1
|
Yadav S, Ross EM, Wei X, Powell O, Hivert V, Hickey LT, Atkin F, Deomano E, Aitken KS, Voss-Fels KP, Hayes BJ. Optimising clonal performance in sugarcane: leveraging non-additive effects via mate-allocation strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1260517. [PMID: 38023905 PMCID: PMC10667552 DOI: 10.3389/fpls.2023.1260517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Mate-allocation strategies in breeding programs can improve progeny performance by harnessing non-additive genetic effects. These approaches prioritise predicted progeny merit over parental breeding value, making them particularly appealing for clonally propagated crops such as sugarcane. We conducted a comparative analysis of mate-allocation strategies, exploring utilising non-additive and heterozygosity effects to maximise clonal performance with schemes that solely consider additive effects to optimise breeding value. Using phenotypic and genotypic data from a population of 2,909 clones evaluated in final assessment trials of Australian sugarcane breeding programs, we focused on three important traits: tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and Fibre. By simulating families from all possible crosses (1,225) with 50 progenies each, we predicted the breeding and clonal values of progeny using two models: GBLUP (considering additive effects only) and extended-GBLUP (incorporating additive, non-additive, and heterozygosity effects). Integer linear programming was used to identify the optimal mate-allocation among selected parents. Compared to breeding value-based approaches, mate-allocation strategies based on clonal performance yielded substantial improvements, with predicted progeny values increasing by 57% for TCH, 12% for CCS, and 16% for fibre. Our simulation study highlights the effectiveness of mate-allocation approaches that exploit non-additive and heterozygosity effects, resulting in superior clonal performance. However, there was a notable decline in additive gain, particularly for TCH, likely due to significant epistatic effects. When selecting crosses based on clonal performance for TCH, the inbreeding coefficient of progeny was significantly lower compared to random mating, underscoring the advantages of leveraging non-additive and heterozygosity effects in mitigating inbreeding depression. Thus, mate-allocation strategies are recommended in clonally propagated crops to enhance clonal performance and reduce the negative impacts of inbreeding.
Collapse
Affiliation(s)
- Seema Yadav
- Queensland Alliance for Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth M. Ross
- Queensland Alliance for Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Xianming Wei
- Sugar Research Australia, Mackay, QLD, Australia
| | - Owen Powell
- Queensland Alliance for Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Valentin Hivert
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lee T. Hickey
- Queensland Alliance for Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Felicity Atkin
- Sugar Research Australia, Meringa Gordonvale, QLD, Australia
| | - Emily Deomano
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Karen S. Aitken
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QlD, Australia
| | - Kai P. Voss-Fels
- Queensland Alliance for Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Ben J. Hayes
- Queensland Alliance for Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Messina CD, Gho C, Hammer GL, Tang T, Cooper M. Two decades of harnessing standing genetic variation for physiological traits to improve drought tolerance in maize. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4847-4861. [PMID: 37354091 PMCID: PMC10474595 DOI: 10.1093/jxb/erad231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
We review approaches to maize breeding for improved drought tolerance during flowering and grain filling in the central and western US corn belt and place our findings in the context of results from public breeding. Here we show that after two decades of dedicated breeding efforts, the rate of crop improvement under drought increased from 6.2 g m-2 year-1 to 7.5 g m-2 year-1, closing the genetic gain gap with respect to the 8.6 g m-2 year-1 observed under water-sufficient conditions. The improvement relative to the long-term genetic gain was possible by harnessing favourable alleles for physiological traits available in the reference population of genotypes. Experimentation in managed stress environments that maximized the genetic correlation with target environments was key for breeders to identify and select for these alleles. We also show that the embedding of physiological understanding within genomic selection methods via crop growth models can hasten genetic gain under drought. We estimate a prediction accuracy differential (Δr) above current prediction approaches of ~30% (Δr=0.11, r=0.38), which increases with increasing complexity of the trait environment system as estimated by Shannon information theory. We propose this framework to inform breeding strategies for drought stress across geographies and crops.
Collapse
Affiliation(s)
- Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carla Gho
- School of Agriculture & Food Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Graeme L Hammer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Tom Tang
- Corteva Agrisciences, Johnston, IA, USA
| | - Mark Cooper
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Qld 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
3
|
Adams J, de Vries M, van Eeuwijk F. Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2617. [PMID: 37514232 PMCID: PMC10385487 DOI: 10.3390/plants12142617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
There is an ongoing endeavor within the potato breeding sector to rapidly adapt potato from a clonal polyploid crop to a diploid hybrid potato crop. While hybrid breeding allows for the efficient generation and selection of parental lines, it also increases breeding program complexity and results in longer breeding cycles. Over the past two decades, genomic prediction has revolutionized hybrid crop breeding through shorter breeding cycles, lower phenotyping costs, and better population improvement, resulting in increased genetic gains for genetically complex traits. In order to accelerate the genetic gains in hybrid potato, the proper implementation of genomic prediction is a crucial milestone in the rapid improvement of this crop. The authors of this paper set out to test genomic prediction in hybrid potato using current genotyped material with two alternative models: one model that predicts the general combining ability effects (GCA) and another which predicts both the general and specific combining ability effects (GCA+SCA). Using a training set comprising 769 hybrids and 456 genotyped parental lines, we found that reasonable a prediction accuracy could be achieved for most phenotypes with both zero common parents (ρ=0.36-0.61) and one (ρ=0.50-0.68) common parent between the training and test sets. There was no benefit with the inclusion of non-additive genetic effects in the GCA+SCA model despite SCA variance contributing between 9% and 19% of the total genetic variance. Genotype-by-environment interactions, while present, did not appear to affect the prediction accuracy, though prediction errors did vary across the trial's targets. These results suggest that genomically estimated breeding values on parental lines are sufficient for hybrid yield prediction.
Collapse
Affiliation(s)
- James Adams
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | | | - Fred van Eeuwijk
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Cooper M, Powell O, Gho C, Tang T, Messina C. Extending the breeder's equation to take aim at the target population of environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1129591. [PMID: 36895882 PMCID: PMC9990092 DOI: 10.3389/fpls.2023.1129591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A major focus for genomic prediction has been on improving trait prediction accuracy using combinations of algorithms and the training data sets available from plant breeding multi-environment trials (METs). Any improvements in prediction accuracy are viewed as pathways to improve traits in the reference population of genotypes and product performance in the target population of environments (TPE). To realize these breeding outcomes there must be a positive MET-TPE relationship that provides consistency between the trait variation expressed within the MET data sets that are used to train the genome-to-phenome (G2P) model for applications of genomic prediction and the realized trait and performance differences in the TPE for the genotypes that are the prediction targets. The strength of this MET-TPE relationship is usually assumed to be high, however it is rarely quantified. To date investigations of genomic prediction methods have focused on improving prediction accuracy within MET training data sets, with less attention to quantifying the structure of the TPE and the MET-TPE relationship and their potential impact on training the G2P model for applications of genomic prediction to accelerate breeding outcomes for the on-farm TPE. We extend the breeder's equation and use an example to demonstrate the importance of the MET-TPE relationship as a key component for the design of genomic prediction methods to realize improved rates of genetic gain for the target yield, quality, stress tolerance and yield stability traits in the on-farm TPE.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Owen Powell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Carla Gho
- School of Agriculture & Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tom Tang
- Corteva Agriscience, Johnston, IA, United States
| | - Carlos Messina
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Cooper M, Messina CD. Breeding crops for drought-affected environments and improved climate resilience. THE PLANT CELL 2023; 35:162-186. [PMID: 36370076 PMCID: PMC9806606 DOI: 10.1093/plcell/koac321] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 05/12/2023]
Abstract
Breeding climate-resilient crops with improved levels of abiotic and biotic stress resistance as a response to climate change presents both opportunities and challenges. Applying the framework of the "breeder's equation," which is used to predict the response to selection for a breeding program cycle, we review methodologies and strategies that have been used to successfully breed crops with improved levels of drought resistance, where the target population of environments (TPEs) is a spatially and temporally heterogeneous mixture of drought-affected and favorable (water-sufficient) environments. Long-term improvement of temperate maize for the US corn belt is used as a case study and compared with progress for other crops and geographies. Integration of trait information across scales, from genomes to ecosystems, is needed to accurately predict yield outcomes for genotypes within the current and future TPEs. This will require transdisciplinary teams to explore, identify, and exploit novel opportunities to accelerate breeding program outcomes; both improved germplasm resources and improved products (cultivars, hybrids, clones, and populations) that outperform and replace the products in use by farmers, in combination with modified agronomic management strategies suited to their local environments.
Collapse
Affiliation(s)
- Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos D Messina
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
6
|
Ramasubramanian V, Beavis WD. Strategies to Assure Optimal Trade-Offs Among Competing Objectives for the Genetic Improvement of Soybean. Front Genet 2021; 12:675500. [PMID: 34630507 PMCID: PMC8497982 DOI: 10.3389/fgene.2021.675500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Plant breeding is a decision-making discipline based on understanding project objectives. Genetic improvement projects can have two competing objectives: maximize the rate of genetic improvement and minimize the loss of useful genetic variance. For commercial plant breeders, competition in the marketplace forces greater emphasis on maximizing immediate genetic improvements. In contrast, public plant breeders have an opportunity, perhaps an obligation, to place greater emphasis on minimizing the loss of useful genetic variance while realizing genetic improvements. Considerable research indicates that short-term genetic gains from genomic selection are much greater than phenotypic selection, while phenotypic selection provides better long-term genetic gains because it retains useful genetic diversity during the early cycles of selection. With limited resources, must a soybean breeder choose between the two extreme responses provided by genomic selection or phenotypic selection? Or is it possible to develop novel breeding strategies that will provide a desirable compromise between the competing objectives? To address these questions, we decomposed breeding strategies into decisions about selection methods, mating designs, and whether the breeding population should be organized as family islands. For breeding populations organized into islands, decisions about possible migration rules among family islands were included. From among 60 possible strategies, genetic improvement is maximized for the first five to 10 cycles using genomic selection and a hub network mating design, where the hub parents with the largest selection metric make large parental contributions. It also requires that the breeding populations be organized as fully connected family islands, where every island is connected to every other island, and migration rules allow the exchange of two lines among islands every other cycle of selection. If the objectives are to maximize both short-term and long-term gains, then the best compromise strategy is similar except that the mating design could be hub network, chain rule, or a multi-objective optimization method-based mating design. Weighted genomic selection applied to centralized populations also resulted in the realization of the greatest proportion of the genetic potential of the founders but required more cycles than the best compromise strategy.
Collapse
Affiliation(s)
- Vishnu Ramasubramanian
- George F. Sprague Population Genetics Group, Department of Agronomy, Ames, IA, United States
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States
| | - William D. Beavis
- George F. Sprague Population Genetics Group, Department of Agronomy, Ames, IA, United States
| |
Collapse
|
7
|
Isidro y Sánchez J, Akdemir D. Training Set Optimization for Sparse Phenotyping in Genomic Selection: A Conceptual Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:715910. [PMID: 34589099 PMCID: PMC8475495 DOI: 10.3389/fpls.2021.715910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Genomic selection (GS) is becoming an essential tool in breeding programs due to its role in increasing genetic gain per unit time. The design of the training set (TRS) in GS is one of the key steps in the implementation of GS in plant and animal breeding programs mainly because (i) TRS optimization is critical for the efficiency and effectiveness of GS, (ii) breeders test genotypes in multi-year and multi-location trials to select the best-performing ones. In this framework, TRS optimization can help to decrease the number of genotypes to be tested and, therefore, reduce phenotyping cost and time, and (iii) we can obtain better prediction accuracies from optimally selected TRS than an arbitrary TRS. Here, we concentrate the efforts on reviewing the lessons learned from TRS optimization studies and their impact on crop breeding and discuss important features for the success of TRS optimization under different scenarios. In this article, we review the lessons learned from training population optimization in plants and the major challenges associated with the optimization of GS including population size, the relationship between training and test set (TS), update of TRS, and the use of different packages and algorithms for TRS implementation in GS. Finally, we describe general guidelines to improving the rate of genetic improvement by maximizing the use of the TRS optimization in the GS framework.
Collapse
Affiliation(s)
- Julio Isidro y Sánchez
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Deniz Akdemir
- Animal and Crop Science Division, Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|