1
|
Bernardi B, Michling F, Fröhlich J, Wendland J. Mosaic Genome of a British Cider Yeast. Int J Mol Sci 2023; 24:11232. [PMID: 37446410 DOI: 10.3390/ijms241311232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Hybrid formation and introgressions had a profound impact on fermentative yeasts domesticated for beer, wine and cider fermentations. Here we provide a comparative genomic analysis of a British cider yeast isolate (E1) and characterize its fermentation properties. E1 has a Saccharomyces uvarum genome into which ~102 kb of S. eubayanus DNA were introgressed that replaced the endogenous homologous 55 genes of chromosome XIV between YNL182C and YNL239W. Sequence analyses indicated that the DNA donor was either a lager yeast or a yet unidentified S. eubayanus ancestor. Interestingly, a second introgression event added ~66 kb of DNA from Torulaspora microellipsoides to the left telomere of SuCHRX. This region bears high similarity with the previously described region C introgression in the wine yeast EC1118. Within this region FOT1 and FOT2 encode two oligopeptide transporters that promote improved nitrogen uptake from grape must in E1, as was reported for EC1118. Comparative laboratory scale grape must fermentations between the E1 and EC1118 indicated beneficial traits of faster consumption of total sugars and higher glycerol production but low acetic acid and reduced ethanol content. Importantly, the cider yeast strain produced high levels of fruity ester, including phenylethyl and isoamyl acetate.
Collapse
Affiliation(s)
- Beatrice Bernardi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Florian Michling
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | | | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
2
|
Villarreal P, Quintrel PA, Olivares-Muñoz S, Ruiz JJ, Nespolo RF, Cubillos FA. Identification of new ethanol-tolerant yeast strains with fermentation potential from central Patagonia. Yeast 2021; 39:128-140. [PMID: 34406697 DOI: 10.1002/yea.3662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022] Open
Abstract
The quest for new wild yeasts has increasingly gained attention because of their potential ability to provide unique organoleptic characters to fermented beverages. In this sense, Patagonia offers a wide diversity of ethanol-tolerant yeasts and stands out as a bioprospecting alternative. This study characterized the genetic and phenotypic diversity of yeast isolates obtained from Central Chilean Patagonia and analyzed their fermentation potential under different fermentative conditions. We recovered 125 colonies from Nothofagus spp. bark samples belonging to five yeast species: Saccharomyces eubayanus, Saccharomyces uvarum, Lachancea cidri, Kregervanrija delftensis, and Hanseniaspora valbyensis. High-throughput microcultivation assays demonstrated the extensive phenotypic diversity among Patagonian isolates, where Saccharomyces spp and L. cidri isolates exhibited the most outstanding fitness scores across the conditions tested. Fermentation performance assays under wine, mead, and beer conditions demonstrated the specific potential of the different species for each particular beverage. Saccharomyces spp. were the only isolates able to ferment beer wort. Interestingly, we found that L. cidri is a novel candidate species to ferment wine and mead, exceeding the fermentation capacity of a commercial strain. Unlike commercial strains, we found that L. cidri does not require nutritional supplements for efficient mead fermentation. In addition, L. cidri produces succinic and acetic acids, providing a distinct profile to the final fermented product. This work demonstrates the importance of bioprospecting efforts in Patagonia to isolate novel wild yeast strains with extraordinary biotechnological potential for the fermentation industry.
Collapse
Affiliation(s)
- Pablo Villarreal
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo A Quintrel
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sebastián Olivares-Muñoz
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - José J Ruiz
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Roberto F Nespolo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
3
|
Alsammar H, Delneri D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res 2021; 20:5810663. [PMID: 32196094 PMCID: PMC7150579 DOI: 10.1093/femsyr/foaa013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Saccharomyces cerevisiae is the most extensively studied yeast and, over the last century, provided insights on the physiology, genetics, cellular biology and molecular mechanisms of eukaryotes. More recently, the increase in the discovery of wild strains, species and hybrids of the genus Saccharomyces has shifted the attention towards studies on genome evolution, ecology and biogeography, with the yeast becoming a model system for population genomic studies. The genus currently comprises eight species, some of clear industrial importance, while others are confined to natural environments, such as wild forests devoid from human domestication activities. To date, numerous studies showed that some Saccharomyces species form genetically diverged populations that are structured by geography, ecology or domestication activity and that the yeast species can also hybridize readily both in natural and domesticated environments. Much emphasis is now placed on the evolutionary process that drives phenotypic diversity between species, hybrids and populations to allow adaptation to different niches. Here, we provide an update of the biodiversity, ecology and population structure of the Saccharomyces species, and recapitulate the current knowledge on the natural history of Saccharomyces genus.
Collapse
Affiliation(s)
- Haya Alsammar
- Department of Biological Sciences, Faculty of Science, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
4
|
Boekhout T, Aime MC, Begerow D, Gabaldón T, Heitman J, Kemler M, Khayhan K, Lachance MA, Louis EJ, Sun S, Vu D, Yurkov A. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. FUNGAL DIVERS 2021; 109:27-55. [PMID: 34720775 PMCID: PMC8550739 DOI: 10.1007/s13225-021-00475-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Here we review how evolving species concepts have been applied to understand yeast diversity. Initially, a phenotypic species concept was utilized taking into consideration morphological aspects of colonies and cells, and growth profiles. Later the biological species concept was added, which applied data from mating experiments. Biophysical measurements of DNA similarity between isolates were an early measure that became more broadly applied with the advent of sequencing technology, leading to a sequence-based species concept using comparisons of parts of the ribosomal DNA. At present phylogenetic species concepts that employ sequence data of rDNA and other genes are universally applied in fungal taxonomy, including yeasts, because various studies revealed a relatively good correlation between the biological species concept and sequence divergence. The application of genome information is becoming increasingly common, and we strongly recommend the use of complete, rather than draft genomes to improve our understanding of species and their genome and genetic dynamics. Complete genomes allow in-depth comparisons on the evolvability of genomes and, consequently, of the species to which they belong. Hybridization seems a relatively common phenomenon and has been observed in all major fungal lineages that contain yeasts. Note that hybrids may greatly differ in their post-hybridization development. Future in-depth studies, initially using some model species or complexes may shift the traditional species concept as isolated clusters of genetically compatible isolates to a cohesive speciation network in which such clusters are interconnected by genetic processes, such as hybridization.
Collapse
Affiliation(s)
- Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - M. Catherine Aime
- Dept Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Dominik Begerow
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC–CNS), Jordi Girona, 29, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Martin Kemler
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Edward J. Louis
- Department of Genetics and Genome Biology, Genetic Architecture of Complex Traits, University of Leicester, Leicester, LE1 7RH UK
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Andrey Yurkov
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
5
|
Zhang J, Plowman JE, Tian B, Clerens S, On SLW. Application of MALDI-TOF analysis to reveal diversity and dynamics of winemaking yeast species in wild-fermented, organically produced, New Zealand Pinot Noir wine. Food Microbiol 2021; 99:103824. [PMID: 34119109 DOI: 10.1016/j.fm.2021.103824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Rapid yeast identification is of particular importance in monitoring wine fermentation and assessing strain application in winemaking. We used MALDI-TOF MS analysis supported by 26 S rRNA gene sequence analysis and Saccharomyces-specific PCR testing to differentiate reference and field strains recovered from organic wine production facilities in Waipara, New Zealand, in which Pinot Noir wine was produced by spontaneous fermentations in the vineyard and in the winery. Strains were isolated from each of four key stages of each ferment to evaluate changes in taxonomic diversity. MALDI-TOF MS analysis was confirmed as an excellent yeast identification method, with even closely related Saccharomyces species readily distinguished. A total of 13 indigenous species belonging to eight genera were identified from Pinot Noir ferments, with taxonomic diversity generally reducing as fermentation progressed. However, differences between the taxa recovered were observed between the vineyard and winery ferments, despite the grapes used being from the same batch. Furthermore, some consistent proteomic differences between strains of S. cerevisiae, Hanseniasporum uvarum, Candida californica, Pichia membranifaciens and Starmerella bacillaris correlated with the different fermentation systems used. The high speed, low cost, taxonomic resolution and ability to characterise subtle changes in phenotype that may result from variations in environmental conditions makes MALDI-TOF analysis an attractive tool for further and wider applications in the wine industry. Such applications may include monitoring wine fermentation to actively support the consistency of high-quality wine products, and potentially for the development of such products too.
Collapse
Affiliation(s)
- Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | | | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | - Stefan Clerens
- AgResearch Ltd, Lincoln Research Centre, Lincoln, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand.
| |
Collapse
|
6
|
Selection of Potential Yeast Probiotics and a Cell Factory for Xylitol or Acid Production from Honeybee Samples. Metabolites 2021; 11:metabo11050312. [PMID: 34068237 PMCID: PMC8153147 DOI: 10.3390/metabo11050312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/09/2023] Open
Abstract
Excessive use of antibiotics has detrimental consequences, including antibiotic resistance and gut microbiome destruction. Probiotic-rich diets help to restore good microbes, keeping the body healthy and preventing the onset of chronic diseases. Honey contains not only prebiotic oligosaccharides but, like yogurt and fermented foods, is an innovative natural source for probiotic discovery. Here, a collection of three honeybee samples was screened for yeast strains, aiming to characterize their potential in vitro probiotic properties and the ability to produce valuable metabolites. Ninety-four isolates out of one-hundred and four were able to grow at temperatures of 30 °C and 37 °C, while twelve isolates could grow at 42 °C. Fifty-eight and four isolates displayed the ability to grow under stimulated gastrointestinal condition, at pH 2.0-2.5, 0.3% (w/v) bile salt, and 37 °C. Twenty-four isolates showed high autoaggregation of 80-100% and could utilize various sugars, including galactose and xylose. The cell count of these isolates (7-9 log cfu/mL) was recorded and stable during 6 months of storage. Genomic characterization based on the internal transcribed spacer region (ITS) also identified four isolates of Saccharomyces cerevisiae displayed good ability to produce antimicrobial acids. These results provided the basis for selecting four natural yeast isolates as starter cultures for potential probiotic application in functional foods and animal feed. Additionally, these S. cerevisiae isolates also produced high levels of acids from fermented sugarcane molasses, an abundant agricultural waste product from the sugar industry. Furthermore, one of ten identified isolates of Meyerozyma guilliermondiii displayed an excellent ability to produce a pentose sugar xylitol at a yield of 0.490 g/g of consumed xylose. Potentially, yeast isolates of honeybee samples may offer various biotechnological advantages as probiotics or metabolite producers of multiproduct-based lignocellulosic biorefinery.
Collapse
|
7
|
Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A great deal of research in the alcoholic beverage industry was done on non-Saccharomyces yeast strains in recent years. The increase in research interest could be attributed to the changing of consumer tastes and the search for new beer sensory experiences, as well as the rise in popularity of mixed-fermentation beers. The search for unique flavors and aromas, such as the higher alcohols and esters, polyfunctional thiols, lactones and furanones, and terpenoids that produce fruity and floral notes led to the use of non-cerevisiae Saccharomyces species in the fermentation process. Additionally, a desire to invoke new technologies and techniques for making alcoholic beverages also led to the use of new and novel yeast species. Among them, one of the most widely used non-cerevisiae strains is S. pastorianus, which was used in the production of lager beer for centuries. The goal of this review is to focus on some of the more distinct species, such as those species of Saccharomyces sensu stricto yeasts: S. kudriavzevii, S. paradoxus, S. mikatae, S. uvarum, and S. bayanus. In addition, this review discusses other Saccharomyces spp. that were used in alcoholic fermentation. Most importantly, the factors professional brewers might consider when selecting a strain of yeast for fermentation, are reviewed herein. The factors include the metabolism and fermentation potential of carbon sources, attenuation, flavor profile of fermented beverage, flocculation, optimal temperature range of fermentation, and commercial availability of each species. While there is a great deal of research regarding the use of some of these species on a laboratory scale wine fermentation, much work remains for their commercial use and efficacy for the production of beer.
Collapse
|
8
|
MAT heterozygosity and the second sterility barrier in the reproductive isolation of Saccharomyces species. Curr Genet 2020; 66:957-969. [PMID: 32356035 PMCID: PMC7497327 DOI: 10.1007/s00294-020-01080-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
The genetic analysis of large numbers of Saccharomyces cerevisiae × S. uvarum ("cevarum") and S. kudriavzevii × S. uvarum ("kudvarum") hybrids in our previous studies revealed that these species are isolated by a postzygotic double-sterility barrier. We proposed a model in which the first barrier is due to the abruption of the meiotic process by the failure of the chromosomes of the subgenomes to pair (and recombine) in meiosis and the second barrier is assumed to be the result of the suppression of mating by allospecific MAT heterozygosity. While the former is analogous to the major mechanism of postzygotic reproductive isolation in plants and animals, the latter seems to be Saccharomyces specific. To bolster the assumed involvement of MAT in the second sterility barrier, we produced synthetic alloploid two-species cevarum and kudvarum hybrids with homo- and heterothallic backgrounds as well as three-species S. cerevisiae × S. kudvarum × S. uvarum ("cekudvarum") hybrids by mass-mating and examined their MAT loci using species- and cassette-specific primer pairs. We found that the allospecific MAT heterozygosity repressed MAT switching and mating in the hybrids and in the viable but sterile spores produced by the cevarum hybrids that had increased (allotetraploid) genomes. The loss of heterozygosity by meiotic malsegregation of MAT-carrying chromosomes in the latter hybrids broke down the sterility barrier. The resulting spores nullisomic for the S. uvarum chromosome produced vegetative cells capable of MAT switching and conjugation, opening the way for GARMe (Genome Autoreduction in Meiosis), the process that leads to chimeric genomes.
Collapse
|
9
|
Langdon QK, Peris D, Eizaguirre JI, Opulente DA, Buh KV, Sylvester K, Jarzyna M, Rodríguez ME, Lopes CA, Libkind D, Hittinger CT. Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PLoS Genet 2020; 16:e1008680. [PMID: 32251477 PMCID: PMC7162524 DOI: 10.1371/journal.pgen.1008680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
The wild, cold-adapted parent of hybrid lager-brewing yeasts, Saccharomyces eubayanus, has a complex and understudied natural history. The exploration of this diversity can be used both to develop new brewing applications and to enlighten our understanding of the dynamics of yeast evolution in the wild. Here, we integrate whole genome sequence and phenotypic data of 200 S. eubayanus strains, the largest collection known to date. S. eubayanus has a multilayered population structure, consisting of two major populations that are further structured into six subpopulations. Four of these subpopulations are found exclusively in the Patagonian region of South America; one is found predominantly in Patagonia and sparsely in Oceania and North America; and one is specific to the Holarctic ecozone. Plant host associations differed between subpopulations and between S. eubayanus and its sister species, Saccharomyces uvarum. S. eubayanus is most abundant and genetically diverse in northern Patagonia, where some locations harbor more genetic diversity than is found outside of South America, suggesting that northern Patagonia east of the Andes was a glacial refugium for this species. All but one subpopulation shows isolation-by-distance, and gene flow between subpopulations is low. However, there are strong signals of ancient and recent outcrossing, including two admixed lineages, one that is sympatric with and one that is mostly isolated from its parental populations. Using our extensive biogeographical data, we build a robust model that predicts all known and a handful of additional regions of the globe that are climatically suitable for S. eubayanus, including Europe where host accessibility and competitive exclusion by other Saccharomyces species may explain its continued elusiveness. We conclude that this industrially relevant species has rich natural diversity with many factors contributing to its complex distribution and natural history. The mysterious wild parent of hybrid-lager brewing yeasts, Saccharomyces eubayanus, has been known for less than 10 years. In this time, it has become clear that lager hybrids arose from a subpopulation that has only been isolated in Tibet and North Carolina, USA; but the global diversity of this species has been less explored. Here, we use whole genome sequencing data for 200 strains (174 newly sequenced) to investigate the genetic diversity and geographical distribution of S. eubayanus. We find that its extensive wild diversity is largely centered in northern Patagonia, which likely was a glacial refugium for this species as three of six subpopulations are endemic to this region. In contrast, S. eubayanus is rarely isolated outside of Patagonia. In North America, isolates are dominated by an invasive, near-clonal admixed lineage; the result of an outcrossing and migration event. All subpopulations are well-differentiated, with low gene flow between them. This genetic isolation of subpopulations could be due to ecological factors, such as plant host associations. With modeling, we find that many areas of the world are climatically suitable to S. eubayanus, including Europe, where it has never been isolated. We propose complex ancestries and rich ecologies underlie the global distribution and diversity of this elusive and industrially important species.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States of America
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Juan I. Eizaguirre
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET / Universidad Nacional del Comahue, Quintral 1250, Bariloche, Argentina
| | - Dana A. Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States of America
| | - Kelly V. Buh
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
| | - Kayla Sylvester
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States of America
| | - Martin Jarzyna
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States of America
| | - María E. Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | - Christian A. Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET / Universidad Nacional del Comahue, Quintral 1250, Bariloche, Argentina
- * E-mail: (CTH); (DL)
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States of America
- * E-mail: (CTH); (DL)
| |
Collapse
|
10
|
Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Rokas A, Hittinger CT. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res 2020; 20:foaa008. [PMID: 32009143 PMCID: PMC7067299 DOI: 10.1093/femsyr/foaa008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina
| | - D Peris
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain
| | - F A Cubillos
- Millennium Institute for Integrative Biology (iBio). General del Canto 51 (7500574), Santiago
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología. Alameda 3363 (9170002). Estación Central. Santiago, Chile
| | - J L Steenwyk
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
| | - A Rokas
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| |
Collapse
|
11
|
Saubin M, Devillers H, Proust L, Brier C, Grondin C, Pradal M, Legras JL, Neuvéglise C. Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures. Front Microbiol 2020; 10:2960. [PMID: 32010076 PMCID: PMC6974558 DOI: 10.3389/fmicb.2019.02960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
Hanseniaspora, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species H. uvarum, H. opuntiae, H. guilliermondii, and H. pseudoguilliermondii. Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, H. guilliermondii strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between H. opuntiae and H. pseudoguilliermondii. Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that Hanseniaspora genomes are not only fast evolving but also highly dynamic.
Collapse
Affiliation(s)
- Méline Saubin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucas Proust
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cathy Brier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cécile Grondin
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
12
|
Takashima M, Sugita T. Draft Genome Analysis of Trichosporonales Species That Contribute to the Taxonomy of the Genus Trichosporon and Related Taxa. Med Mycol J 2019; 60:51-57. [PMID: 31155572 DOI: 10.3314/mmj.19.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many nomenclatural changes, including proposals of new taxa, have been carried out in fungi to adapt to the "One fungus = One name" (1F=1N) principle. In yeasts, while some changes have been made in response to 1F=1N, most have resulted from two other factors: i) an improved understanding of biological diversity due to an increase in number of known species, and ii) progress in the methods for analyzing and evaluating biological diversity. The method for constructing a backbone tree, which is a basal tree used to infer phylogeny, has also progressed from single-gene trees to multi-locus trees and further, to genome trees. This paper describes recent advances related to the contribution of genomic data to taxonomy, using the order Trichosporonales as an example.
Collapse
Affiliation(s)
- Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
13
|
Langdon QK, Peris D, Baker EP, Opulente DA, Nguyen HV, Bond U, Gonçalves P, Sampaio JP, Libkind D, Hittinger CT. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol Evol 2019; 3:1576-1586. [PMID: 31636426 DOI: 10.1038/s41559-019-0998-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, CSIC, Valencia, Spain
| | - EmilyClare P Baker
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA. .,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Thomas S, Sanya DRA, Fouchard F, Nguyen HV, Kunze G, Neuvéglise C, Crutz-Le Coq AM. Blastobotrys adeninivorans and B. raffinosifermentans, two sibling yeast species which accumulate lipids at elevated temperatures and from diverse sugars. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:154. [PMID: 31249618 PMCID: PMC6587252 DOI: 10.1186/s13068-019-1492-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the context of sustainable development, yeast are one class of microorganisms foreseen for the production of oil from diverse renewable feedstocks, in particular those that do not compete with the food supply. However, their use in bulk production, such as for the production of biodiesel, is still not cost effective, partly due to the possible poor use of desired substrates or poor robustness in the practical bioconversion process. We investigated the natural capacity of Blastobotrys adeninivorans, a yeast already used in biotechnology, to store lipids under different conditions. RESULTS The genotyping of seven strains showed the species to actually be composed of two different groups, one that (including the well-known strain LS3) could be reassigned to Blastobotrys raffinosifermentans. We showed that, under nitrogen limitation, strains of both species can synthesize lipids to over 20% of their dry-cell weight during shake-flask cultivation in glucose or xylose medium for 96 h. In addition, organic acids were excreted into the medium. LS3, our best lipid-producing strain, could also accumulate lipids from exogenous oleic acid, up to 38.1 ± 1.6% of its dry-cell weight, and synthesize lipids from various sugar substrates, up to 36.6 ± 0.5% when growing in cellobiose. Both species, represented by LS3 and CBS 8244T, could grow with little filamentation in the lipogenic medium from 28 to 45 °C and reached lipid titers ranging from 1.76 ± 0.28 to 3.08 ± 0.49 g/L in flasks. Under these conditions, the maximum bioconversion yield (Y FA/S = 0.093 ± 0.017) was obtained with LS3 at 37 °C. The presence of genes for predicted subunits of an ATP citrate lyase in the genome of LS3 reinforces its oleaginous character. CONCLUSIONS Blastobotrys adeninivorans and B. raffinosifermentans, which are known to be xerotolerant and genetically-tractable, are promising biotechnological yeasts of the Saccharomycotina that could be further developed through genetic engineering for the production of microbial oil. To our knowledge, this is the first report of efficient lipid storage in yeast when cultivated at a temperature above 40 °C. This paves the way to help reducing costs through consolidated bioprocessing.
Collapse
Affiliation(s)
- Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Daniel R. A. Sanya
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Fouchard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Gatersleben, Germany
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
15
|
Baker EP, Hittinger CT. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLoS Genet 2019; 15:e1007786. [PMID: 30946740 PMCID: PMC6448821 DOI: 10.1371/journal.pgen.1007786] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022] Open
Abstract
At the molecular level, the evolution of new traits can be broadly divided between changes in gene expression and changes in protein-coding sequence. For proteins, the evolution of novel functions is generally thought to proceed through sequential point mutations or recombination of whole functional units. In Saccharomyces, the uptake of the sugar maltotriose into the cell is the primary limiting factor in its utilization, but maltotriose transporters are relatively rare, except in brewing strains. No known wild strains of Saccharomyces eubayanus, the cold-tolerant parent of hybrid lager-brewing yeasts (Saccharomyces cerevisiae x S. eubayanus), are able to consume maltotriose, which limits their ability to fully ferment malt extract. In one strain of S. eubayanus, we found a gene closely related to a known maltotriose transporter and were able to confer maltotriose consumption by overexpressing this gene or by passaging the strain on maltose. Even so, most wild strains of S. eubayanus lack native maltotriose transporters. To determine how this rare trait could evolve in naive genetic backgrounds, we performed an adaptive evolution experiment for maltotriose consumption, which yielded a single strain of S. eubayanus able to grow on maltotriose. We mapped the causative locus to a gene encoding a novel chimeric transporter that was formed by an ectopic recombination event between two genes encoding transporters that are unable to import maltotriose. In contrast to classic models of the evolution of novel protein functions, the recombination breakpoints occurred within a single functional domain. Thus, the ability of the new protein to carry maltotriose was likely acquired through epistatic interactions between independently evolved substitutions. By acquiring multiple mutations at once, the transporter rapidly gained a novel function, while bypassing potentially deleterious intermediate steps. This study provides an illuminating example of how recombination between paralogs can establish novel interactions among substitutions to create adaptive functions. Hybrids of the yeasts Saccharomyces cerevisiae and Saccharomyces eubayanus (lager-brewing yeasts) dominate the modern brewing industry. S. cerevisiae, also known as baker’s yeast, is well-known for its role in industry and scientific research. Less well recognized is S. eubayanus, which was only discovered as a pure species in 2011. While most lager-brewing yeasts rapidly and completely utilize the important brewing sugar maltotriose, no strain of S. eubayanus isolated to date is known to do so. Despite being unable to consume maltotriose, we identified one strain of S. eubayanus carrying a gene for a functional maltotriose transporter, although most strains lack this gene. During an adaptive evolution experiment, a strain of S. eubayanus without native maltotriose transporters evolved the ability to grow on maltotriose. Maltotriose consumption in the evolved strain resulted from a chimeric transporter that arose by shuffling genes encoding parent proteins that were unable to transport maltotriose. Traditionally, functional chimeric proteins are thought to evolve by shuffling discrete functional domains or modules, but the breakpoints in the chimera studied here occurred within the single functional module of the protein. These results support the less well-recognized role of shuffling duplicate gene sequences to generate novel proteins with adaptive functions.
Collapse
Affiliation(s)
- EmilyClare P. Baker
- Laboratory of Genetics, Microbiology Doctoral Training Program, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Microbiology Doctoral Training Program, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cubillos FA, Gibson B, Grijalva-Vallejos N, Krogerus K, Nikulin J. Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast 2019; 36:383-398. [PMID: 30698853 DOI: 10.1002/yea.3380] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The burgeoning interest in archaic, traditional, and novel beer styles has coincided with a growing appreciation of the role of yeasts in determining beer character as well as a better understanding of the ecology and biogeography of yeasts. Multiple studies in recent years have highlighted the potential of wild Saccharomyces and non-Saccharomyces yeasts for production of beers with novel flavour profiles and other desirable properties. Yeasts isolated from spontaneously fermented beers as well as from other food systems (wine, bread, and kombucha) have shown promise for brewing application, and there is evidence that such cross-system transfers have occurred naturally in the past. We review here the available literature pertaining to the use of nonconventional yeasts in brewing, with a focus on the origins of these yeasts, including methods of isolation. Practical aspects of utilizing nondomesticated yeasts are discussed, and modern methods to facilitate discovery of yeasts with brewing potential are highlighted.
Collapse
Affiliation(s)
- Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Brian Gibson
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nubia Grijalva-Vallejos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Kristoffer Krogerus
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Espoo, Finland
| | - Jarkko Nikulin
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.,Chemical Process Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Sipiczki M. Interspecies Hybridisation and Genome Chimerisation in Saccharomyces: Combining of Gene Pools of Species and Its Biotechnological Perspectives. Front Microbiol 2018; 9:3071. [PMID: 30619156 PMCID: PMC6297871 DOI: 10.3389/fmicb.2018.03071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last one and a half decade, interspecies hybridisation has gained continuously increasing attention as a breeding technique suitable for transferring of genetic information between Saccharomyces species and mixing of their gene pools without genetic engineering. The hybrids frequently show positive transgressive phenotypes. Segregation of the hybrid genome results in mosaic (chimeric) strains that can outperform both the parents and the hybrids or exhibit novel positive phenotypic properties. Mitotic segregation can take place during the vegetative propagation of the sterile allodiploid hybrid cells. Meiotic segregation becomes possible after genome duplication (tetraploidisation) if it is followed by break-down of sterility. The allotetraploid cells are seemingly fertile because they form viable spores. But because of the autodiploidisation of the meiosis, sterile allodiploid spores are produced and thus the hybrid genome does not segregate (the second sterility barrier). However, malsegregation of MAT-carrying chromosomes in one of the subgenomes during allotetraploid meiosis (loss of MAT heterozygosity) results in fertile alloaneuploid spores. The breakdown of (the second) sterility barrier is followed by the loss of additional chromosomes in rapid succession and recombination between the subgenomes. The process (genome autoreduction in meiosis or GARMe) chimerises the genome and generates strains with chimeric (mosaic) genomes composed of various combinations of the genes of the parental strains. Since one of the subgenomes is preferentially reduced, the outcome is usually a strain having an (almost) complete genome from one parent and only a few genes or mosaics from the genome of the other parent. The fertility of the spores produced during GARMe provides possibilities also for introgressive backcrossing with one or the other parental strain, but genome chimerisation and gene transfer through series of backcrosses always with the same parent is likely to be less efficient than through meiotic or mitotic genome autoreduction. Hybridisation and the evolution of the hybrid genome (resizing and chimerisation) have been exploited in the improvement of industrial strains and applied to the breeding of new strains for specific purposes. Lists of successful projects are shown and certain major trends are discussed.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Boonekamp FJ, Dashko S, van den Broek M, Gehrmann T, Daran JM, Daran-Lapujade P. The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 2018; 9:504. [PMID: 30505317 PMCID: PMC6250768 DOI: 10.3389/fgene.2018.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/05/2022] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.
Collapse
Affiliation(s)
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
19
|
Liu C, Niu C, Zhao Y, Tian Y, Wang J, Li Q. Genome Analysis of the Yeast M14, an Industrial Brewing Yeast Strain Widely Used in China. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2018.1496633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Yun Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Yaping Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| |
Collapse
|
20
|
Origone AC, Rodríguez ME, Oteiza JM, Querol A, Lopes CA. Saccharomyces cerevisiae × Saccharomyces uvarum hybrids generated under different conditions share similar winemaking features. Yeast 2018; 35:157-171. [PMID: 29131448 DOI: 10.1002/yea.3295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Interspecific hybrids among species in the Saccharomyces genus are frequently detected in anthropic habitats and can also be obtained easily in the laboratory. This occurs because the most important genetic barriers among Saccharomyces species are post-zygotic. Depending on several factors, including the involved strains, the hybridization mechanism and stabilization conditions, hybrids that bear differential genomic constitutions, and hence phenotypic variability, can be obtained. In the present study, Saccharomyces cerevisiae × Saccharomyces uvarum hybrids were constructed using genetically and physiologically different S. uvarum parents at distinct temperatures (13 and 20°C). The effect of those variables on the main oenological features of the wines obtained with these hybrids was evaluated. Hybrids were successfully obtained in all cases. However, genetic stabilization based on successive fermentations in white wine at 13°C was significantly longer than that at 20°C. Our results demonstrated that, irrespective of the S. uvarum parent and temperature used for hybrid generation and stabilization, similar physicochemical and aromatic features were found in wines. The hybrids generated herein were characterized by low ethanol production, high glycerol synthesis and the capacity to grow at low temperature and to produce malic acid with particular aroma profiles. These features make these hybrids useful for the new winemaking industry within the climate change era frame. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Cecilia Origone
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires 1400, CP, 8300, Neuquén, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires 1400, CP, 8300, Neuquén, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Comahue, (8324) Cipolletti, Río Negro, Argentina
| | - Juan Martín Oteiza
- Centro de Investigación y Asistencia Técnica a la Industria-CONICET, Argentina
| | - Amparo Querol
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, PO Box 73, E-46100, Burjassot, Valencia, Spain
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires 1400, CP, 8300, Neuquén, Argentina.,Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, (8303) Cinco Saltos, Río Negro, Argentina
| |
Collapse
|
21
|
Nadai C, Bovo B, Giacomini A, Corich V. New rapid
PCR
protocol based on high‐resolution melting analysis to identify
Saccharomyces cerevisiae
and other species within its genus. J Appl Microbiol 2018; 124:1232-1242. [DOI: 10.1111/jam.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- C. Nadai
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
| | - B. Bovo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
| | - A. Giacomini
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE) University of Padova Conegliano TV Italy
| | - V. Corich
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE) University of Padova Legnaro PD Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE) University of Padova Conegliano TV Italy
| |
Collapse
|
22
|
Stavrou AA, Mixão V, Boekhout T, Gabaldón T. Misidentification of genome assemblies in public databases: The case of Naumovozyma dairenensis and proposal of a protocol to correct misidentifications. Yeast 2018; 35:425-429. [PMID: 29320804 PMCID: PMC6001429 DOI: 10.1002/yea.3303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022] Open
Abstract
Online sequence databases such as NCBI GenBank serve as a tremendously useful platform for researchers to share and reuse published data. However, submission systems lack control for errors such as organism misidentification, which once entered in the database can be propagated and mislead downstream analyses. Here we present an illustrating case of misidentification of Candida albicans from a clinical sample as Naumovozyma dairenensis based on whole-genome shotgun data. Analyses of phylogenetic markers, read mapping and single nucleotide polymorphisms served to correct the identification. We propose that the routine use of such analyses could help to detect misidentifications arising from unsupervised analyses and correct them before they enter the databases. Finally, we discuss broader implications of such misidentifications and the difficulty of correcting them once they are in the records.
Collapse
Affiliation(s)
- Aimilia A Stavrou
- Westerdijk Fungal Biodiversity Institute, 3584, Utrecht, The Netherlands.,Institute for Biodiversity and ecosystem Dynamics, University of Amsterdam, 1012, WX, Amsterdam, The Netherlands
| | - Verónica Mixão
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584, Utrecht, The Netherlands.,Institute for Biodiversity and ecosystem Dynamics, University of Amsterdam, 1012, WX, Amsterdam, The Netherlands
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
23
|
Quintilla R, Kolecka A, Casaregola S, Daniel HM, Houbraken J, Kostrzewa M, Boekhout T, Groenewald M. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi. Int J Food Microbiol 2018; 266:109-118. [DOI: 10.1016/j.ijfoodmicro.2017.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023]
|
24
|
Hittinger CT, Steele JL, Ryder DS. Diverse yeasts for diverse fermented beverages and foods. Curr Opin Biotechnol 2018; 49:199-206. [DOI: 10.1016/j.copbio.2017.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
|
25
|
Takashima M, Sriswasdi S, Manabe RI, Ohkuma M, Sugita T, Iwasaki W. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes. Yeast 2017; 35:99-111. [PMID: 29027707 DOI: 10.1002/yea.3284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.,Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-8568, Japan.,Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
26
|
Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids. Yeast 2017; 35:51-69. [DOI: 10.1002/yea.3283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Eladio Barrio
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
- Department of Genetics; University of Valencia; Valencia Spain
| | - Amparo Querol
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| |
Collapse
|
27
|
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, Bragulat MR, Cabañes FJ, Carbia M, Chakrabarti A, Chaturvedi S, Chaturvedi V, Chen M, Chowdhary A, Colom MF, Cornely OA, Crous PW, Cuétara MS, Diaz MR, Espinel-Ingroff A, Fakhim H, Falk R, Fang W, Herkert PF, Ferrer Rodríguez C, Fraser JA, Gené J, Guarro J, Idnurm A, Illnait-Zaragozi MT, Khan Z, Khayhan K, Kolecka A, Kurtzman CP, Lagrou K, Liao W, Linares C, Meis JF, Nielsen K, Nyazika TK, Pan W, Pekmezovic M, Polacheck I, Posteraro B, de Queiroz Telles F, Romeo O, Sánchez M, Sampaio A, Sanguinetti M, Sriburee P, Sugita T, Taj-Aldeen SJ, Takashima M, Taylor JW, Theelen B, Tomazin R, Verweij PE, Wahyuningsih R, Wang P, Boekhout T. Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the Cryptococcus Genus. mSphere 2017; 2:e00238-17. [PMID: 28875175 PMCID: PMC5577652 DOI: 10.1128/msphere.00238-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature "C. neoformans species complex" and "C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Collapse
Affiliation(s)
- Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | | - Hamid Badali
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - Sebastien Bertout
- Unité Mixte Internationale Recherches Translationnelles sur l’Infection à VIH et les Maladies Infectieuses, Laboratoire de Parasitologie et Mycologie Médicale, UFR Pharmacie, Université Montpellier, Montpellier, France
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - M. Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauricio Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Oliver A. Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Clinical Trials, University Hospital Cologne, Cologne, Germany
| | - Pedro W. Crous
- Phytopathology Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Maria S. Cuétara
- Department of Microbiology, Hospital Severo Ochoa, Madrid, Spain
| | - Mara R. Diaz
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, Florida, USA
- Rosentiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami, Miami, Florida, USA
| | | | - Hamed Fakhim
- Department of Medical Parasitology and Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Patricia F. Herkert
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | | | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Melbourne, Australia
| | | | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Carlos Linares
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tinashe K. Nyazika
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Malawi-Liverpool-Wellcome Trust, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, Liverpool, United Kingdom
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Flavio de Queiroz Telles
- Department of Communitarian Health, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Manuel Sánchez
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Ana Sampaio
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, Vila Real, Portugal
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Pojana Sriburee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan
| | - Saad J. Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paul E. Verweij
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, School of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Teun Boekhout
- Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|