1
|
Chladek G, Nowak M, Pakieła W, Barszczewska-Rybarek I, Żmudzki J, Mertas A. The Effect of Exposure to Candida Albicans Suspension on the Properties of Silicone Dental Soft Lining Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:723. [PMID: 38591629 PMCID: PMC10856526 DOI: 10.3390/ma17030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 04/10/2024]
Abstract
While functioning in the oral cavity, denture soft linings (SL) are exposed to contact with the microbiota. Dentures can offer perfect conditions for the multiplication of pathogenic yeast-like fungi, resulting in rapid colonisation of the surface of the materials used. In vitro experiments have also shown that yeast may penetrate SL. This may lead to changes in their initially beneficial functional properties. The aim of this work was to investigate the effect of three months of exposure to a Candida albicans suspension on the mechanical properties of SL material and its bond strength to the denture base polymer, and to additionally verify previous reports of penetration using a different methodology. Specimens of the SL material used were incubated for 30, 60 and 90 days in a suspension of Candida albicans strain (ATCC 10231). Their shore A hardness, tensile strength, and bond strength to acrylic resin were tested. The colonization of the surface and penetration on fractured specimens were analysed with scanning electron and inverted fluorescence microscopes. Exposure to yeast did not affect the mechanical properties. The surfaces of the samples were colonised, especially in crystallized structures of the medium; however, the penetration of hyphae and blastospores into the material was not observed.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Michał Nowak
- Nova Clinic, 22 Jankego Str., 40-612 Katowice, Poland;
| | - Wojciech Pakieła
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland; (W.P.); (J.Ż.)
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
| | - Jarosław Żmudzki
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland; (W.P.); (J.Ż.)
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland;
| |
Collapse
|
2
|
Maher YA, Fathi A, Sembawa BA, Elkhyat SH, Hafiz HF, Marghalani AA. Effectiveness of Mouthwash-Containing Silver Nanoparticles on Cariogenic Microorganisms, Plaque Index, and Salivary pH in A Group of Saudi Children. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2209090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objectives:
To compare the effectiveness of Silver nanoparticles (AgNPs) and Chlorhexidine (CHX) mouthwash on Streptococcus mutans (S. mutans), Lactobacillus spp., and Candida albicans (C. albicans) counts O’Leary plaque index (O’Leary PI) scores, and salivary pH levels among children.
Materials and Methods:
The study sample consisted of 117 eligible participants aged 12–18 years. They were divided into control, CHX, and AgNPs groups, with 39 subjects per group. The log10 salivary microbial counts, O’Leary PI, and salivary pH values were recorded and statistically analyzed at baseline and the 28th day. Descriptive statistics were presented as the mean ± standard deviation. In addition, the analyses of variance (ANOVA) and Tukey posthoc test were implemented. The p-value ≤ 0.05 denotes a significant difference between the two points.
Results:
AgNPs and CHX mouthwash were found to have significantly reduced salivary microbial counts and O’Leary PI scores. The salivary pH levels notably increased on the 28th day (p-value < 0.001). All measured outcomes demonstrated notable effects, with the greatest observed for the CHX group, followed by the AgNPs group, and finally, the control group.
Conclusion:
Chlorhexidine and AgNPs mouthwash effectively reduced the cariogenic microbial count and dental plaque and improved the salivary pH values. AgNPs mouthwash may be used as an adjunctive measure to prevent dental caries.
Collapse
|
3
|
The Role of Glycoside Hydrolases in S. gordonii and C. albicans Interactions. Appl Environ Microbiol 2022; 88:e0011622. [PMID: 35506689 DOI: 10.1128/aem.00116-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida albicans can coaggregate with Streptococcus gordonii and cocolonize in the oral cavity. Saliva provides a vital microenvironment for close interactions of oral microorganisms. However, the level of fermentable carbohydrates in saliva is not sufficient to support the growth of multiple species. Glycoside hydrolases (GHs) that hydrolyze glycoproteins are critical for S. gordonii growth in low-fermentable-carbohydrate environments such as saliva. However, whether GHs are involved in the cross-kingdom interactions between C. albicans and S. gordonii under such conditions remains unknown. In this study, C. albicans and S. gordonii were cocultured in heart infusion broth with a low level of fermentable carbohydrate. Planktonic growth, biofilm formation, cell aggregation, and GH activities of monocultures and cocultures were examined. The results revealed that the planktonic growth of cocultured S. gordonii in a low-carbohydrate environment was elevated, while that of cocultured C. albicans was reduced. The biomass of S. gordonii in dual-species biofilms was higher than that of monocultures, while that of cocultured C. albicans was decreased. GH activity was observed in S. gordonii, and elevated activity of GHs was detected in S. gordonii-C. albicans cocultures, with elevated expression of GH-related genes of S. gordonii. By screening a mutant library of C. albicans, we identified a tec1Δ/Δ mutant strain that showed reduced ability to promote the growth and GH activities of S. gordonii compared with the wild-type strain. Altogether, the findings of this study demonstrate the involvement of GHs in the cross-kingdom metabolic interactions between C. albicans and S. gordonii in an environment with low level of fermentable carbohydrates. IMPORTANCE Cross-kingdom interactions between Candida albicans and oral streptococci such as Streptococcus gordonii have been reported. However, their interactions in a low-fermentable-carbohydrate environment like saliva is not clear. The current study revealed glycoside hydrolase-related cross-kingdom communications between S. gordonii and C. albicans under the low-fermentable-carbohydrate condition. We demonstrate that C. albicans can promote the growth and metabolic activities of S. gordonii by elevating the activities of cell-wall-anchored glycoside hydrolases of S. gordonii. C. albicans gene TEC1 is critical for this cross-kingdom metabolic communication.
Collapse
|
4
|
Oral Cavity and Candida albicans: Colonisation to the Development of Infection. Pathogens 2022; 11:pathogens11030335. [PMID: 35335659 PMCID: PMC8953496 DOI: 10.3390/pathogens11030335] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Candida colonisation of the oral cavity increases in immunocompromised individuals which leads to the development of oral candidiasis. In addition, host factors such as xerostomia, smoking, oral prostheses, dental caries, diabetes and cancer treatment accelerate the disease process. Candida albicans is the primary causative agent of this infection, owing to its ability to form biofilm and hyphae and to produce hydrolytic enzymes and candialysin. Although mucosal immunity is activated, from the time hyphae-associated toxin is formed by the colonising C. albicans cells, an increased number and virulence of this pathogenic organism collectively leads to infection. Prevention of the development of infection can be achieved by addressing the host physiological factors and habits. For maintenance of oral health, conventional oral hygiene products containing antimicrobial compounds, essential oils and phytochemicals can be considered, these products can maintain the low number of Candida in the oral cavity and reduce their virulence. Vulnerable patients should be educated in order to increase compliance.
Collapse
|
5
|
Thanh Nguyen H, Zhang R, Inokawa N, Oura T, Chen X, Iwatani S, Niimi K, Niimi M, Holmes AR, Cannon RD, Kajiwara S. Candida albicans Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite. J Oral Microbiol 2021; 13:1879497. [PMID: 33628397 PMCID: PMC7889271 DOI: 10.1080/20002297.2021.1879497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Candida albicans is an opportunistic pathogen that causes oral candidiasis. A previous study showed that Bgl2p and Ecm33p may mediate the interaction between the yeast and saliva-coated hydroxyapatite (SHA; a model for the tooth surface). This study investigated the roles of these cell wall proteins in the adherence of C. albicans to SHA beads. Methods: C. albicans BGL2 and ECM33 null mutants were generated from wild-type strain SC5314 by using the SAT1-flipper gene disruption method. A novel method based on labelling the yeast with Nile red, was used to investigate the adherence. Results: Adhesion of bgl2Δ and ecm33Δ null mutants to SHA beads was 76.4% and 64.8% of the wild-type strain, respectively. Interestingly, the adhesion of the bgl2Δ, ecm33Δ double mutant (87.7%) was higher than that of both single mutants. qRT-PCR analysis indicated that the ALS1 gene was over-expressed in the bgl2Δ, ecm33Δ strain. The triple null mutant showed a significantly reduced adherence to the beads, (37.6%), compared to the wild-type strain. Conclusion: Bgl2p and Ecm33p contributed to the interaction between C. albicans and SHA beads. Deletion of these genes triggered overexpression of the ALS1 gene in the bgl2Δ/ecm33Δ mutant strain, and deletion of all three genes caused a significant decrease in adhesion.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Rouyu Zhang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Naoki Inokawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Takahiro Oura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kyoko Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masakazu Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ann Rachel Holmes
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Barbosa A, Araújo D, Ribeiro E, Henriques M, Silva S. Candida albicans Adaptation on Simulated Human Body Fluids under Different pH. Microorganisms 2020; 8:microorganisms8040511. [PMID: 32260085 PMCID: PMC7232421 DOI: 10.3390/microorganisms8040511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
Candida albicans remains the most problematic of all Candida species, causing severe infections. Adaptation to different human body niches, such oral and urinary tracts, has been shown to be essential for survival and critical for virulence of C. albicans. Thus, the present work aimed to study the behaviour of C. albicans on simulated human body fluids (artificial saliva and urine) at different values of pH (pH 5.8 and 7) by determining its ability to develop two of the most important virulence factors: biofilms and filamentous forms. Under this study, it was demonstrated that C. albicans was able to grow as free cells and to develop biofilm communities composed of multiple cell types (yeast and elongated hyphal cells) on both simulated human body fluids and under different pH. It was interesting to note that the pH had little impact on C. albicans planktonic and biofilm growth, despite influencing the development of filamentous shapes in artificial saliva and urine. So, it was possible to infer that C. albicans presents a high plasticity and adaptability to different human body fluids, namely saliva and urine. These can be the justification for the high number of oral and urinary candidiasis in the whole world.
Collapse
|
7
|
Picco DDCR, Cavalcante LLR, Trevisan RLB, Souza-Gabriel AE, Borsatto MC, Corona SAM. Effect of curcumin-mediated photodynamic therapy on Streptococcus mutans and Candida albicans: A systematic review of in vitro studies. Photodiagnosis Photodyn Ther 2019; 27:455-461. [DOI: 10.1016/j.pdpdt.2019.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/23/2022]
|
8
|
Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies. PLoS Pathog 2018; 14:e1007316. [PMID: 30252918 PMCID: PMC6173444 DOI: 10.1371/journal.ppat.1007316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/05/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can infect oral mucosal surfaces while being under continuous flow from saliva. Under specific conditions, C. albicans will form microcolonies that more closely resemble the biofilms formed in vivo than standard in vitro biofilm models. However, very little is known about these microcolonies, particularly genomic differences between these specialized biofilm structures and the traditional in vitro biofilms. In this study, we used a novel flow system, in which C. albicans spontaneously forms microcolonies, to further characterize the architecture of fungal microcolonies and their genomics compared to non-microcolony conditions. Fungal microcolonies arose from radially branching filamentous hyphae that increasingly intertwined with one another to form extremely dense biofilms, and closely resembled the architecture of in vivo oropharyngeal candidiasis. We identified 20 core microcolony genes that were differentially regulated in flow-induced microcolonies using RNA-seq. These genes included HWP1, ECE1, IHD1, PLB1, HYR1, PGA10, and SAP5. A predictive algorithm was utilized to identify ten transcriptional regulators potentially involved in microcolony formation. Of these transcription factors, we found that Rob1, Ndt80, Sfl1 and Sfl2, played a key role in microcolony formation under both flow and static conditions and to epithelial surfaces. Expression of core microcolony genes were highly up-regulated in Δsfl1 cells and down-regulated in both Δsfl2 and Δrob1 strains. Microcolonies formed on oral epithelium using C. albicans Δsfl1, Δsfl2 and Δrob1 deletion strains all had altered adhesion, invasion and cytotoxicity. Furthermore, epithelial cells infected with deletion mutants had reduced (SFL2, NDT80, and ROB1) or enhanced (SFL2) immune responses, evidenced by phosphorylation of MKP1 and c-Fos activation, key signal transducers in the hyphal invasion response. This profile of microcolony transcriptional regulators more closely reflects Sfl1 and Sfl2 hyphal regulatory networks than static biofilm regulatory networks, suggesting that microcolonies are a specialized pathogenic form of biofilm.
Collapse
|