assessing hyphae. Clinical factors (moderate/severe stimulated pain, pain aggravated by stimulation, tongue dorsum appearance and initial topical antifungal use) were highly significant in the high-grade hyphae group but were statistically similar in the low-grade hyphae and non-observed hyphae group, suggesting low-grade hyphae infection as a subclinical OC state. In addition to erythematous candidiasis (EC), a new subtype named "morphologically normal symptomatic candidiasis" (MNSC) with specific pain patterns and normal tongue morphology was identified. MNSC had a significantly higher proportion of moderate and severe stimulated pain cases than EC. Low unstimulated salivary flow rate (<0.1 mL/min) was found to be a common risk factor in MNSC and EC. In non-pseudomembranous OC, pain patterns were dependent on Candida hyphae degree regardless of tongue dorsum morphology. Morphologic differences seen in high-grade hyphae infection were not associated with systemic diseases or nutritional deficiencies.
Collapse
|
32
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
33
|
Heydari S, Siavoshi F, Sarrafnejad A, Malekzadeh R. Coniochaeta fungus benefits from its intracellular bacteria to form biofilm and defend against other fungi. Arch Microbiol 2021; 203:1357-1366. [PMID: 33386870 DOI: 10.1007/s00203-020-02122-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
During cultivation of a gastric fungus, Coniochaeta polymorpha, growth of Nocardia colonies on top of the fungal culture raised the question whether bacteria originated from inside of fungus. In this study, the likelihood of intracellular origin of bacteria as well as interaction of two microorganisms was assessed. Fluorescence and electron microscopy showed occurrence of several bacterial cells in fungal cytoplasm. A thick biofilm was observed on the surface of co-culture compared with thin one on bacterial and none on fungal monocultures. Field emission scanning electron microscopy (FESEM) micrographs of co-culture showed a dense network of fungal and bacterial cells embedded in a slime-like layer. Dual cultures revealed antagonistic activity of both fungus and bacteria against three Candida species. These findings indicate that Nocardia isolate identified in this study originated from the inside of fungus C. polymorpha. Intracellular bacteria could benefit the fungal host by producing a rigid biofilm and an antifungal compound.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Candida albicans as an Essential "Keystone" Component within Polymicrobial Oral Biofilm Models? Microorganisms 2020; 9:microorganisms9010059. [PMID: 33379333 PMCID: PMC7823588 DOI: 10.3390/microorganisms9010059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence "biomarkers." Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms' responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential "keystone" components of oral biofilms.
Collapse
|
35
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
36
|
Alshanta OA, Alqahtani S, Shaban S, Albashaireh K, McLean W, Ramage G. Comparison of Three Endodontic Irrigant Regimens against Dual-Species Interkingdom Biofilms: Considerations for Maintaining the Status Quo. Antibiotics (Basel) 2020; 9:antibiotics9090634. [PMID: 32971912 PMCID: PMC7558056 DOI: 10.3390/antibiotics9090634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/27/2022] Open
Abstract
Endodontic infections are often interkingdom biofilms, though current clinical management rarely considers this phenomenon. This study aimed to evaluate new and standard endodontic antimicrobial regimens against simple and complex Candida albicans and Enterococcus faecalis mono- and dual-species biofilms. C. albicans and E. faecalis mono- and dual-species biofilms were grown upon Thermanox™ coverslips and treated for 5 min with 3% NaOCl, 3% NaOCl followed by 17% EDTA, or 9% HEDP dissolved in 3% NaOCl. The number of cells remaining immediately after treatment at 0 h and after 72 h of regrowth were assessed using real-time quantitative PCR. All three treatment arms showed a similar positive antimicrobial effect on C. albicans and E. faecalis in both mono- and dual-species biofilms following initial treatment, resulting in ≥98% reduction in colony forming equivalent (CFE). Regardless of species or biofilm type (mono- or dual- species), the antimicrobial effect of NaOCl:HEDP mixture was comparable to that of NaOCl alone, with both showing significant regrowth after 72 h, whereas sequential treatment with NaOCl and EDTA consistently prevented significant regrowth. Our data suggest that sequential irrigation with NaOCl and EDTA remains the antimicrobial strategy of choice as it significantly reduces biofilm persistence and regrowth in our experimental dual-species biofilm conditions.
Collapse
|
37
|
Wan SX, Tian J, Liu Y, Dhall A, Koo H, Hwang G. Cross-Kingdom Cell-to-Cell Interactions in Cariogenic Biofilm Initiation. J Dent Res 2020; 100:74-81. [PMID: 32853527 DOI: 10.1177/0022034520950286] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is known to form polymicrobial biofilms with various Streptococcus spp., including mitis and mutans group streptococci. Streptococcus gordonii (mitis group) has been shown to bind avidly to C. albicans hyphae via direct cell-to-cell interaction, while the cariogenic pathogen Streptococcus mutans (mutans group) interacts with the fungal cells via extracellular glucans. However, the biophysical properties of these cross-kingdom interactions at the single-cell level during the early stage of biofilm formation remain understudied. Here, we examined the binding forces between S. mutans (or S. gordonii) and C. albicans in the presence and absence of in situ glucans on the fungal surface using single-cell atomic force microscopy and their influence on biofilm initiation and subsequent development under cariogenic conditions. The data show that S. gordonii binding force to the C. albicans surface is significantly higher than that ofS. mutans to the fungal surface (~2-fold). However, S. mutans binding forces are dramatically enhanced when the C. albicans cell surface is locally coated with extracellular glucans (~6-fold vs. uncoated C. albicans), which vastly exceeds the forces between S. gordonii andC. albicans. The enhanced binding affinity of S. mutans to glucan-coated C. albicans resulted in a larger structure during early biofilm initiation compared to S. gordonii-C. albicans biofilms. Ultimately, this resulted in S. mutans dominance composition in the 3-species biofilm model under cariogenic conditions. This study provides a novel biophysical aspect of Candida-streptococcal interaction whereby extracellular glucans may selectively favor S. mutans binding interactions with C. albicans during cariogenic biofilm development.
Collapse
Affiliation(s)
- S X Wan
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Tian
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Liu
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - G Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Srivastava N, Ellepola K, Venkiteswaran N, Chai LYA, Ohshima T, Seneviratne CJ. Lactobacillus Plantarum 108 Inhibits Streptococcus mutans and Candida albicans Mixed-Species Biofilm Formation. Antibiotics (Basel) 2020; 9:antibiotics9080478. [PMID: 32759754 PMCID: PMC7459986 DOI: 10.3390/antibiotics9080478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans is the principal biofilm forming oral pathogen associated with dental caries. Studies have shown that Candida albicans, a commensal oral fungus is capable of forming pathogenic mixed-species biofilms with S. mutans. The treatment of bacterial and fungal infections using conventional antimicrobial agents has become challenging due to the antimicrobial resistance of the biofilm mode of growth. The present study aimed to evaluate the efficacy of secretory components of Lactobacillus plantarum 108, a potentially promising probiotic strain, against S. mutans and C. albicans single and mixed-species biofilms. L. plantarum 108 supernatant inhibited S. mutans and C. albicans single-species biofilms as shown by XTT reduction assay, crystal violet assay, and colony forming units counting. The probiotic supernatant significantly inhibited the S. mutans and C. albicans mixed-species biofilm formation. The pre-formed mixed-species biofilms were also successfully reduced. Confocal microscopy showed poorly developed biofilm architecture in the probiotic supernatant treated biofilms. Moreover, the expression of S. mutans genes associated with glucosyltransferase activity and C. albicans hyphal specific genes (HWP1, ALS1 and ALS3) were down-regulated in the presence of the probiotic supernatant. Altogether, the data demonstrated the capacity of L. plantarum 108 supernatant to inhibit the S. mutans and C. albicans mixed-species biofilms. Herein, we provide a new insight on the potential of probiotic-based strategies to prevent bacterial-fungal mixed-species biofilms associated with dental caries.
Collapse
Affiliation(s)
- Neha Srivastava
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 11908, Singapore; (N.S.); or (K.E.); (N.V.)
| | - Kassapa Ellepola
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 11908, Singapore; (N.S.); or (K.E.); (N.V.)
- Center of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Nityasri Venkiteswaran
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 11908, Singapore; (N.S.); or (K.E.); (N.V.)
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System and Faculty of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Tomoko Ohshima
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Japan;
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, SingHealth Duke NUS Medical School, 5 Second Hospital Avenue, Singapore 168938, Singapore
- Correspondence: ; Tel.: +65-65767141
| |
Collapse
|
39
|
Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. MICROBIOLOGY-SGM 2020; 166:375-385. [PMID: 32068530 PMCID: PMC7377259 DOI: 10.1099/mic.0.000892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study detailed the responses of Galleria mellonella larvae to disseminated infection caused by co-infection with Candida albicans and Staphylococcus aureus. Doses of C. albicans (1×105 larva-1) and S. aureus (1×104 larva-1) were non-lethal in mono-infection but when combined significantly (P<0.05) reduced larval survival at 24, 48 and 72 h relative to larvae receiving S. aureus (2×104 larva-1) alone. Co-infected larvae displayed a significantly higher density of S. aureus larva-1 compared to larvae infected solely with S. aureus. Co-infection resulted in dissemination throughout the host and the appearance of large nodules. Co-infection of larvae with C. albicans and S. aureus (2×104 larva-1) resulted in an increase in the density of circulating haemocytes compared to that in larvae infected with only S. aureus. Proteomic analysis of co-infected larval haemolymph revealed increased abundance of proteins associated with immune responses to bacterial and fungal infection such as cecropin-A (+45.4-fold), recognition proteins [e.g. peptidoglycan-recognition protein LB (+14-fold)] and proteins associated with nodule formation [e.g. Hdd11 (+33.3-fold)]. A range of proteins were also decreased in abundance following co-infection, including apolipophorin (-62.4-fold), alpha-esterase 45 (-7.7-fold) and serine proteinase (-6.2-fold). Co-infection of larvae resulted in enhanced proliferation of S. aureus compared to mono-infection and an immune response showing many similarities to the innate immune response of mammals to infection. The utility of G. mellonella larvae for studying polymicrobial infection is highlighted.
Collapse
Affiliation(s)
- Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Tully
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin A Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
40
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6:jof6010015. [PMID: 31963180 PMCID: PMC7151112 DOI: 10.3390/jof6010015] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-0508; Fax: +1-410-706-0519
| |
Collapse
|
41
|
Azevedo MJ, Pereira MDL, Araujo R, Ramalho C, Zaura E, Sampaio-Maia B. Influence of delivery and feeding mode in oral fungi colonization - a systematic review. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:36-45. [PMID: 32025512 PMCID: PMC6993125 DOI: 10.15698/mic2020.02.706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Postnatal acquisition of microorganisms from maternal and environmental sources contributes to the child microbiome development. Several studies showed that the mode of delivery and breastfeeding may have impact on the oral bacterial colonization, however, the influence on oral fungal colonization is still unknown. We performed a systematic literature review on mother to child oral fungi transmission, namely regarding the association between the mode of delivery and breastfeeding in oral yeast colonization. Our analysis revealed no significant differences between the oral mycobiome of breastfed and bottle-fed children. As for the delivery mode, the majority of studies found a relation between fungal colonization and vaginal delivery. Candida albicans was the most commonly isolated fungi species. Our analysis suggests that maternal breastfeeding does not seem to influence oral mycology, but vaginal delivery appears to promote oral yeast colonization in early life.
Collapse
Affiliation(s)
- Maria Joao Azevedo
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Maria de Lurdes Pereira
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
- EpiUnit- Instituto de Saúde Pública, Universidade do Porto
| | - Ricardo Araujo
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Dept. Medical Biotechnology, College of Medicine and Public Health, Flinders University of South Australia
| | - Carla Ramalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Portugal
- Centro Hospitalar São João, Porto, Portugal
| | - Egija Zaura
- Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Benedita Sampaio-Maia
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
42
|
Deng L, Xue J, Jiang L, Zou L, Li W. [Research progress on interactions between Candida albicans and common oral pathogens]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:671-676. [PMID: 31875449 DOI: 10.7518/hxkq.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing numbers of microbiome studies have enabled the development of a greater understanding of how antagonistic and synergetic microbial interactions influence disease outcomes. Candida albicans is an opportunistic pathogen that is commonly found in human oral microflora. In a healthy oral environment, Candida albicans may potentially but sig-nificantly influence the balance between the oral bacterial ecosystem and the host, leading tooral diseases. The aim of this study is to review the correlation between Candida albicans and oral pathogens and provide a deeper understanding of the nature of oral infec-tious diseases.
Collapse
Affiliation(s)
- Ling Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Veilleux MP, Grenier D. Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells. Altern Ther Health Med 2019; 19:303. [PMID: 31703673 PMCID: PMC6839166 DOI: 10.1186/s12906-019-2730-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022]
Abstract
Background Candida albicans is an opportunistic pathogen that causes oral candidiasis and denture stomatitis. It has also been reported to infect oral mucositis lesions in patients who suffer from cancer affecting the head and neck and who receive chemotherapy and radiotherapy treatments. This study aimed to investigate the effects of two cinnamon bark fractions, i.e., an essential oil and an aqueous extract enriched in proanthocyanidins (Cinnulin PF®) on growth, biofilm formation, and adherence properties of C. albicans as well as on oral epithelial cells (barrier integrity, inflammatory response). Methods A microplate dilution assay was used to determine antifungal and anti-biofilm properties. A fluorescent assay was used to determine C. albicans adherence to oral epithelial cells. Cytotoxicity toward oral epithelial cells was assessed by determination of cell metabolic activity. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. IL-6 and IL-8 secretion by TNFα-stimulated oral epithelial cells was quantified by ELISA. Results While Cinnulin PF® did not reduce C. albicans growth, the cinnamon bark oil exhibited high antifungal activity with minimum inhibitory concentrations and minimum fungicidal concentrations in the range of 0.039 to 0.078%. The cinnamon oil was also active against a pre-formed C. albicans biofilm. Interestingly, Cinnulin PF® prevented biofilm formation by C. albicans and attenuated its adherence to oral epithelial cells. At their effective concentrations, the cinnamon oil and the Cinnulin PF® displayed no significant cytotoxicity against oral epithelial cells. In an in vitro model, both cinnamon fractions reinforced the integrity of the oral epithelial barrier. Lastly, Cinnulin PF® inhibited the secretion of interleukin-6 and interleukin-8 by oral epithelial cells stimulated with TNF-α. Conclusion By their ability to attenuate growth, biofilm formation and adherence property of C. albicans, to reinforce the epithelial barrier function, and to exert anti-inflammatory properties the two cinnamon fractions (essential oil, Cinnulin PF®) investigated in the present study may be promising agents for treating oral infections involving C. albicans.
Collapse
|
44
|
Parry-Nweye E, Onukwugha NE, Balmuri SR, Shane JL, Kim D, Koo H, Niepa THR. Electrochemical Strategy for Eradicating Fluconazole-Tolerant Candida albicans Using Implantable Titanium. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40997-41008. [PMID: 31603300 DOI: 10.1021/acsami.9b09977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A persistent problem in modern health care derives from the overwhelming presence of antibiotic-resistant microbes on biomaterials, more specifically, fungal growth on metal-based implants. This study seeks to investigate the antifungal properties of low-level electrochemical treatments delivered using titanium electrodes against Candida albicans. We show that C. albicans can be readily controlled with electrical currents/potentials, reducing the number of viable planktonic cells by 99.7% and biofilm cells by 96.0-99.99%. Additionally, this study explores the ability of the electrochemical treatments to potentiate fluconazole, a clinically used antifungal drug. We have found that electrochemical treatment substantially enhances fluconazole killing activity. While fluconazole alone exhibits a low efficiency against the stationary phase and biofilm cells of C. albicans, complete eradication corresponding to 7-log killing is achieved when the antifungal drug is provided subsequently to the electrochemical treatment. Further mechanistic analyses have revealed that the sequential treatment shows a complex multimodal action, including the disruption of cell wall integrity and permeability, impaired metabolic functions, and enhanced susceptibility to fluconazole, while altering the biofilm structure. Altogether, we have developed and optimized a new therapeutic strategy to sensitize and facilitate the eradication of fluconazole-tolerant microbes from implantable materials. This work is expected to help advance the use of electrochemical approaches in the treatment of infections caused by C. albicans in both nosocomial and clinical cases.
Collapse
Affiliation(s)
| | | | | | | | - Dongyeop Kim
- Biofilm Research Laboratory, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Hyun Koo
- Biofilm Research Laboratory, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
45
|
Veerapandian R, Vediyappan G. Gymnemic Acids Inhibit Adhesive Nanofibrillar Mediated Streptococcus gordonii-Candida albicans Mono-Species and Dual-Species Biofilms. Front Microbiol 2019; 10:2328. [PMID: 31681200 PMCID: PMC6797559 DOI: 10.3389/fmicb.2019.02328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Dental caries and periodontitis are the most common oral disease of all age groups, affecting billions of people worldwide. These oral diseases are mostly associated with microbial biofilms in the oral cavity. Streptococcus gordonii, an early tooth colonizing bacterium and Candida albicans, an opportunistic pathogenic fungus, are the two abundant oral microbes that form mixed biofilms with augmented virulence, affecting oral health negatively. Understanding the molecular mechanisms of the pathogen interactions and identifying non-toxic compounds that block the growth of biofilms are important steps in the development of effective therapeutic approaches. In this in vitro study we report the inhibition of mono-species or dual-species biofilms of S. gordonii and C. albicans, and decreased levels of biofilm extracellular DNA (eDNA), when biofilms were grown in the presence of gymnemic acids (GAs), a non-toxic small molecule inhibitor of fungal hyphae. Scanning electron microscopic images of biofilms on saliva-coated hydroxyapatite (sHA) surfaces revealed attachment of S. gordonii cells to C. albicans hyphae and to sHA surfaces via nanofibrils only in the untreated control, but not in the GAs-treated biofilms. Interestingly, C. albicans produced fibrillar adhesive structures from hyphae when grown with S. gordonii as a mixed biofilm; addition of GAs abrogated the nanofibrils and reduced the growth of both hyphae and the biofilm. To our knowledge, this is the first report that C. albicans produces adhesive fibrils from hyphae in response to S. gordonii mixed biofilm growth. Semi-quantitative PCR of selected genes related to biofilms from both microbes showed differential expression in control vs. treated biofilms. Further, GAs inhibited the activity of recombinant S. gordonii glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Taken together, our results suggest that S. gordonii stimulates the expression of adhesive materials in C. albicans by direct interaction and/or signaling, and the adhesive material expression can be inhibited by GAs.
Collapse
Affiliation(s)
- Raja Veerapandian
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
46
|
Arzmi MH, Dashper S, McCullough M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J Oral Pathol Med 2019; 48:546-551. [PMID: 31183906 DOI: 10.1111/jop.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter-kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial-mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.
Collapse
Affiliation(s)
- Mohd Hafiz Arzmi
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Stuart Dashper
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
48
|
|
49
|
Dutreix L, Bernard C, Juin C, Imbert C, Girardot M. Do raspberry extracts and fractions have antifungal or anti-adherent potential against Candida spp.? Int J Antimicrob Agents 2018; 52:947-953. [DOI: 10.1016/j.ijantimicag.2018.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 01/24/2023]
|
50
|
Tipping the Balance: C. albicans Adaptation in Polymicrobial Environments. J Fungi (Basel) 2018; 4:jof4030112. [PMID: 30231476 PMCID: PMC6162738 DOI: 10.3390/jof4030112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a pleiomorphic fungus which co-exists with commensal bacteria in mucosal and skin sites of mammalian hosts. It is also a major co-isolated organism from polymicrobial systemic infections, with high potential for morbidity or mortality in immunocompromised patients. Traditionally, resident mucosal bacteria have been thought to antagonize C. albicans in its ability to colonize or cause infection. However, recent investigations have revealed synergistic relationships with certain bacterial species that colonize the same mucosal sites with C. albicans. Such relationships broaden the research landscape in pathogenesis but also contribute to clinical challenges in the prevention or treatment of mucosal candidiasis. This review sheds light on interactions of C. albicans and mucosal bacteria, with special emphasis on the effects of the resident bacterial microbiota on C. albicans physiology as they relate to its adaptation in mucosal sites as a commensal colonizer or as a pathogenic organism.
Collapse
|