1
|
Sadeh R, Ben-David R, Herrmann I, Peleg Z. Spectral-genomic chain-model approach enhances the wheat yield component prediction under the Mediterranean climate. PHYSIOLOGIA PLANTARUM 2024; 176:e14480. [PMID: 39187437 DOI: 10.1111/ppl.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/28/2024]
Abstract
In light of the changing climate that jeopardizes future food security, genomic selection is emerging as a valuable tool for breeders to enhance genetic gains and introduce high-yielding varieties. However, predicting grain yield is challenging due to the genetic and physiological complexities involved and the effect of genetic-by-environment interactions on prediction accuracy. We utilized a chained model approach to address these challenges, breaking down the complex prediction task into simpler steps. A diversity panel with a narrow phenological range was phenotyped across three Mediterranean environments for various morpho-physiological and yield-related traits. The results indicated that a multi-environment model outperformed a single-environment model in prediction accuracy for most traits. However, prediction accuracy for grain yield was not improved. Thus, in an attempt to ameliorate the grain yield prediction accuracy, we integrated a spectral estimation of spike number, being a major wheat yield component, with genomic data. A machine learning approach was used for spike number estimation from canopy hyperspectral reflectance captured by an unmanned aerial vehicle. The spectral-based estimated spike number was utilized as a secondary trait in a multi-trait genomic selection, significantly improving grain yield prediction accuracy. Moreover, the ability to predict the spike number based on data from previous seasons implies that it could be applied to new trials at various scales, even in small plot sizes. Overall, we demonstrate here that incorporating a novel spectral-genomic chain-model workflow, which utilizes spectral-based phenotypes as a secondary trait, improves the predictive accuracy of wheat grain yield.
Collapse
Affiliation(s)
- Roy Sadeh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roi Ben-David
- Institute of Plant Sciences, Agriculture Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Ittai Herrmann
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Dhakal A, Poland J, Adhikari L, Faryna E, Fiedler J, Rutkoski JE, Arbelaez JD. Implementing multi-trait genomic selection to improve grain milling quality in oats (Avena sativa L.). THE PLANT GENOME 2024; 17:e20457. [PMID: 38764287 DOI: 10.1002/tpg2.20457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024]
Abstract
Oats (Avena sativa L.) provide unique nutritional benefits and contribute to sustainable agricultural systems. Breeding high-value oat varieties that meet milling industry standards is crucial for satisfying the demand for oat-based food products. Test weight, thins, and groat percentage are primary traits that define oat milling quality and the final price of food-grade oats. Conventional selection for milling quality is costly and burdensome. Multi-trait genomic selection (MTGS) combines information from genome-wide markers and secondary traits genetically correlated with primary traits to predict breeding values of primary traits on candidate breeding lines. MTGS can improve prediction accuracy and significantly accelerate the rate of genetic gain. In this study, we evaluated different MTGS models that used morphometric grain traits to improve prediction accuracy for primary grain quality traits within the constraints of a breeding program. We evaluated 558 breeding lines from the University of Illinois Oat Breeding Program across 2 years for primary milling traits, test weight, thins, and groat percentage, and secondary grain morphometric traits derived from kernel and groat images. Kernel morphometric traits were genetically correlated with test weight and thins percentage but were uncorrelated with groat percentage. For test weight and thins percentage, the MTGS model that included the kernel morphometric traits in both training and candidate sets outperformed single-trait models by 52% and 59%, respectively. In contrast, MTGS models for groat percentage were not significantly better than the single-trait model. We found that incorporating kernel morphometric traits can improve the genomic selection for test weight and thins percentage.
Collapse
Affiliation(s)
- Anup Dhakal
- Department of Crop Sciences, University of Illinois, Illinois, Urbana, USA
| | - Jesse Poland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Laxman Adhikari
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Ethan Faryna
- Department of Plant Pathology, Kansas State University, Kansas, Manhattan, USA
| | - Jason Fiedler
- USDA-ARS Biosciences Research Laboratory, Fargo, North Dakota, USA
| | - Jessica E Rutkoski
- Department of Crop Sciences, University of Illinois, Illinois, Urbana, USA
| | | |
Collapse
|
3
|
Brzáková M, Veselá Z, Vařeka J, Bauer J. Improving Breeding Value Reliability with Genomic Data in Breeding Groups of Charolais. Genes (Basel) 2023; 14:2139. [PMID: 38136964 PMCID: PMC10743247 DOI: 10.3390/genes14122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to assess the impact of incorporating genomic data using the single-step genomic best linear unbiased prediction (ssGBLUP) method compared to the best linear unbiased prediction (BLUP) method on the reliability of breeding values for age at first calving, calving interval, and productive longevity at 78 months in Charolais cattle. The study included 48,590 purebred Charolais individuals classified into four subgroups based on genotyping and performance records. The results showed that considering genotypes significantly improved genomic estimated breeding values (GEBV) reliability across all categories except nongenotyped individuals. For young genotyped individuals, the increase in reliability was up to 27% for both sexes. The highest average reliability was achieved for genotyped proven bulls and cows with performance records, and the inclusion of genomic data further improved the reliability by up to 22% and 21% for cows and bulls, respectively. The gain in reliability was observed mainly during the first three calvings, and then the differences decreased. The imported individuals showed lower estimated breeding values (EBV) and GEBV reliabilities than the domestic population, probably due to the weak genetic connection with the domestic population. However, when the progeny of imported heifers were sired by domestic bulls, the reliability increased by up to 24%. For nongenotyped individuals, only a slight increase in reliability was observed; however, the number of genotyped individuals in the population was still relatively small.
Collapse
Affiliation(s)
- Michaela Brzáková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic; (Z.V.); (J.V.)
| | - Zdeňka Veselá
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic; (Z.V.); (J.V.)
| | - Jan Vařeka
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic; (Z.V.); (J.V.)
| | - Jiří Bauer
- Czech-Moravian Breeders’ Corporation, 252 09 Hradištko, Czech Republic;
| |
Collapse
|
4
|
García-Barrios G, Crossa J, Cruz-Izquierdo S, Aguilar-Rincón VH, Sandoval-Islas JS, Corona-Torres T, Lozano-Ramírez N, Dreisigacker S, He X, Singh PK, Pacheco-Gil RA. Genomic Prediction of Resistance to Tan Spot, Spot Blotch and Septoria Nodorum Blotch in Synthetic Hexaploid Wheat. Int J Mol Sci 2023; 24:10506. [PMID: 37445683 PMCID: PMC10342098 DOI: 10.3390/ijms241310506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Genomic prediction combines molecular and phenotypic data in a training population to predict the breeding values of individuals that have only been genotyped. The use of genomic information in breeding programs helps to increase the frequency of favorable alleles in the populations of interest. This study evaluated the performance of BLUP (Best Linear Unbiased Prediction) in predicting resistance to tan spot, spot blotch and Septoria nodorum blotch in synthetic hexaploid wheat. BLUP was implemented in single-trait and multi-trait models with three variations: (1) the pedigree relationship matrix (A-BLUP), (2) the genomic relationship matrix (G-BLUP), and (3) a combination of the two matrices (A+G BLUP). In all three diseases, the A-BLUP model had a lower performance, and the G-BLUP and A+G BLUP were statistically similar (p ≥ 0.05). The prediction accuracy with the single trait was statistically similar (p ≥ 0.05) to the multi-trait accuracy, possibly due to the low correlation of severity between the diseases.
Collapse
Affiliation(s)
- Guillermo García-Barrios
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (N.L.-R.); (S.D.); (X.H.); (P.K.S.)
- Postgrado en Socioeconomía, Estadística e Informática, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico
| | - Serafín Cruz-Izquierdo
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - Víctor Heber Aguilar-Rincón
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - J. Sergio Sandoval-Islas
- Postgrado en Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Tarsicio Corona-Torres
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - Nerida Lozano-Ramírez
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (N.L.-R.); (S.D.); (X.H.); (P.K.S.)
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (N.L.-R.); (S.D.); (X.H.); (P.K.S.)
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (N.L.-R.); (S.D.); (X.H.); (P.K.S.)
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (N.L.-R.); (S.D.); (X.H.); (P.K.S.)
| | - Rosa Angela Pacheco-Gil
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (N.L.-R.); (S.D.); (X.H.); (P.K.S.)
| |
Collapse
|
5
|
Zhao H, Lin Z, Khansefid M, Tibbits JF, Hayden MJ. Genomic prediction and selection response for grain yield in safflower. Front Genet 2023; 14:1129433. [PMID: 37051598 PMCID: PMC10083426 DOI: 10.3389/fgene.2023.1129433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
In plant breeding programs, multiple traits are recorded in each trial, and the traits are often correlated. Correlated traits can be incorporated into genomic selection models, especially for traits with low heritability, to improve prediction accuracy. In this study, we investigated the genetic correlation between important agronomic traits in safflower. We observed the moderate genetic correlations between grain yield (GY) and plant height (PH, 0.272-0.531), and low correlations between grain yield and days to flowering (DF, -0.157-0.201). A 4%-20% prediction accuracy improvement for grain yield was achieved when plant height was included in both training and validation sets with multivariate models. We further explored the selection responses for grain yield by selecting the top 20% of lines based on different selection indices. Selection responses for grain yield varied across sites. Simultaneous selection for grain yield and seed oil content (OL) showed positive gains across all sites with equal weights for both grain yield and oil content. Combining g×E interaction into genomic selection (GS) led to more balanced selection responses across sites. In conclusion, genomic selection is a valuable breeding tool for breeding high grain yield, oil content, and highly adaptable safflower varieties.
Collapse
Affiliation(s)
- Huanhuan Zhao
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Zibei Lin
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Majid Khansefid
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Josquin F. Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew J. Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Castro-Urrea FA, Urricariet MP, Stefanova KT, Li L, Moss WM, Guzzomi AL, Sass O, Siddique KHM, Cowling WA. Accuracy of Selection in Early Generations of Field Pea Breeding Increases by Exploiting the Information Contained in Correlated Traits. PLANTS (BASEL, SWITZERLAND) 2023; 12:1141. [PMID: 36903999 PMCID: PMC10005560 DOI: 10.3390/plants12051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Accuracy of predicted breeding values (PBV) for low heritability traits may be increased in early generations by exploiting the information available in correlated traits. We compared the accuracy of PBV for 10 correlated traits with low to medium narrow-sense heritability (h2) in a genetically diverse field pea (Pisum sativum L.) population after univariate or multivariate linear mixed model (MLMM) analysis with pedigree information. In the contra-season, we crossed and selfed S1 parent plants, and in the main season we evaluated spaced plants of S0 cross progeny and S2+ (S2 or higher) self progeny of parent plants for the 10 traits. Stem strength traits included stem buckling (SB) (h2 = 0.05), compressed stem thickness (CST) (h2 = 0.12), internode length (IL) (h2 = 0.61) and angle of the main stem above horizontal at first flower (EAngle) (h2 = 0.46). Significant genetic correlations of the additive effects occurred between SB and CST (0.61), IL and EAngle (-0.90) and IL and CST (-0.36). The average accuracy of PBVs in S0 progeny increased from 0.799 to 0.841 and in S2+ progeny increased from 0.835 to 0.875 in univariate vs MLMM, respectively. An optimized mating design was constructed with optimal contribution selection based on an index of PBV for the 10 traits, and predicted genetic gain in the next cycle ranged from 1.4% (SB), 5.0% (CST), 10.5% (EAngle) and -10.5% (IL), with low achieved parental coancestry of 0.12. MLMM improved the potential genetic gain in annual cycles of early generation selection in field pea by increasing the accuracy of PBV.
Collapse
Affiliation(s)
- Felipe A. Castro-Urrea
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Maria P. Urricariet
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- General Genetics Unit, Pontificia Universidad Católica Argentina, Buenos Aires C1107AAZ, Argentina
| | - Katia T. Stefanova
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- SAGI West, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Li Li
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351, Australia
| | - Wesley M. Moss
- Centre for Engineering Innovation: Agriculture & Ecological Restoration, The University of Western Australia, Shenton Park, WA 6008, Australia
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Andrew L. Guzzomi
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Centre for Engineering Innovation: Agriculture & Ecological Restoration, The University of Western Australia, Shenton Park, WA 6008, Australia
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Olaf Sass
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth-Hof 1, 24363 Holtsee, Germany
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Wallace A. Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Kumar M, Kumar S, Sandhu KS, Kumar N, Saripalli G, Prakash R, Nambardar A, Sharma H, Gautam T, Balyan HS, Gupta PK. GWAS and genomic prediction for pre-harvest sprouting tolerance involving sprouting score and two other related traits in spring wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:14. [PMID: 37313293 PMCID: PMC10248620 DOI: 10.1007/s11032-023-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/26/2023] [Indexed: 06/15/2023]
Abstract
In wheat, a genome-wide association study (GWAS) and genomic prediction (GP) analysis were conducted for pre-harvest sprouting (PHS) tolerance and two of its related traits. For this purpose, an association panel of 190 accessions was phenotyped for PHS (using sprouting score), falling number, and grain color over two years and genotyped with 9904 DArTseq based SNP markers. GWAS for main-effect quantitative trait nucleotides (M-QTNs) using three different models (CMLM, SUPER, and FarmCPU) and epistatic QTNs (E-QTNs) using PLINK were performed. A total of 171 M-QTNs (CMLM, 47; SUPER, 70; FarmCPU, 54) for all three traits, and 15 E-QTNs involved in 20 first-order epistatic interactions were identified. Some of the above QTNs overlapped the previously reported QTLs, MTAs, and cloned genes, allowing delineating 26 PHS-responsive genomic regions that spread over 16 wheat chromosomes. As many as 20 definitive and stable QTNs were considered important for use in marker-assisted recurrent selection (MARS). The gene, TaPHS1, for PHS tolerance (PHST) associated with one of the QTNs was also validated using the KASP assay. Some of the M-QTNs were shown to have a key role in the abscisic acid pathway involved in PHST. Genomic prediction accuracies (based on the cross-validation approach) using three different models ranged from 0.41 to 0.55, which are comparable to the results of previous studies. In summary, the results of the present study improved our understanding of the genetic architecture of PHST and its related traits in wheat and provided novel genomic resources for wheat breeding based on MARS and GP. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01357-5.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | | | - Neeraj Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC USA
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| | - Ram Prakash
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Akash Nambardar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP India
| |
Collapse
|
8
|
Ogawa S, Taniguchi Y, Watanabe T, Iwaisaki H. Fitting Genomic Prediction Models with Different Marker Effects among Prefectures to Carcass Traits in Japanese Black Cattle. Genes (Basel) 2022; 14:24. [PMID: 36672767 PMCID: PMC9859149 DOI: 10.3390/genes14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
We fitted statistical models, which assumed single-nucleotide polymorphism (SNP) marker effects differing across the fattened steers marketed into different prefectures, to the records for cold carcass weight (CW) and marbling score (MS) of 1036, 733, and 279 Japanese Black fattened steers marketed into Tottori, Hiroshima, and Hyogo prefectures in Japan, respectively. Genotype data on 33,059 SNPs was used. Five models that assume only common SNP effects to all the steers (model 1), common effects plus SNP effects differing between the steers marketed into Hyogo prefecture and others (model 2), only the SNP effects differing between Hyogo steers and others (model 3), common effects plus SNP effects specific to each prefecture (model 4), and only the effects specific to each prefecture (model 5) were exploited. For both traits, slightly lower values of residual variance than that of model 1 were estimated when fitting all other models. Estimated genetic correlation among the prefectures in models 2 and 4 ranged to 0.53 to 0.71, all <0.8. These results might support that the SNP effects differ among the prefectures to some degree, although we discussed the necessity of careful consideration to interpret the current results.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, Tsukuba 305-0901, Japan
| | - Yukio Taniguchi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshio Watanabe
- National Livestock Breeding Center, Fukushima 961-8511, Japan
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Inc., Maebashi 371-0121, Japan
| | - Hiroaki Iwaisaki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata 952-0103, Japan
| |
Collapse
|
9
|
Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen MS, Varshney RK, Prasanna BM, Qian Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. MOLECULAR PLANT 2022; 15:1664-1695. [PMID: 36081348 DOI: 10.1016/j.molp.2022.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 05/12/2023]
Abstract
The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CIMMYT-China Tropical Maize Research Center, School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528231, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Huihui Li
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201400, China
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Qian Qian
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Utilization Strategies of Two Environment Phenotypes in Genomic Prediction. Genes (Basel) 2022; 13:genes13050722. [PMID: 35627107 PMCID: PMC9141986 DOI: 10.3390/genes13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple environment phenotypes may be utilized to implement genomic prediction in plant breeding, while it is unclear about optimal utilization strategies according to its different availability. It is necessary to assess the utilization strategies of genomic prediction models based on different availability of multiple environment phenotypes. Here, we compared the prediction accuracy of three genomic prediction models (genomic prediction model (genomic best linear unbiased prediction (GBLUP), genomic best linear unbiased prediction (GFBLUP), and multi-trait genomic best linear unbiased prediction (mtGBLUP)) which leveraged diverse information from multiple environment phenotypes using a rice dataset containing 19 agronomic traits in two disparate seasons. We found that the prediction accuracy of genomic prediction models considering multiple environment phenotypes (GFBLUP and mtGBLUP) was better than the classical genomic prediction model (GBLUP model). The deviation of prediction accuracy of between GBLUP and mtGBLUP or GFBLUP was associated with the phenotypic correlation. In summary, the genomic prediction models considering multiple environment phenotypes (GFBLUP and mtGBLUP) demonstrated better prediction accuracy. In addition, we could utilize different genomic prediction strategies according to different availability of multiple environment phenotypes.
Collapse
|
11
|
Yang W, Guo T, Luo J, Zhang R, Zhao J, Warburton ML, Xiao Y, Yan J. Target-oriented prioritization: targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding. Genome Biol 2022; 23:80. [PMID: 35292095 PMCID: PMC8922918 DOI: 10.1186/s13059-022-02650-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic prediction in crop breeding is hindered by modeling on limited phenotypic traits. We propose an integrative multi-trait breeding strategy via machine learning algorithm, target-oriented prioritization (TOP). Using a large hybrid maize population, we demonstrate that the accuracy for identifying a candidate that is phenotypically closest to an ideotype, or target variety, achieves up to 91%. The strength of TOP is enhanced when omics level traits are included. We show that TOP enables selection of inbreds or hybrids that outperform existing commercial varieties. It improves multiple traits and accurately identifies improved candidates for new varieties, which will greatly influence breeding.
Collapse
Affiliation(s)
- Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China
| | - Marilyn L Warburton
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, Mississippi State, MS, 39762, USA
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|