1
|
Lotfali E, Fattahi A, Sayyahfar S, Ghasemi R, Rabiei MM, Fathi M, Vakili K, Deravi N, Soheili A, Toreyhi H, Shirvani F. A Review on Molecular Mechanisms of Antifungal Resistance in Candida glabrata: Update and Recent Advances. Microb Drug Resist 2021; 27:1371-1388. [PMID: 33956513 DOI: 10.1089/mdr.2020.0235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Candida glabrata is the second frequent etiologic agent of mucosal and invasive candidiasis. Based on the recent developments in molecular methods, C. glabrata has been introduced as a complex composed of C. glabrata, Candida nivariensis, and Candida bracarensis. The four main classes of antifungal drugs effective against C. glabrata are pyrimidine analogs (flucytosine), azoles, echinocandins, and polyenes. Although the use of antifungal drugs is related to the predictable development of drug resistance, it is not clear why C. glabrata is able to rapidly resist against multiple antifungals in clinics. The enhanced incidence and antifungal resistance of C. glabrata and the high mortality and morbidity need more investigation regarding the resistance mechanisms and virulence associated with C. glabrata; additional progress concerning the drug resistance of C. glabrata has to be further prevented. The present review highlights the mechanism of resistance to antifungal drugs in C. glabrata.
Collapse
Affiliation(s)
- Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ghasemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Rabiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Soheili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Shirvani
- Pediatric Infections Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dalisay DS, Rogers EW, Molinski TF. Oceanapiside, a Marine Natural Product, Targets the Sphingolipid Pathway of Fluconazole-Resistant Candida glabrata. Mar Drugs 2021; 19:md19030126. [PMID: 33652774 PMCID: PMC7996939 DOI: 10.3390/md19030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Oceanapiside (OPS), a marine natural product with a novel bifunctional sphingolipid structure, is fungicidal against fluconazole-resistant Candida glabrata at 10 μg/mL (15.4 μM). The fungicidal effect was observed at 3 to 4 h after exposure to cells. Cytological and morphological studies revealed that OPS affects the budding patterns of treated yeast cells with a significant increase in the number of cells with single small buds. In addition, this budding morphology was found to be sensitive in the presence of OPS. Moreover, the number of cells with single medium-sized buds and cells with single large buds were decreased significantly, indicating that fewer cells were transformed to these budding patterns, suggestive of inhibition of polarized growth. OPS was also observed to disrupt the organized actin assembly in C. glabrata, which correlates with inhibition of budding and polarized growth. It was also demonstrated that phytosphingosine (PHS) reversed the antifungal activity of oceanapiside. We quantified the amount of long chain-bases (LCBs) and phytoceramide from the crude extracts of treated cells using LC-ESI-MS. PHS concentration was elevated in extracts of cells treated with OPS when compared with cells treated with miconazole and amphotericin B. Elevated levels of PHS in OPS-treated cells confirms that OPS affects the pathway at a step downstream of PHS synthesis. These results also demonstrated that OPS has a mechanism of action different to those of miconazole and amphotericin B and interdicts fungal sphingolipid metabolism by specifically inhibiting the step converting PHS to phytoceramide.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (D.S.D.); (E.W.R.)
- Center for Chemical Biology and Biotechnology (C2B2) and Department of Biology, College of Liberal Arts, Sciences and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Evan W. Rogers
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (D.S.D.); (E.W.R.)
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (D.S.D.); (E.W.R.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-534-7115; Fax: +1-858-822-0368
| |
Collapse
|
3
|
Identification of Essential Genes and Fluconazole Susceptibility Genes in Candida glabrata by Profiling Hermes Transposon Insertions. G3-GENES GENOMES GENETICS 2020; 10:3859-3870. [PMID: 32819971 PMCID: PMC7534453 DOI: 10.1534/g3.120.401595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the budding yeasts, the opportunistic pathogen Candida glabrata and other members of the Nakaseomyces clade have developed virulence traits independently from C. albicans and C. auris. To begin exploring the genetic basis of C. glabrata virulence and its innate resistance to antifungals, we launched the Hermes transposon from a plasmid and sequenced more than 500,000 different semi-random insertions throughout the genome. With machine learning, we identified 1278 protein-encoding genes (25% of total) that could not tolerate transposon insertions and are likely essential for C. glabrata fitness in vitro. Interestingly, genes involved in mRNA splicing were less likely to be essential in C. glabrata than their orthologs in S. cerevisiae, whereas the opposite is true for genes involved in kinetochore function and chromosome segregation. When a pool of insertion mutants was challenged with the first-line antifungal fluconazole, insertions in several known resistance genes (e.g., PDR1, CDR1, PDR16, PDR17, UPC2A, DAP1, STV1) and 15 additional genes (including KGD1, KGD2, YHR045W) became hypersensitive to fluconazole. Insertions in 200 other genes conferred significant resistance to fluconazole, two-thirds of which function in mitochondria and likely down-regulate Pdr1 expression or function. Knockout mutants of KGD2 and IDH2, which consume and generate alpha-ketoglutarate in mitochondria, exhibited increased and decreased resistance to fluconazole through a process that depended on Pdr1. These findings establish the utility of transposon insertion profiling in forward genetic investigations of this important pathogen of humans.
Collapse
|
4
|
Li M, Chen Z, Yin S, Xue R, Chen Z, Huang H, Wei L, Lu C, De Hoog GS, Lai W, Feng P. Onychomycosis secondary to onychomadesis: an underdiagnosed manifestation. Mycoses 2016; 60:161-165. [PMID: 27618806 DOI: 10.1111/myc.12555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/11/2016] [Indexed: 11/30/2022]
Abstract
Onychomycosis is a rare nail disorder in early childhood, while onychomadesis is a periodic idiopathic, non-inflammatory disease that affects the nail matrix and is common in children especially in those who suffer from viral infections. In this study, we investigated recent cases of onychomycosis subsequent to periods of onychomadesis in children. Sixteen young children (six males, 10 females) with a mean age of 36.5 months were diagnosed with onychomadesis, and 13 of the patients had a history of viral infection prior to nail changes. Direct microscopy of nail scaling was positive in 11 cases (68.8%), and culture was positive in the same number of cases. Four Candida species were isolated: Candida glabrata was the most frequent, found in eight cases (72.7%), while C. albicans, C. parapsilosis and C. tropicalis, each were encountered in a single case. All children were treated successfully with or without topical bifonazole therapy.
Collapse
Affiliation(s)
- Meirong Li
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuanggui Chen
- Department of Pediatrics, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songchao Yin
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruzeng Xue
- Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Zhirui Chen
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiqiu Huang
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Wei
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Lu
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gerit Sybren De Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Peking University Health Science Center, Research Center for Medical Mycology, Beijing, China.,Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Lai
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peiying Feng
- Department of Dermatology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|