1
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
2
|
Silva AJD, de Sousa MMG, de Macêdo LS, de França Neto PL, de Moura IA, Espinoza BCF, Invenção MDCV, de Pinho SS, da Gama MATM, de Freitas AC. RNA Vaccines: Yeast as a Novel Antigen Vehicle. Vaccines (Basel) 2023; 11:1334. [PMID: 37631902 PMCID: PMC10459952 DOI: 10.3390/vaccines11081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023] Open
Abstract
In the last decades, technological advances for RNA manipulation enabled and expanded its application in vaccine development. This approach comprises synthetic single-stranded mRNA molecules that direct the translation of the antigen responsible for activating the desired immune response. The success of RNA vaccines depends on the delivery vehicle. Among the systems, yeasts emerge as a new approach, already employed to deliver protein antigens, with efficacy demonstrated through preclinical and clinical trials. β-glucans and mannans in their walls are responsible for the adjuvant property of this system. Yeast β-glucan capsules, microparticles, and nanoparticles can modulate immune responses and have a high capacity to carry nucleic acids, with bioavailability upon oral immunization and targeting to receptors present in antigen-presenting cells (APCs). In addition, yeasts are suitable vehicles for the protection and specific delivery of therapeutic vaccines based on RNAi. Compared to protein antigens, the use of yeast for DNA or RNA vaccine delivery is less established and has fewer studies, most of them in the preclinical phase. Here, we present an overview of the attributes of yeast or its derivatives for the delivery of RNA-based vaccines, discussing the current challenges and prospects of this promising strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.)
| |
Collapse
|
3
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
4
|
Silva AJD, Rocha CKDS, de Freitas AC. Standardization and Key Aspects of the Development of Whole Yeast Cell Vaccines. Pharmaceutics 2022; 14:pharmaceutics14122792. [PMID: 36559285 PMCID: PMC9781213 DOI: 10.3390/pharmaceutics14122792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
In the context of vaccine development, improving antigenic presentation is critical for the activation of specific immune responses and the success of immunization, in addition to selecting an appropriate target. In this sense, different strategies have been developed and improved. Among them is the use of yeast cells as vehicles for the delivery of recombinant antigens. These vaccines, named whole yeast vaccines (WYVs), can induce humoral and cellular immune responses, with the additional advantage of dispensing with the use of adjuvants due to the immunostimulatory properties of their cell wall components. However, there are some gaps in the methodologies for obtaining and validating recombinant strains and vaccine formulations. The standardization of these parameters is an important factor for WYVs approval by regulatory agencies and, consequently, their licensing. This review aimed to provide an overview of the main parameters to consider when developing a yeast-based vaccine, addressing some available tools, and highlighting the main variables that can influence the vaccine production process.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81996067671
| |
Collapse
|
5
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
6
|
Soutter F, Werling D, Nolan M, Küster T, Attree E, Marugán-Hernández V, Kim S, Tomley FM, Blake DP. A Novel Whole Yeast-Based Subunit Oral Vaccine Against Eimeria tenella in Chickens. Front Immunol 2022; 13:809711. [PMID: 35185896 PMCID: PMC8848252 DOI: 10.3389/fimmu.2022.809711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Cheap, easy-to-produce oral vaccines are needed for control of coccidiosis in chickens to reduce the impact of this disease on welfare and economic performance. Saccharomyces cerevisiae yeast expressing three Eimeria tenella antigens were developed and delivered as heat-killed, freeze-dried whole yeast oral vaccines to chickens in four separate studies. After vaccination, E. tenella replication was reduced following low dose challenge (250 oocysts) in Hy-Line Brown layer chickens (p<0.01). Similarly, caecal lesion score was reduced in Hy-Line Brown layer chickens vaccinated using a mixture of S. cerevisiae expressing EtAMA1, EtIMP1 and EtMIC3 following pathogenic-level challenge (4,000 E. tenella oocysts; p<0.01). Mean body weight gain post-challenge with 15,000 E. tenella oocysts was significantly increased in vaccinated Cobb500 broiler chickens compared to mock-vaccinated controls (p<0.01). Thus, inactivated recombinant yeast vaccines offer cost-effective and scalable opportunities for control of coccidiosis, with relevance to broiler production and chickens reared in low-and middle-income countries (LMICs).
Collapse
Affiliation(s)
- Francesca Soutter
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Matthew Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Tatiana Küster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Elizabeth Attree
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Sungwon Kim
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
7
|
Kumar R, Srivastava V, Baindara P, Ahmad A. Thermostable vaccines: an innovative concept in vaccine development. Expert Rev Vaccines 2022; 21:811-824. [PMID: 35285366 DOI: 10.1080/14760584.2022.2053678] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccines represent one of the most common and safer ways of combating infectious diseases. Loss of potency owing to thermal denaturation or degradation of almost all the commercially available vaccines necessitates their storage, transportation, and final dissemination under refrigerated or deep-freeze conditions. However, maintenance of a continuous cold chain at every step raises the cost of vaccines significantly. A large number of life-saving vaccines are discarded before their application owing to exposure to sub-optimum temperatures. Therefore, there is a pressing need for the development of a thermostable vaccine with a long shelf life at ambient temperature. AREAS COVERED A literature search was performed to compile a list of different vaccines, along with their storage and handling conditions. Similarly, a separate list was prepared for different coronavirus vaccines which are in use against coronavirus disease 2019. A literature survey was also performed to look at different approaches undertaken globally to address the issue of the cold-chain problem. We emphasised the importance of yeast cells in the development of thermostable vaccines. In the end, we discussed why thermostable vaccines are required, not only in resource-poor settings in Asian and African countries but also for resource-rich settings in Europe and North America. EXPERT OPINION : Temperature change can severely impact the stability of various life-saving vaccines. Therefore, there is a pressing need for the development of thermostable vaccines with a long shelf life at ambient temperature.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco 94143, California, USA
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa
| | - Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65201, Missouri, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
8
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
9
|
Goh S, Kolakowski J, Holder A, Pfuhl M, Ngugi D, Ballingall K, Tombacz K, Werling D. Development of a Potential Yeast-Based Vaccine Platform for Theileria parva Infection in Cattle. Front Immunol 2021; 12:674484. [PMID: 34305904 PMCID: PMC8297500 DOI: 10.3389/fimmu.2021.674484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called "Infection and Treatment Method" (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.
Collapse
Affiliation(s)
- Shan Goh
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jeannine Kolakowski
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Angela Holder
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Mark Pfuhl
- Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Daniel Ngugi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Kata Tombacz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
10
|
Lyophilized yeast powder for adjuvant free thermostable vaccine delivery. Appl Microbiol Biotechnol 2021; 105:3131-3143. [PMID: 33834253 PMCID: PMC8032460 DOI: 10.1007/s00253-021-11259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Thermolabile nature of commercially available vaccines necessitates their storage, transportation, and dissemination under refrigerated condition. Maintenance of continuous cold chain at every step increases the final cost of vaccines. Any breach in the cold chain even for a short duration results in the need to discard the vaccines. As a result, there is a pressing need for the development of thermostable vaccines. In this proof-of-concept study, we showed that E. coli curli-green fluorescent fusion protein remains stable in freeze-dried yeast powder for more than 18 and 12 months when stored at 30 °C and 37 °C respectively. Stability of the heterologous protein remains unaffected during the process of heat-inactivation and lyophilization. The mass of lyophilized yeast powder remains almost unchanged during the entire period of storage and expressed protein remains intact even after two cycles of freeze and thaws. The protease-deficient strain appears ideal for the development of whole recombinant yeast-based vaccines. The cellular abundance of expressed antigen in dry powder after a year was comparable to freshly lyophilized cells. Scanning electron microscopy showed the intact nature of cells in powdered form even after a year of storage at 30 °C. Observation made in this study showed that freeze-dry yeast powder can play a vital role in the development of thermostable vaccines. Key Points • Yeast-based vaccines can overcome problem of cold chain associated with conventional vaccines • Lyophilized yeast powder can be a simple way for long-term storage of immunogen(s) • Protease deficient strain is important for whole recombinant yeast-based vaccines
Collapse
|
11
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol 2020; 88:106944. [PMID: 33182032 DOI: 10.1016/j.intimp.2020.106944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Cancer vaccines are usually derived from the patient's tumor cells or the antigens found on their surface, which may help the immune system to identify and kill these malignant cells. Current focus of many researches is designing vaccines with the hope of triggering the immune system to attack cancer cells in a more effective, reliable and safe manner. Although colorectal cancer (CRC) is recognized as the third leading cause of death by cancer, but significant advances in therapy strategies have been made in recent years, including cancer vaccine. In this review, we present various vaccine platforms that have been used in the border battle against CRC, some of which have been approved for clinical use and some are in late-stage clinical trials. Until September 2020 there is approximately 1940 clinical trials of cancer vaccines on patients with different cancer types, and also many more trials are in the planning stages, which makes it the most important period of therapeutic cancer vaccines studies in the history of the immunotherapy. In cancer vaccines clinical trials, there are several considerations that must be taken into account including engineering of antigen-presenting cells, potential toxicity of antigenic areas, pharmacokinetics and pharmacodynamics of vaccines, and monitoring of the patients' immune response. Therefore, the need to overcome immunosuppression mechanisms/immune tolerance is a critical step for the success of introducing therapeutic vaccines into the widely used drugs on market. In this way, better understanding of neoantigens, tumor immune surveillance escape mechanisms and host-tumor interactions are required to develop more effective and safe cancer vaccines.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2019; 8:1020-1044. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral drug delivery remains the most preferred approach due to its multiple advantages. Recently there has been increasing interest in the development of advanced vehicles for oral delivery of different therapeutics. Among them, biomimetic and bioinspired strategies are emerging as novel approaches that are promising for addressing biological barriers encountered by traditional drug delivery systems. Herein we provide a state-of-the-art review on the current progress of biomimetic particulate oral delivery systems. Different biomimetic nanoparticles used for oral drug delivery are first discussed, mainly including ligand/antibody-functionalized nanoparticles, transporter-mediated nanoplatforms, and nanoscale extracellular vesicles. Then we describe bacteria-derived biomimetic systems, with respect to oral delivery of therapeutic proteins or antigens. Subsequently, yeast-derived oral delivery systems, based on either chemical engineering or bioengineering approaches are discussed, with emphasis on the treatment of inflammatory diseases and cancer as well as oral vaccination. Finally, bioengineered plant cells are introduced for oral delivery of biological agents. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of currently developed biomimetic oral therapies.
Collapse
Affiliation(s)
- Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Guoyu Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China. and The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res 2019; 19:5298404. [PMID: 30668686 DOI: 10.1093/femsyr/foz007] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
In presently licensed vaccines, killed or attenuated organisms act as a source of immunogens except for peptide-based vaccines. These conventional vaccines required a mass culture of associated or related organisms and long incubation periods. Special requirements during storage and transportation further adds to the cost of vaccine preparations. Availability of complete genome sequence, well-established genetic, inherent natural adjuvant and non-pathogenic nature of yeast species viz. Saccharomyces cerevisiae, Pichia pastoris makes them an ideal model system for the development of vaccines both for public health and for on-farm consumption. In this review, we compile the work in this emerging field during last two decades with major emphases on S. cerevisiae and P. pastoris which are routinely used worldwide for expression of heterologous proteins with therapeutic value against infectious diseases along with possible use in cancer therapy. We also pointed towards the developments in use of whole recombinant yeast, yeast surface display and virus-like particles as a novel strategy in the fight against infectious diseases and cancer along with other aspects including suitability of yeast in vaccines preparations, yeast cell wall component as an immune stimulator or modulator and present status of yeast-based vaccines in clinical trials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
14
|
Kumar R. Simplified protocol for faster transformation of (a large number of) Pichia pastoris strains. Yeast 2019; 36:399-410. [PMID: 30756442 DOI: 10.1002/yea.3383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
During the last couple of decades, the methylotrophic yeast, Pichia pastoris, has emerged as an important yeast species owing to its increasing importance both in industry and in basic research. The presently available methods for P. pastoris transformation necessitate the preparation of competent cells, which requires lots of resource, space, time, and efforts. This limits the number of transformations that can be performed by an individual in a given time. This paper is reporting a modification in the available protocols, which makes P. pastoris transformation hassle-free. In the present, modified procedure, cells were grown in patches on YPD plate(s), and the rest of the steps were carried out in small Eppendorf tubes. This modified protocol does not require a big centrifuge and shaker. This modified procedure of P. pastoris transformation with its unique way of competent cells preparation will be helpful for those working with this yeast species.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Science, University of California San Diego, San Diego, California, USA
| |
Collapse
|