1
|
Das S, Berlin J. Systemic Therapy Improvements Will Render Locoregional Treatments Obsolete for Patients with Cancer with Liver Metastases. Hematol Oncol Clin North Am 2025; 39:191-206. [PMID: 39510673 DOI: 10.1016/j.hoc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hepatic metastases are a major cause of morbidity and mortality for patients with cancer. Apart from curative resection, which offers patients the potential for long-term survival, an array of locoregional therapies, with limited evidence of improving survival, are used to treat them. The authors use examples from the realm of gastrointestinal cancer, largely focusing on the experience of patients with neuroendocrine cancer, hepatobiliary cancer, and colorectal cancer, to suggest that current systemic therapies offer, at minimum, similar survival outcomes for patients compared with these locoregional approaches.
Collapse
Affiliation(s)
- Satya Das
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Jordan Berlin
- Department of Medicine, Division of Hematology Oncology, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA. https://twitter.com/jordanberlin5
| |
Collapse
|
2
|
Li W, Li K, Chen Y, Wang S, Xu K, Ye S, Zhao B, Yuan H, Li Z, Shen Y, Mou T, Wang Y, Zhou W, Ma W. IRF1 transcriptionally up-regulates CXCL10 which increases CD8 + T cells infiltration in colorectal cancer. Int Immunopharmacol 2025; 144:113678. [PMID: 39591825 DOI: 10.1016/j.intimp.2024.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Tumor-infiltrating CD8+ T cell is a robust predictor of outcome and immunotherapy response in patients with CRC. However, limited introduction of intratumoral CD8+ T cells remains a barrier for treatment of CRC. One of the most effective but difficult therapy for CD8+ T cells entering the tumor is activating chemokine receptors. This study observed a decrease in the expression level of interferon regulator factor 1(IRF1) in CRC tumor tissues compared to matched non-tumor tissues. Furthermore, it found a positive correlation between low IRF1 expression and unfavorable prognosis in CRC patients. The present study also demonstrated that overexpression of IRF1 attenuated tumor growth by promoting the accumulation of facilitating CD8+T cells at the tumor site in mouse models. Additionally, this study identified IRF1 response elements in the promoter region of CXCL10 and show that the binding of IRF1 promoted the transcription of CXCL10. Of note, it was discovered that an increase in CXCL10 was positively associated with improved survival in CRC. These findings strongly suggest that IRF1 serves as a key transcription factor for CXCL10, highlighting its potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Wenyi Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Kejun Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yuehong Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shunyi Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ke Xu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shengzhi Ye
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Bohou Zhao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Haitao Yuan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Zhenghao Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yunhao Shen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Tingyu Mou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yanan Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.
| | - Weijie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.
| | - Wenhui Ma
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Clinical Research Academy of Chinese Medicine, Jichang Road No. 16, Guangzhou 510405, China; State Key Laboratory of Organ Failure Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
3
|
Murcia Pienkowski V, Skoczylas P, Zaremba A, Kłęk S, Balawejder M, Biernat P, Czarnocka W, Gniewek O, Grochowalski Ł, Kamuda M, Król-Józaga B, Marczyńska-Grzelak J, Mazzocco G, Szatanek R, Widawski J, Welanyk J, Orzeszko Z, Szura M, Torbicz G, Borys M, Wohadlo Ł, Wysocki M, Karczewski M, Markowska B, Kucharczyk T, Piatek MJ, Jasiński M, Warchoł M, Kaczmarczyk J, Blum A, Sanecka-Duin A. Harnessing the power of AI in precision medicine: NGS-based therapeutic insights for colorectal cancer cohort. Front Oncol 2024; 14:1407465. [PMID: 39435285 PMCID: PMC11491396 DOI: 10.3389/fonc.2024.1407465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose Developing innovative precision and personalized cancer therapeutics is essential to enhance cancer survivability, particularly for prevalent cancer types such as colorectal cancer. This study aims to demonstrate various approaches for discovering new targets for precision therapies using artificial intelligence (AI) on a Polish cohort of colorectal cancer patients. Methods We analyzed 71 patients with histopathologically confirmed advanced resectional colorectal adenocarcinoma. Whole exome sequencing was performed on tumor and peripheral blood samples, while RNA sequencing (RNAseq) was conducted on tumor samples. We employed three approaches to identify potential targets for personalized and precision therapies. First, using our in-house neoantigen calling pipeline, ARDentify, combined with an AI-based model trained on immunopeptidomics mass spectrometry data (ARDisplay), we identified neoepitopes in the cohort. Second, based on recurrent mutations found in our patient cohort, we selected corresponding cancer cell lines and utilized knock-out gene dependency scores to identify synthetic lethality genes. Third, an AI-based model trained on cancer cell line data was employed to identify cell lines with genomic profiles similar to selected patients. Copy number variants and recurrent single nucleotide variants in these cell lines, along with gene dependency data, were used to find personalized synthetic lethality pairs. Results We identified approximately 8,700 unique neoepitopes, but none were shared by more than two patients, indicating limited potential for shared neoantigenic targets across our cohort. Additionally, we identified three synthetic lethality pairs: the well-known APC-CTNNB1 and BRAF-DUSP4 pairs, along with the recently described APC-TCF7L2 pair, which could be significant for patients with APC and BRAF variants. Furthermore, by leveraging the identification of similar cancer cell lines, we uncovered a potential gene pair, VPS4A and VPS4B, with therapeutic implications. Conclusion Our study highlights three distinct approaches for identifying potential therapeutic targets in cancer patients. Each approach yielded valuable insights into our cohort, underscoring the relevance and utility of these methodologies in the development of precision and personalized cancer therapies. Importantly, we developed a novel AI model that aligns tumors with representative cell lines using RNAseq and methylation data. This model enables us to identify cell lines closely resembling patient tumors, facilitating accurate selection of models needed for in vitro validation.
Collapse
Affiliation(s)
| | | | | | - Stanisław Kłęk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | - Joanna Welanyk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | - Zofia Orzeszko
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Mirosław Szura
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Grzegorz Torbicz
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Maciej Borys
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Łukasz Wohadlo
- Department of Oncological and General Surgery, Andrzej Frycz Modrzewski Krakow University, Cracow, Poland
| | - Michał Wysocki
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Marek Karczewski
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, University Hospital, Poznan, Poland
| | - Beata Markowska
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Kucharczyk
- Holy Cross Cancer Center Clinic of Clinical Oncology, Kielce, Poland
| | | | | | | | | | | | | |
Collapse
|
4
|
Fadlallah H, El Masri J, Fakhereddine H, Youssef J, Chemaly C, Doughan S, Abou-Kheir W. Colorectal cancer: Recent advances in management and treatment. World J Clin Oncol 2024; 15:1136-1156. [PMID: 39351451 PMCID: PMC11438855 DOI: 10.5306/wjco.v15.i9.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and the second most common cause of cancer-related death. In 2020, the estimated number of deaths due to CRC was approximately 930000, accounting for 10% of all cancer deaths worldwide. Accordingly, there is a vast amount of ongoing research aiming to find new and improved treatment modalities for CRC that can potentially increase survival and decrease overall morbidity and mortality. Current management strategies for CRC include surgical procedures for resectable cases, and radiotherapy, chemotherapy, and immunotherapy, in addition to their combination, for non-resectable tumors. Despite these options, CRC remains incurable in 50% of cases. Nonetheless, significant improvements in research techniques have allowed for treatment approaches for CRC to be frequently updated, leading to the availability of new drugs and therapeutic strategies. This review summarizes the most recent therapeutic approaches for CRC, with special emphasis on new strategies that are currently being studied and have great potential to improve the prognosis and lifespan of patients with CRC.
Collapse
Affiliation(s)
- Hiba Fadlallah
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Chrystelle Chemaly
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
5
|
Tran K, Kumari AN, Raghu D, Cox DRA, Goh SK, Perini MV, Muralidharan V, Tebbutt NC, Behren A, Mariadason J, Williams DS, Mielke LA. T cell factor 1 (TCF-1) defines T cell differentiation in colorectal cancer. iScience 2024; 27:110754. [PMID: 39280606 PMCID: PMC11401206 DOI: 10.1016/j.isci.2024.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The presence of precursor to exhausted (Tpex) CD8+ T cells is important to maintain robust immunity following treatment with immune checkpoint inhibition (ICI). Impressive responses to ICI are emerging in patients with stage II-III mismatch repair (MMR)-deficient (dMMR) colorectal cancer (CRC). We found 64% of dMMR and 15% of mismatch repair-proficient (pMMR) stage III CRCs had a high frequency of tumor infiltrating lymphocytes (TIL-hi). Furthermore, expression of TCF-1 (Tcf7) by CD8+ T cells predicted improved patient prognosis and Tpex cells (CD3+CD8+TCF-1+PD-1+) were abundant within lymphoid aggregates of stage III CRCs. In contrast, CD3+CD8+TCF-1-PD-1+ cells were more abundant at the invasive front and tumor core, while γδ T cells were equally abundant in all tumor areas. Interestingly, no differences in the frequency of Tpex cells were observed between TIL-hi dMMR and TIL-hi pMMR CRCs. Therefore, Tpex cell function and ICI response rates in TIL-hi CRC warrants further investigation.
Collapse
Affiliation(s)
- Kelly Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Anita N Kumari
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Daniel R A Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Marcos V Perini
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Niall C Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - John Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
7
|
Marques A, Cavaco P, Torre C, Sepodes B, Rocha J. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit Rev Oncol Hematol 2024; 197:104342. [PMID: 38614266 DOI: 10.1016/j.critrevonc.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Although immune checkpoint inhibitors have revolutionized the treatment of several advanced solid cancers, in colorectal cancer, the transformative benefit of these innovative medicines is currently limited to those with deficient mismatch repair or high microsatellite instability. Tumor mutational burden (TMB) has emerged as a potential predictor of immunotherapy benefit, but the lack of standardization in its assessment and reporting has hindered the introduction of this biomarker in routine clinical practice. Here, we compiled 45 colorectal cancer studies utilizing numerical thresholds for high-TMB. In this group of studies, TMB cut-offs ranged from 6.88 to 41 mut/Mb and were most often set at 10, 17, or 20 mut/Mb. Additionally, we observed divergent TMB definitions and inconsistent disclosure of specific methodological details, which collectively emphasize the substantial lack of harmonization within the field. Ongoing efforts to harmonize TMB assessment will be critical to validate TMB as a predictive marker of immunotherapy response.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Patrícia Cavaco
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal; Pharmacy Department, Centro Hospitalar de Lisboa Ocidental, Lisboa 1449-005, Portugal
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| |
Collapse
|
8
|
Wang Z, Li W, Jiang Y, Tran TB, Chung J, Kim M, Scott AJ, Lu J. Camptothesome-based combination nanotherapeutic regimen for improved colorectal cancer immunochemotherapy. Biomaterials 2024; 306:122477. [PMID: 38309054 PMCID: PMC10922823 DOI: 10.1016/j.biomaterials.2024.122477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Camptothesome is a sphingomyelin-conjugated camptothecin (SM-CSS-CPT) nanovesicle that fortified the therapeutic delivery of CPT in diverse cancer types. To mitigate the Camptothesome-induced IDO1 negative feedback mechanism, we had co-encapsulated, indoximod (IND, IDO1 inhibitor) into Camptothesome using doxorubicin-derived IND (DOX-IND). To maximize the therapeutic potential of DOX-IND/Camptothesome, herein, we first dissected the synergistic drug ratio (DOX-IND/SM-CSS-CPT) via systematical in vitro screening. DOX-IND/Camptothesome with optimal drug ratio synchronized in vivo drug delivery with significantly higher tumor uptake compared to free drugs. This optimum DOX-IND/Camptothesome outperformed the combination of Camptothesome, Doxil and IND or other IDO1 inhibitors (BMS-986205 or epacadostat) in treating mice bearing late-stage MC38 tumors, and combination with immune checkpoint blockade (ICB) enabled it to eradicate 60 % of large tumors. Further, this optimized co-delivery Camptothesome beat Folfox and Folfiri, two first-line combination chemotherapies for colorectal cancer in antitumor efficacy and exhibited no side effects as compared to the severe systemic toxicities associated with Folfox and Folfiri. Finally, we demonstrated that the synergistic DOX-IND/Camptothesome was superior to the combined use of Onivyde + Doxil + IND in curbing the advanced orthotopic CT26-Luc tumors and eliminated 40 % tumors with complete metastasis remission when cooperated with ICB, eliciting stronger anti-CRC immune responses and greater reversal of immunosuppression. These results corroborated that with precise optimal synergistic drug ratio, the therapeutic potential of DOX-IND/Camptothesome can be fully unleased, which warrants further clinical investigation to benefit the cancer patients.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
| | - Aaron James Scott
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, United States; Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States.
| |
Collapse
|
9
|
Yao S, Han Y, Yang M, Jin K, Lan H. Integration of liquid biopsy and immunotherapy: opening a new era in colorectal cancer treatment. Front Immunol 2023; 14:1292861. [PMID: 38077354 PMCID: PMC10702507 DOI: 10.3389/fimmu.2023.1292861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Immunotherapy has revolutionized the conventional treatment approaches for colorectal cancer (CRC), offering new therapeutic prospects for patients. Liquid biopsy has shown significant potential in early screening, diagnosis, and postoperative monitoring by analyzing circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). In the era of immunotherapy, liquid biopsy provides additional possibilities for guiding immune-based treatments. Emerging technologies such as mass spectrometry-based detection of neoantigens and flow cytometry-based T cell sorting offer new tools for liquid biopsy, aiming to optimize immune therapy strategies. The integration of liquid biopsy with immunotherapy holds promise for improving treatment outcomes in colorectal cancer patients, enabling breakthroughs in early diagnosis and treatment, and providing patients with more personalized, precise, and effective treatment strategies.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Chen G, Li X, Li R, Wu K, Lei Z, Dai R, Roche K, Wang AZ, Min Y. Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy. ACS NANO 2023; 17:18818-18831. [PMID: 37750443 DOI: 10.1021/acsnano.3c03274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Chemotherapeutics have the potential to increase the efficacy of cancer immunotherapies by stimulating the production of damage-associated molecular patterns (DAMPs) and eliciting mutations that result in the production of neoantigens, thereby increasing the immunogenicity of cancerous lesions. However, the dose-limiting toxicity and limited immunogenicity of chemotherapeutics are not sufficient to induce a robust antitumor response. We hypothesized that cancer cells in vitro treated with ultrahigh doses of various chemotherapeutics artificially increased the abundance, variety, and specificity of DAMPs and neoantigens, thereby improving chemoimmunotherapy. The in vitro chemotherapy-induced (IVCI) nanovaccines manufactured from cell lysates comprised multiple neoantigens and DAMPs, thereby exhibiting comprehensive antigenicity and adjuvanticity. Our IVCI nanovaccines exhibited enhanced immune responses in CT26 tumor-bearing mice, with a significant increase in CD4+/CD8+ T cells in tumors in combination with immune checkpoint inhibitors. The concept of IVCI nanovaccines provides an idea for manufacturing and artificial enhancement of immunogenicity vaccines to improve chemoimmunotherapy.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiangxia Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kecheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhouhang Lei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ruike Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kyle Roche
- School of Medicine and Health Sciences, The George Washington University, Washington D.C. 20052, United States
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Fejza A, Carobolante G, Poletto E, Camicia L, Schinello G, Di Siena E, Ricci G, Mongiat M, Andreuzzi E. The entanglement of extracellular matrix molecules and immune checkpoint inhibitors in cancer: a systematic review of the literature. Front Immunol 2023; 14:1270981. [PMID: 37854588 PMCID: PMC10579931 DOI: 10.3389/fimmu.2023.1270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Immune-checkpoint inhibitors (ICIs) have emerged as a core pillar of cancer therapy as single agents or in combination regimens both in adults and children. Unfortunately, ICIs provide a long-lasting therapeutic effect in only one third of the patients. Thus, the search for predictive biomarkers of responsiveness to ICIs remains an urgent clinical need. The efficacy of ICIs treatments is strongly affected not only by the specific characteristics of cancer cells and the levels of immune checkpoint ligands, but also by other components of the tumor microenvironment, among which the extracellular matrix (ECM) is emerging as key player. With the aim to comprehensively describe the relation between ECM and ICIs' efficacy in cancer patients, the present review systematically evaluated the current literature regarding ECM remodeling in association with immunotherapeutic approaches. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO, CRD42022351180). PubMed, Web of Science, and Scopus databases were comprehensively searched from inception to January 2023. Titles, abstracts and full text screening was performed to exclude non eligible articles. The risk of bias was assessed using the QUADAS-2 tool. Results After employing relevant MeSH and key terms, we identified a total of 5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries were found and excluded. Following title and abstract screening, the full text was analyzed, and 47 studies meeting the eligibility criteria were retained. The studies included in this systematic review comprehensively recapitulate the latest observations associating changes of the ECM composition following remodeling with the traits of the tumor immune cell infiltration. The present study provides for the first time a broad view of the tight association between ECM molecules and ICIs efficacy in different tumor types, highlighting the importance of ECM-derived proteolytic products as promising liquid biopsy-based biomarkers to predict the efficacy of ICIs. Conclusion ECM remodeling has an important impact on the immune traits of different tumor types. Increasing evidence pinpoint at ECM-derived molecules as putative biomarkers to identify the patients that would most likely benefit from ICIs treatments. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351180, identifier CRD42022351180.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Biochemistry, Faculty of Medical Sciences, UBT-Higher Education Institute, Prishtina, Kosovo
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
12
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Shi R, Zhou X, Pang L, Wang M, Li Y, Chen C, Ning H, Zhang L, Yue G, Qiu L, Zhao W, Qi Y, Wu Y, Gao Y. Peptide vaccine from cancer-testis antigen ODF2 can potentiate the cytotoxic T lymphocyte infiltration through IL-15 in non-MSI-H colorectal cancer. Cancer Immunol Immunother 2023; 72:985-1001. [PMID: 36251028 DOI: 10.1007/s00262-022-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
About 85% of patients with colorectal cancer (CRC) have the non-microsatellite instability-high (non-MSI-H) subtype, and many cannot benefit from immune checkpoint blockade. A potential reason for this is that most non-MSI-H colorectal cancers are immunologically "cold" due to poor CD8+ T cell infiltration. In the present study, we screened for potential cancer-testis antigens (CTAs) by comparing the bioinformatics of CD8+ T effector memory (Tem) cell infiltration between MSI-H and non-MSI-H CRC. Two ODF2-derived epitope peptides, P433 and P609, displayed immunogenicity and increased the proportion of CD8+ T effector memory (Tem) cells in vitro and in vivo. The adoptive transfer of peptide pool-induced CTLs inhibited tumor growth and enhanced CD8+ T cell infiltration in tumor-bearing NOD/SCID mice. The mechanistic study showed that knockdown of ODF2 in CRC cells promoted interleukin-15 expression, which facilitated CD8+ T cell proliferation. In conclusion, ODF2, a CTA, was negatively correlated with CD8+ T cell infiltration in "cold" non-MSI-H CRC and was selected based on the results of bioinformatics analyses. The corresponding HLA-A2 restricted epitope peptide induced antigen-specific CTLs. Immunotherapy targeting ODF2 could improve CTA infiltration via upregulating IL-15 in non-MSI-H CRC. This tumor antigen screening strategy could be exploited to develop therapeutic vaccines targeting non-MSI-H CRC.
Collapse
Affiliation(s)
- Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Guangxing Yue
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
14
|
Pei F, Wu J, Zhao Y, He W, Yao Q, Huang M, Huang J. Single-Agent Neoadjuvant Immunotherapy With a PD-1 Antibody in Locally Advanced Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer. Clin Colorectal Cancer 2023; 22:85-91. [PMID: 36528470 DOI: 10.1016/j.clcc.2022.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND PD-1 blockade has been recommended as first-line therapy for nonresectable or metastatic mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC). However, the safety and efficacy of neoadjuvant PD-1 blockade immunotherapy for locally advanced dMMR/MSI-H CRC remain unclear. PATIENTS AND METHODS From June 2020 to June 2022, 11 locally advanced dMMR/MSI-H CRC patients treated at the Sixth Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) were enrolled. All patients received 6 sintilimab (Innovent, LTD) injections (200 mg/injection, every 3 weeks) before radical laparoscopic resection. The patient clinical and pathological data were analyzed retrospectively. RESULTS dMMR was confirmed by immunohistochemistry for all patients. However, polymerase chain reaction (PCR) or next-generation sequencing confirmed MSI-H for only 90.9% (10/11) of the patients, while 1 patient had microsatellite stable (MSS) disease. After 6 injections of neoadjuvant anti-PD-1 therapy, 90.9% (10/11) of the patients (those confirmed to have dMMR and MSI-H disease) achieved pathological complete response (pCR). The other patient, who achieved major pathological response with residual tumor <1%, had dMMR but MSS disease. No grade 3 or above immunotherapy-related adverse events occurred [Common Terminology Criteria for Adverse Events ; version 5.0]. Overall, 72.7% (8/11) of the patients had grade 1-2 immunotherapy-related adverse events . No operational mortality or complications occurred within 30 days after surgery. CONCLUSION Single-agent neoadjuvant PD-1 antibody immunotherapy was safe and effective in locally advanced dMMR/MSI-H CRC. Dual confirmation of MMR and MSI status by immunohistochemistry and next-generation sequencing or PCR is necessary for dMMR/MSI-H CRC patients before immunotherapy. The immunotherapy regimen used in this study deserves further validation in phase II and III clinical studies.
Collapse
Affiliation(s)
- Fengyun Pei
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Wu
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yandong Zhao
- Department of Pathology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wan He
- Department of Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qijun Yao
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meijin Huang
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Huang
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Institute of Gastroenterology, Guangzhou, China.
| |
Collapse
|
15
|
Liu JL, Yang M, Bai JG, Liu Z, Wang XS. “Cold” colorectal cancer faces a bottleneck in immunotherapy. World J Gastrointest Oncol 2023; 15:240-250. [PMID: 36908324 PMCID: PMC9994051 DOI: 10.4251/wjgo.v15.i2.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
The advent of immunotherapy and the development of immune checkpoint inhibitors (ICIs) are changing the way we think about cancer treatment. ICIs have shown clinical benefits in a variety of tumor types, and ICI-based immunotherapy has shown effective clinical outcomes in immunologically “hot” tumors. However, for immunologically “cold” tumors such as colorectal cancer (CRC), only a limited number of patients are currently benefiting from ICIs due to limitations such as individual differences and low response rates. In this review, we discuss the classification and differences between hot and cold CRC and the current status of research on cold CRC, and summarize the treatment strategies and challenges of immunotherapy for cold CRC. We also explain the mechanism, biology, and role of immunotherapy for cold CRC, which will help clarify the future development of immunotherapy for cold CRC and discovery of more emerging strategies for the treatment of cold CRC.
Collapse
Affiliation(s)
- Jia-Liang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Jun-Ge Bai
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
16
|
López-Camacho E, Prado-Vázquez G, Martínez-Pérez D, Ferrer-Gómez M, Llorente-Armijo S, López-Vacas R, Díaz-Almirón M, Gámez-Pozo A, Vara JÁF, Feliu J, Trilla-Fuertes L. A Novel Molecular Analysis Approach in Colorectal Cancer Suggests New Treatment Opportunities. Cancers (Basel) 2023; 15:1104. [PMID: 36831448 PMCID: PMC9953902 DOI: 10.3390/cancers15041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, the Colorectal Cancer Subtyping Consortium classified CRC into four consensus molecular subtypes (CMS), but these CMS have had little impact on clinical practice. The purpose of this study is to deepen the molecular characterization of CRC. A novel approach, based on probabilistic graphical models (PGM) and sparse k-means-consensus cluster layer analyses, was applied in order to functionally characterize CRC tumors. First, PGM was used to functionally characterize CRC, and then sparse k-means-consensus cluster was used to explore layers of biological information and establish classifications. To this aim, gene expression and clinical data of 805 CRC samples from three databases were analyzed. Three different layers based on biological features were identified: adhesion, immune, and molecular. The adhesion layer divided patients into high and low adhesion groups, with prognostic value. The immune layer divided patients into immune-high and immune-low groups, according to the expression of immune-related genes. The molecular layer established four molecular groups related to stem cells, metabolism, the Wnt signaling pathway, and extracellular functions. Immune-high patients, with higher expression of immune-related genes and genes involved in the viral mimicry response, may benefit from immunotherapy and viral mimicry-related therapies. Additionally, several possible therapeutic targets have been identified in each molecular group. Therefore, this improved CRC classification could be useful in searching for new therapeutic targets and specific therapeutic strategies in CRC disease.
Collapse
Affiliation(s)
- Elena López-Camacho
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Guillermo Prado-Vázquez
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Daniel Martínez-Pérez
- Medical Oncology Service, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - María Ferrer-Gómez
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Sara Llorente-Armijo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Mariana Díaz-Almirón
- Biostatistics Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedica Molecular Medicine SL, C/Faraday 7, 28049 Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology—CIBERONC, Carlos III Healthy Institute ISCIII, 28029 Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Service, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
- Biomedical Research Networking Center on Oncology—CIBERONC, Carlos III Healthy Institute ISCIII, 28029 Madrid, Spain
- Translational Oncology Group, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Lucía Trilla-Fuertes
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Translational Oncology Group, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
17
|
Lemech C, Dredge K, Bampton D, Hammond E, Clouston A, Waterhouse NJ, Stanley AC, Leveque-El Mouttie L, Chojnowski GM, Haydon A, Pavlakis N, Burge M, Brown MP, Goldstein D. Phase Ib open-label, multicenter study of pixatimod, an activator of TLR9, in combination with nivolumab in subjects with microsatellite-stable metastatic colorectal cancer, metastatic pancreatic ductal adenocarcinoma and other solid tumors. J Immunother Cancer 2023; 11:jitc-2022-006136. [PMID: 36634920 PMCID: PMC9843174 DOI: 10.1136/jitc-2022-006136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Pixatimod is a unique activator of the Toll-like Receptor 9 pathway. This phase I trial evaluated safety, efficacy and pharmacodynamics of pixatimod and PD-1 inhibitor nivolumab in immunologically cold cancers. METHODS 3+3 dose escalation with microsatellite stable metastatic colorectal cancer (MSS mCRC) and metastatic pancreatic ductal adenocarcinoma (mPDAC) expansion cohorts. Participants received pixatimod once weekly as a 1-hour intravenous infusion plus nivolumab every 2 weeks. Objectives included assessment of safety, antitumor activity, pharmacodynamics, and pharmacokinetic profile. RESULTS Fifty-eight participants started treatment. The maximum tolerated dose of pixatimod was 25 mg in combination with 240 mg nivolumab, which was used in the expansion phases of the study. Twenty-one grade 3-5 treatment-related adverse events were reported in 12 participants (21%); one participant receiving 50 mg pixatimod/nivolumab had a treatment-related grade 5 AE. The grade 3/4 rate in the MSS mCRC cohort (n=33) was 12%. There were no responders in the mPDAC cohort (n=18). In the MSS mCRC cohort, 25 participants were evaluable (initial postbaseline assessment scans >6 weeks); of these, three participants had confirmed partial responses (PR) and eight had stable disease (SD) for at least 9 weeks. Clinical benefit (PR+SD) was associated with lower Pan-Immune-Inflammation Value and plasma IL-6 but increased IP-10 and IP-10/IL-8 ratio. In an MSS mCRC participant with PR as best response, increased infiltration of T cells, dendritic cells, and to a lesser extent NK cells, were evident 5 weeks post-treatment. CONCLUSIONS Pixatimod is well tolerated at 25 mg in combination with nivolumab. The efficacy signal and pharmacodynamic changes in MSS mCRC warrants further investigation. TRIAL REGISTRATION NUMBER NCT05061017.
Collapse
Affiliation(s)
- Charlotte Lemech
- Scientia Clinical Research Ltd, Sydney, New South Wales, Australia
| | - Keith Dredge
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Darryn Bampton
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Edward Hammond
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Andrew Clouston
- Department of Pathology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Nigel J Waterhouse
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amanda C Stanley
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Grace M Chojnowski
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrew Haydon
- Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Nick Pavlakis
- Medical Oncology, Genesis Care, North Shore Health Hub, St Leonards, New South Wales, Australia,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Burge
- Medical Oncology, The Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Michael P Brown
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - David Goldstein
- Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Sathe A, Mason K, Grimes SM, Zhou Z, Lau BT, Bai X, Su A, Tan X, Lee H, Suarez CJ, Nguyen Q, Poultsides G, Zhang NR, Ji HP. Colorectal Cancer Metastases in the Liver Establish Immunosuppressive Spatial Networking between Tumor-Associated SPP1+ Macrophages and Fibroblasts. Clin Cancer Res 2023; 29:244-260. [PMID: 36239989 PMCID: PMC9811165 DOI: 10.1158/1078-0432.ccr-22-2041] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The liver is the most frequent metastatic site for colorectal cancer. Its microenvironment is modified to provide a niche that is conducive for colorectal cancer cell growth. This study focused on characterizing the cellular changes in the metastatic colorectal cancer (mCRC) liver tumor microenvironment (TME). EXPERIMENTAL DESIGN We analyzed a series of microsatellite stable (MSS) mCRCs to the liver, paired normal liver tissue, and peripheral blood mononuclear cells using single-cell RNA sequencing (scRNA-seq). We validated our findings using multiplexed spatial imaging and bulk gene expression with cell deconvolution. RESULTS We identified TME-specific SPP1-expressing macrophages with altered metabolism features, foam cell characteristics, and increased activity in extracellular matrix (ECM) organization. SPP1+ macrophages and fibroblasts expressed complementary ligand-receptor pairs with the potential to mutually influence their gene-expression programs. TME lacked dysfunctional CD8 T cells and contained regulatory T cells, indicative of immunosuppression. Spatial imaging validated these cell states in the TME. Moreover, TME macrophages and fibroblasts had close spatial proximity, which is a requirement for intercellular communication and networking. In an independent cohort of mCRCs in the liver, we confirmed the presence of SPP1+ macrophages and fibroblasts using gene-expression data. An increased proportion of TME fibroblasts was associated with the worst prognosis in these patients. CONCLUSIONS We demonstrated that mCRC in the liver is characterized by transcriptional alterations of macrophages in the TME. Intercellular networking between macrophages and fibroblasts supports colorectal cancer growth in the immunosuppressed metastatic niche in the liver. These features can be used to target immune-checkpoint-resistant MSS tumors.
Collapse
Affiliation(s)
- Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kaishu Mason
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan M. Grimes
- Stanford Genome Technology Center, Stanford University, Palo Alto, California
| | - Zilu Zhou
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Billy T. Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Andrew Su
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Carlos J. Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Nancy R. Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Stanford Genome Technology Center, Stanford University, Palo Alto, California
| |
Collapse
|
19
|
Aptsiauri N, Garrido F. The Challenges of HLA Class I Loss in Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2022; 28:5021-5029. [PMID: 35861868 DOI: 10.1158/1078-0432.ccr-21-3501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 01/24/2023]
Abstract
HLA class I molecules are key in tumor recognition and T cell-mediated elimination. Loss of tumor HLA class I expression with different underlying molecular defects results in reduced antigen presentation and facilitates cancer immune evasion. It is also linked to significant changes in tumor microenvironment and tissue architecture. In this review, we summarize the current advances and future perspectives in the understanding of the mechanisms of MHC/HLA class I alterations during the natural history of tumor progression from a primary lesion to distant metastases. We also focus on recent clinical and experimental data demonstrating that lack of response to cancer immunotherapy frequently depends on the molecular nature of tumor HLA class I aberrations. Finally, we highlight the relevance of detecting and correcting the absence of tumor HLA expression to improve immunotherapy protocols.
Collapse
Affiliation(s)
- Natalia Aptsiauri
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada Medical School, Granada, Spain.,Institute of Biosanitary Research of Granada (IBS), Granada, Spain
| | - Federico Garrido
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada Medical School, Granada, Spain.,Institute of Biosanitary Research of Granada (IBS), Granada, Spain
| |
Collapse
|
20
|
Alwers E, Kather JN, Kloor M, Brobeil A, Tagscherer KE, Roth W, Echle A, Amitay EL, Chang‐Claude J, Brenner H, Hoffmeister M. Validation of the prognostic value of CD3 and CD8 cell densities analogous to the Immunoscore® by stage and location of colorectal cancer: an independent patient cohort study. J Pathol Clin Res 2022; 9:129-136. [PMID: 36424650 PMCID: PMC9896157 DOI: 10.1002/cjp2.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
In addition to the traditional staging system in colorectal cancer (CRC), the Immunoscore® has been proposed to characterize the level of immune infiltration in tumor tissue and as a potential prognostic marker. The aim of this study was to examine and validate associations of an immune cell score analogous to the Immunoscore® with established molecular tumor markers and with CRC patient survival in a routine setting. Patients from a population-based cohort study with available CRC tumor tissue blocks were included in this analysis. CD3+ and CD8+ tumor infiltrating lymphocytes in the tumor center and invasive margin were determined in stained tumor tissue slides. Based on the T-cell density in each region, an immune cell score closely analogous to the concept of the Immunoscore® was calculated and tumors categorized into IS-low, IS-intermediate, or IS-high. Logistic regression models were used to assess associations between clinicopathological characteristics with the immune cell score, and Cox proportional hazards models to analyze associations with cancer-specific, relapse-free, and overall survival. From 1,535 patients with CRC, 411 (27%) had IS-high tumors. Microsatellite instability (MSI-high) was strongly associated with higher immune cell score levels (p < 0.001). Stage I-III patients with IS-high had better CRC-specific and relapse-free survival compared to patients with IS-low (hazard ratio [HR] = 0.42 [0.27-0.66] and HR = 0.45 [0.31-0.67], respectively). Patients with microsatellite stable (MSS) tumors and IS-high had better survival (HRCSS = 0.60 [0.42-0.88]) compared to MSS/IS-low patients. In this population-based cohort of CRC patients, the immune cell score was significantly associated with better patient survival. It was a similarly strong prognostic marker in patients with MSI-high tumors and in the larger group of patients with MSS tumors. Additionally, this study showed that it is possible to implement an analogous immune cell score approach and validate the Immunoscore® using open source software in an academic setting. Thus, the Immunoscore® could be useful to improve the traditional staging system in colon and rectal cancer used in clinical practice.
Collapse
Affiliation(s)
- Elizabeth Alwers
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jakob N Kather
- Department of Medicine IIIUniversity Hospital RWTH AachenAachenGermany,Medical Oncology, National Center for Tumor DiseasesHeidelberg University HospitalHeidelbergGermany
| | - Matthias Kloor
- Department of Applied Tumor BiologyInstitute of Pathology, Heidelberg University HospitalHeidelbergGermany,Clinical Cooperation Unit Applied Tumor BiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Alexander Brobeil
- Department of PathologyInstitute of Pathology, Heidelberg University HospitalHeidelbergGermany,Tissue Bank of the National Center for Tumor Diseases (NCT)HeidelbergGermany
| | | | - Wilfried Roth
- Institute of PathologyUniversity Medical Center MainzMainzGermany
| | - Amelie Echle
- Department of Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany,Cancer Epidemiology GroupUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany,German Cancer Consortium (DKTK)German Cancer Research CenterHeidelbergGermany,Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
21
|
Hou W, Yi C, Zhu H. Predictive biomarkers of colon cancer immunotherapy: Present and future. Front Immunol 2022; 13:1032314. [PMID: 36483562 PMCID: PMC9722772 DOI: 10.3389/fimmu.2022.1032314] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy has revolutionized colon cancer treatment. Immune checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer patients, especially those with high microsatellite instability (MSI-H). In 2020, the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as the first-line treatment for metastatic MSI-H colon cancer patients. Additionally, neoadjuvant immunotherapy has presented efficacy in treating early-stage colon cancer patients. Although MSI has been thought of as an effective predictive biomarker for colon cancer immunotherapy, only a small proportion of colon cancer patients were MSI-H, and certain colon cancer patients with MSI-H presented intrinsic or acquired resistance to immunotherapy. Thus, further search for predictive biomarkers to stratify patients is meaningful in colon cancer immunotherapy. Except for MSI, other biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB), tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and circulating immune cells were also proposed to be correlated with patient survival and ICI efficacy in some colon cancer clinical studies. Moreover, developing new diagnostic techniques helps identify accurate predictive biomarkers for colon cancer immunotherapy. In this review, we outline the reported predictive biomarkers in colon cancer immunotherapy and further discuss the prospects of technological changes for biomarker development in colon cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Yi
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
22
|
Yin XK, Wang C, Feng LL, Bai SM, Feng WX, Ouyang NT, Chu ZH, Fan XJ, Qin QY. Expression Pattern and Prognostic Value of CTLA-4, CD86, and Tumor-Infiltrating Lymphocytes in Rectal Cancer after Neoadjuvant Chemo(radio)therapy. Cancers (Basel) 2022; 14:cancers14225573. [PMID: 36428666 PMCID: PMC9688334 DOI: 10.3390/cancers14225573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The synergistic effect of combining immune checkpoint inhibitors (ICIs) with neoadjuvant chemo(radio)therapy (nCRT) in colorectal cancer is still limited. We aimed to understand the impact of nCRT on the tumor microenvironment and to explore favorable immune markers of this combination. Herein, we investigated the expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), CD86, CD4, and CD8 after nCRT and its association with clinicopathological characteristics. Immunostaining of immune-related molecules was performed in 255 surgically resected specimens from rectal cancer patients treated with nCRT. CD4 and CD8 expression on the tumor (tCD4/CD8), stroma (sCD4/CD8), and invasive front (iCD4/CD8) was evaluated. The expression levels of immune-related molecules were significantly lower in the nCRT-treated group, except for CTLA-4 and sCD8. However, patients with higher sCD8+ cell density and CTLA-4 expression had better progression-free survival (PFS) and distant metastasis-free survival (DMFS). In addition, higher CD86 expression was associated with poorer overall survival (OS). Higher CTLA-4 expression was associated with higher tCD8+ cell density, whereas CD86 expression was correlated with the cell density of t/sCD8. Prognostic analysis confirmed that the relationships between CTLA-4 and DMFS as well as CD86 and OS were significantly correlated in low rather than high CD8+ cell density. Further the combination of CD8+ cell density and CD86 expression was shown to be an independent prognostic factor of OS, whereas the combination of CTLA-4 was not for DMFS. Together, these results demonstrate significant correlations between CD86 expression and t/sCD8+ cell density in rectal cancer after nCRT and could potentially have clinical implications for combining ICIs and nCRT.
Collapse
Affiliation(s)
- Xin-Ke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Li-Li Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shao-Mei Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wei-Xing Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Neng-Tai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhong-Hua Chu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qi-Yuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| |
Collapse
|
23
|
Saoudi Gonzalez N, López D, Gómez D, Ros J, Baraibar I, Salva F, Tabernero J, Élez E. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer. Expert Opin Drug Metab Toxicol 2022; 18:755-767. [PMID: 36582117 DOI: 10.1080/17425255.2022.2160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The introduction of monoclonal antibodies to the chemotherapy backbone treatment has challenged the paradigm of metastatic colorectal cancer (mCRC) treatment. Their mechanism of action and pharmacokinetics are complex but important to understand in order to improve patient selection and treatment outcomes for mCRC population. AREAS COVERED This review examines the scientific data, pharmacodynamics, and pharmacokinetics of approved monoclonal antibodies used to treat mCRC patients, including agents targeting signaling via VEGFR (bevacizumab and ramucirumab), EGFR (cetuximab and panitumumab), HER2/3 target therapy, and immunotherapy agents such as pembrolizumab or nivolumab. Efficacy and mechanism of action of bispecific antibodies are also covered. EXPERT OPINION mCRC is a heterogeneous disease and the optimal selection and sequence of treatments is challenging. Monoclonal antibodies have complex pharmacokinetics and pharmacodynamics, with important interactions between them. The arrival of bioequivalent molecules to the market increases the need for the characterization of pharmacokinetics and pharmacodynamics of classic monoclonal antibodies to reach bioequivalent novel molecules.
Collapse
Affiliation(s)
- Nadia Saoudi Gonzalez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Daniel López
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Diego Gómez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Francesc Salva
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| |
Collapse
|
24
|
Jiang HZ, Yang B, Jiang YL, Liu X, Chen DL, Long FX, Yang Z, Tang DX. Development and validation of prognostic models for colon adenocarcinoma based on combined immune-and metabolism-related genes. Front Oncol 2022; 12:1025397. [PMID: 36387195 PMCID: PMC9661394 DOI: 10.3389/fonc.2022.1025397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2023] Open
Abstract
Background The heterogeneity of tumor tissue is one of the reasons for the poor effect of tumor treatment, which is mainly affected by the tumor immune microenvironment and metabolic reprogramming. But more research is needed to find out how the tumor microenvironment (TME) and metabolic features of colon adenocarcinoma (COAD) are related. Methods We obtained the transcriptomic and clinical data information of COAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Consensus clustering analysis was used to identify different molecular subtypes, identify differentially expressed genes (DEGs) associated with immune-and metabolism-related genes (IMRGs) prognosis. Univariate and multivariable Cox regression analysis and Lasso regression analysis were applied to construct the prognostic models based on the IMRG risk score. The correlations between risk scores and TME, immune cell infiltration, and immune checkpoint genes were investigated. Lastly, potential appropriate drugs related to the risk score were screened by drug sensitivity analysis. Results By consensus clustering analysis, we identified two distinct molecular subtypes. It was also found that the multilayered IMRG subtypes were associated with the patient's clinicopathological characteristics, prognosis, and TME cell infiltration characteristics. Meanwhile, a prognostic model based on the risk score of IMRGs was constructed and its predictive power was verified internally and externally. Clinicopathological analysis and nomogram give it better clinical guidance. The IMRG risk score plays a key role in immune microenvironment infiltration. Patients in the high-risk groups of microsatellite instability (MSI) and tumor mutational burden (TMB) were found to, although with poor prognosis, actively respond to immunotherapy. Furthermore, IMRG risk scores were significantly associated with immune checkpoint gene expression. The potential drug sensitivity study helps come up with and choose a chemotherapy treatment plan. Conclusion Our comprehensive analysis of IMRG signatures revealed a broad range of regulatory mechanisms affecting the tumor immune microenvironment (TIME), immune landscape, clinicopathological features, and prognosis. And to explore the potential drugs for immunotherapy. It will help to better understand the molecular mechanisms of COAD and provide new directions for disease treatment.
Collapse
Affiliation(s)
- Hui-zhong Jiang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bing Yang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ya-li Jiang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xun Liu
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Da-lin Chen
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Feng-xi Long
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhu Yang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dong-xin Tang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
25
|
Hu L, Dong H, He L, Shi M, Xiang N, Su Y, Wang C, Tian Y, Hu Y, Wang H, Liu H, Wen C, Yang X. Evacetrapib Elicits Antitumor Effects on Colorectal Cancer by Inhibiting the Wnt/β-Catenin Signaling Pathway and Activating the JNK Signaling Pathway. Biol Pharm Bull 2022; 45:1238-1245. [DOI: 10.1248/bpb.b22-00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Limei Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Lingyuan He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Mengchen Shi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Nanlin Xiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Yixi Su
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Chen Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Yijia Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Huihui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
26
|
Chun J, Park SM, Yi JM, Ha IJ, Kang HN, Jeong MK. Bojungikki-Tang Improves Response to PD-L1 Immunotherapy by Regulating the Tumor Microenvironment in MC38 Tumor-Bearing Mice. Front Pharmacol 2022; 13:901563. [PMID: 35873573 PMCID: PMC9300825 DOI: 10.3389/fphar.2022.901563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockage targeting PD-L1 has led to breakthroughs in cancer treatment. Although anti-PD-L1-based immunotherapy has been approved as standard therapy in various cancer types, its therapeutic efficacy in most colorectal cancers (CRC) is still limited due to the low response to immunotherapy. Therefore, combining treatment with herbal medicines could be an alternative approach for treating CRC to overcome this limitation. Bojungikki-Tang (BJIKT), a herbal formula used in traditional Chinese medicine, clinically improves the quality of life for cancer patients and has been associated with antitumor and immune-modulating activities. However, the regulatory effect of BJIKT on the immune response in the tumor microenvironment remains largely uninvestigated. In this study, we verified the inhibitory effect of BJIKT on tumor growth and investigated the regulatory effect of combination therapy with BJIKT and anti-PD-L1 on antitumor immune responses in an MC38 CRC-bearing C57BL/6 mouse model. Immune profiling analysis by flow cytometry was used to characterize the exact cell types contributing to anticancer activities. Combination treatment with BJIKT and anti-PD-L1 therapy significantly suppressed tumor growth in MC38-bearing mice and increased the proportion of cytotoxic T lymphocytes and natural killer cells in tumor tissues. Furthermore, BJIKT suppressed the population of myeloid-derived suppressor cells, suggesting that this combination treatment effectively regulates the immunological function of T-cells by improving the tumor microenvironment. The herbal formula BJIKT can be a novel therapeutic option for improving anti-PD-L1-based immunotherapy in patients with CRC.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sang-Min Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
27
|
Targeting interleukin-17 enhances tumor response to immune checkpoint inhibitors in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188758. [PMID: 35809762 DOI: 10.1016/j.bbcan.2022.188758] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Although immune checkpoint inhibitors (ICIs) have gained much attention in managing cancer, only a minority of patients, especially those with tumors that have been classified as immunologically "cold" such as microsatellite stable (MSS) colorectal cancers (CRC), experience clinical benefit from ICIs. Surprisingly, interleukin-17 (IL-17) and its primary source Th17 are enriched in CRC and inversely associated with patient outcome. Our previous study revealed that IL-17A could upregulate programmed death-ligand 1 (PD-L1) expression and impede the efficacy of immunotherapy. IL-17, therefore, can be a possible target to sensitize tumor cells to ICIs. The detailed clinical results from our trial, which is the first to show the benefits of the combination of anti-PD-1 with anti-IL-17 therapy for MSS CRC, have also been presented. In this review, we highlight the role of IL-17 in ICIs resistance and summarize the current clinical evidence for the use of combination therapy. Directions for future strategies to warm up immunologically "cold" MSS CRCs have also been proposed.
Collapse
|
28
|
Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev 2022; 109:102433. [PMID: 35905558 DOI: 10.1016/j.ctrv.2022.102433] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
RAS genes are the most frequently mutated oncogenes in cancer. These mutations occur in roughly half of the patients with colorectal cancer (CRC). RAS mutant tumors are resistant to therapy with anti-EGFR monoclonal antibodies. Therefore, patients with RAS mutant CRC currently have few effective therapy options. RAS mutations lead to constitutively active RAS GTPases, involved in multiple downstream signaling pathways. These alterations are associated with a tumor microenvironment (TME) that drives immune evasion and disease progression by mechanisms that remain incompletely understood. In this review, we focus on the available evidence in the literature explaining the potential effects of RAS mutations on the CRC microenvironment. Ongoing efforts to influence the TME by targeting mutant RAS and thereby sensitizing these tumors to immunotherapy will be discussed as well.
Collapse
|
29
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
30
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Park S, Wang MH. Purinoceptor Targeted Cytotoxicity of Adenosine Triphosphate-Conjugated Biogenic Selenium Nanoparticles in Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:582. [PMID: 35631408 PMCID: PMC9143145 DOI: 10.3390/ph15050582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The adenosine triphosphate (ATP)-conjugated biogenic selenium nanoparticles (SeNPs) for P2 (purinoceptors) receptor-targeted anti-colon cancer activity were developed in this study. First, the SeNPs were synthesized using Trichoderma extracts (TE) and then conjugated with ATP to enhance their anticancer activity. The developed SeNPs had an oval crystalline structure with an average diameter size of 26.45 ± 1.71 d. nm, while the ATP-SeNPs were 78.6 ± 2.91 d. nm. The SeNPs contain Se, and less persistence of P while the ATP-SeNPs have high level of P, and Se in the energy-dispersive spectroscopy (EDS). Further, both nanoparticles exhibited larger sizes in the dynamic light scattering (DLS) analysis than in the transmission electron microscopy (TEM) analysis. The DLS and Fourier transform infrared spectroscopy (FTIR) results provide evidence that the amine group (-NH2) of ATP might bind with the negatively charged SeNPs through covalent bonding. The IC50 concentration was 17.25 ± 1.16 µg/mL for ATP-SeNPs and 61.24 ± 2.08 µg/mL against the caco-2 cell line. The IC50 results evidenced the higher cytotoxicity of ATP-SeNPs in the caco-2 cell line than in HEK293 cells. ATP-SeNPs trigger the anticancer activity in the caco-2 cell line through the induction of mitochondrial membrane potential (MMP) loss and nucleus damage. The biocompatibility test of hemolysis and the egg CAM assay confirmed the non-toxicity of these nanoparticles. Overall, the results proved that the newly developed ATP-SeNPs exhibited higher cytotoxicity in the caco-2 cell line than SeNPs. However, further molecular and in vivo experiments are required to develop the ATP-SeNPs as a candidate drug for cancer-targeted therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (X.Z.); (S.P.)
| |
Collapse
|
31
|
Cui G. Towards a precision immune checkpoint blockade immunotherapy in patients with colorectal cancer: Strategies and perspectives. Biomed Pharmacother 2022; 149:112923. [PMID: 36068782 DOI: 10.1016/j.biopha.2022.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
|
32
|
Rotundo MS, Bagnardi V, Rotundo M, Comandè M, Zampino MG. PD-1/PD-L1 blockade, a novel strategy for targeting metastatic colorectal cancer: A systematic review and meta-analysis of randomized trials. Oncol Lett 2022; 23:134. [PMID: 35251353 PMCID: PMC8895448 DOI: 10.3892/ol.2022.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Currently, standard treatment of patients with metastatic colorectal cancer (mCRC) comprises chemotherapy (CT) and/or biological therapy (BT) and/or best supportive care (BSC). The present study performed a meta-analysis on five phase II-III randomized clinical trials, which compared CT/BT/BSC as the control arm with the immune checkpoint inhibitors (ICIs) anti-programmed cell death protein 1 (PD-1) or its ligand (PD-L1) alone or in combination with cytotoxic T lymphocyte antigen 4 or mitogen activated protein kinase kinase inhibitors as the experimental arm, to evaluate whether a standard approach could be overcome using the novel target therapy strategy. Pooled hazard ratio (HR) for progression-free survival was 0.95 in favor of the experimental arm [95% confidence interval (CI), 0.74-1.22; P=0.68]. Heterogeneity was significant: Cochran's Q, 21.0; P=0.0082; I2 index, 76%. Pooled HR for overall survival was 0.88 in favor of the experimental arm (95% CI, 0.75-1.02; P=0.08). Heterogeneity was not significant (Cochran's Q, 6.0; P=0.31; I2 index, 16%). The present meta-analysis demonstrated a trend toward the improvement of survival by PD-1/PD-L1 blockade in mCRC. Further homogeneous studies are necessary to strengthen these results, beyond the known benefits of ICIs in deficient mismatch repair/high microsatellite instability tumors.
Collapse
Affiliation(s)
- Maria Saveria Rotundo
- Complex Operative Unit of Medical Oncology, Uboldo Hospital, Cernusco Sul Naviglio, I-20063 Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, I-20126 Milan, Italy
| | - Miryam Rotundo
- Department of Experimental and Clinical Medicine-Medical, Veterinary and Pharmaceutical Biotechnologies, Magna Graecia University of Catanzaro, I-88100 Catanzaro, Italy
| | - Mario Comandè
- Complex Operative Unit of Medical Oncology, Uboldo Hospital, Cernusco Sul Naviglio, I-20063 Milan, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, I-20141 Milan, Italy
| |
Collapse
|
33
|
Luo R, Li Y, Wu Z, Zhang Y, Luo J, Yang K, Qin X, Wang H, Huang R, Wang H, Luo H. Comprehensive Analysis of Microsatellite-Related Transcriptomic Signature and Identify Its Clinical Value in Colon Cancer. Front Surg 2022; 9:871823. [PMID: 35433823 PMCID: PMC9008782 DOI: 10.3389/fsurg.2022.871823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Microsatellite has been proved to be an important prognostic factor and a treatment reference in colon cancer. The transcriptome profile and tumor microenvironment of different microsatellite statuses are different. Metastatic colon cancer patients with microsatellite instability-high (MSI-H) are sensitive to immune checkpoint inhibitors (ICIs), but not fluorouracil. Efforts have been devoted to identify the predictive factors of immunotherapy. Methods We analyzed the transcriptome profile of different microsatellite statuses in colon cancer by using single-cell and bulk transcriptome data from publicly available databases. The immune cells in the tumor microenvironment were analyzed by the ESTIMATION algorithm. The microsatellite-related gene signature (MSRS) was constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression based on the differentially expressed genes (DEGs) and its prognostic value and predictive value of response to immunotherapy were assessed. The prognostic value of the MSRS was also validated in another cohort. Results The MSI-H cancers cells were clustered differentially in the dimension reduction plot. Most of the immune cells have a higher proportion in the tumor immune microenvironment, except for CD56 bright natural killer cells. A total of 238 DEGs were identified. Based on the 238 DEGs, a neural network was constructed with a Kappa coefficient of 0.706 in the testing cohort. The MSRS is a favorable prognostic factor of overall survival, which was also validated in another cohort (GSE39582). Besides, MSRS is correlated with tumor mutation burden in MSI-H colon cancer. However, the MSRS is a barely satisfactory factor in predicting immunotherapy with the area under the curve (AUC) of 0.624. Conclusion We developed the MSRS, which is a robust prognostic factor of overall survival in spite of a barely satisfactory immunotherapy predictor. Further studies may need to improve the predictive ability.
Collapse
Affiliation(s)
- Rui Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhijie Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanxin Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Keli Yang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiusen Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rongkang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Rongkang Huang
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Hui Wang
| | - Hongzhi Luo
- Department of Tumor Surgery, Zhongshan City People's Hospital, Zhongshan, China
- Hongzhi Luo
| |
Collapse
|
34
|
Gorzo A, Galos D, Volovat SR, Lungulescu CV, Burz C, Sur D. Landscape of Immunotherapy Options for Colorectal Cancer: Current Knowledge and Future Perspectives beyond Immune Checkpoint Blockade. Life (Basel) 2022; 12:229. [PMID: 35207516 PMCID: PMC8878674 DOI: 10.3390/life12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer is the third most prevalent malignancy in Western countries and a major cause of death despite recent improvements in screening programs and early detection methods. In the last decade, a growing effort has been put into better understanding how the immune system interacts with cancer cells. Even if treatments with immune checkpoint inhibitors (anti-PD1, anti-PD-L1, anti-CTLA4) were proven effective for several cancer types, the benefit for colorectal cancer patients is still limited. However, a subset of patients with deficient mismatch repair (dMMR)/microsatellite-instability-high (MSI-H) metastatic colorectal cancer has been observed to have a prolonged benefit to immune checkpoint inhibitors. As a result, pembrolizumab and nivolumab +/- ipilimumab recently obtained the Food and Drug Administration approval. This review aims to highlight the body of knowledge on immunotherapy in the colorectal cancer setting, discussing the potential mechanisms of resistance and future strategies to extend its use.
Collapse
Affiliation(s)
- Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Diana Galos
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | | | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Allergology and Immunology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| |
Collapse
|
35
|
Du F, Liu Y. Predictive molecular markers for the treatment with immune checkpoint inhibitors in colorectal cancer. J Clin Lab Anal 2022; 36:e24141. [PMID: 34817097 PMCID: PMC8761449 DOI: 10.1002/jcla.24141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is one of the most common malignant tumors and, hence, has become one of the most important public health issues in the world. Treatment with immune checkpoint inhibitors (ICIs) successfully improves the survival rate of patients with melanoma, non-small-cell lung cancer, and other malignancies, and its application in metastatic colorectal cancer is being actively explored. However, a few patients develop drug resistance. Predictive molecular markers are important tools to precisely screen patient groups that can benefit from treatment with ICIs. The current article focused on certain important predictive molecular markers for ICI treatment in colorectal cancer, including not only some of the mature molecular markers, such as deficient mismatch repair (d-MMR), microsatellite instability-high (MSI-H), tumor mutational burden (TMB), programmed death-ligand-1 (PD-L1), tumor immune microenvironment (TiME), and tumor-infiltrating lymphocytes (TILs), but also some of the novel molecular markers, such as DNA polymerase epsilon (POLE), polymerase delta 1 (POLD1), circulating tumor DNA (ctDNA), and consensus molecular subtypes (CMS). We have reviewed these markers in-depth and presented the results from certain important studies, which suggest their applicability in CRC and indicate their advantages and disadvantages. We hope this article is helpful for clinicians and researchers to systematically understand these markers and can guide the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Fenqi Du
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yanlong Liu
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
36
|
Lee DJ, Juvekar V, Lee HW, Kim ES, Noh CK, Shin SJ, Kim HM. Cancer-Targeted Azo Dye for Two-Photon Photodynamic Therapy in Human Colon Tissue. Anal Chem 2021; 93:16821-16827. [PMID: 34886662 DOI: 10.1021/acs.analchem.1c03429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inappropriate cancer management can be prevented by simultaneous cancer diagnosis, treatment, and real-time assessment of therapeutic processes. Here, we describe the design of a two-photon (TP) photosensitizer (PS), ACC-B, for high temporal and spatioselective near-infrared cancer therapy. ACC-B consisting of a biotin unit significantly enhanced the cancer sensitivity of the PS. Upon TP irradiation, ACC-B generated reactive oxygen species (ROS) through the type I photodynamic therapy (PDT) process and triggered highly selective cancer ablation. In addition, fluorescence microscopy images revealed that ACC-B-loaded live human colon tissues showed a marked difference in ACC-B uptake between normal and cancer tissues, and this property was used for real-time imaging. Upon 770 nm TP treatment, ACC-B generated ROS efficiently in live colon cancer tissues with high spatial selectivity. During PDT, ACC-B can provide in situ spatioselective visualization of cellular behavior and molecular information for therapeutic assessment in specific regions.
Collapse
Affiliation(s)
- Dong Joon Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Vinayak Juvekar
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Eun Seo Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
37
|
Current Treatment Landscape for Third- or Later-Line Therapy in Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Zhang Y, Zhang F, Zhao L, Fu X, Shang Y, Gao Q. Long-term survival of a patient with microsatellite-stable refractory colorectal cancer with regorafenib and PD-1 inhibitor sintilimab: a case report and review of literature. BMC Gastroenterol 2021; 21:399. [PMID: 34688262 PMCID: PMC8542310 DOI: 10.1186/s12876-021-01950-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent cancer worldwide and poses a serious challenge for clinicians. Previous studies have shown promising results in patients with Microsatellite Stable microsatellite-stable CRC refractory to chemotherapy upon treating with (Programmed Cell Death Protein 1) PD-1 inhibitor combined with regorafenib. Herein, we report a unique case of a patient for whom the conventional chemotherapy and radiotherapy were ineffective, but showed a prolonged stable disease with third-line treatment with regorafenib and PD-1 inhibitor, sintilimab. Case presentation A 64-year-old East Asian female patient was admitted to a regional cancer hospital presenting with abdominal unease due to increased stool frequency and bloody stool. Digital anal examination revealed adenocarcinoma, while genetic profiling of the tumor resections detected wild-type KRAS mutations in codon 12 and 13. Microsatellite instability (MSI) analysis for detecting germline mutations of (Mismatch-repair) MMR genes showed stable phenotype. In December 2016, Miles’ resection for intestinal adhesion release and iliac vessel exploration in the rectum was performed (Tumor, Node, Metastasis [TNM]: T3N0M0; stage IIA). The adjuvant chemotherapeutic regimen consisted of a combination of capecitabine at 1.5 g (twice daily) and oxaliplatin therapy at 200 mg for three cycles from February 2016; followed by administering capecitabine tablets orally (1.5 g bid) for five cycles as post-operative palliative care. The patient tested positive for hepatic C virus, which was managed by oral antiviral agents. Following recurrence of rectal adenocarcinoma after 4 years and disease progression with a previous chemotherapeutic regimen, regorafenib was administered at 120 mg once daily combined with sintilimab 200 mg, and the patient's progress was monitored. A follow-up computerized tomography imaging in March 2020 showed disease progression, additionally presented nodule formation (TNM: T3NxM1b; stage IVB). According to Response Evaluation Criteria in Solid Tumors criteria (RECIST), the patient showed a complete response (CR) after treatment with regorafenib and sintilimab immunotherapy. Conclusion Data from this clinical case report support future exploration of combination treatment of the oral multi-kinase inhibitor regorafenib with PD-1 targeted monoclonal antibodies in patients with metastatic microsatellite-stable CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01950-y.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No 127, Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China
| | - Fang Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No 127, Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China
| | - Lingdi Zhao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No 127, Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China
| | - Xiaomin Fu
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No 127, Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China
| | - Yiman Shang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No 127, Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China
| | - Quanli Gao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, No 127, Dongming Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China.
| |
Collapse
|
39
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third leading cause of cancer-related death worldwide. Single-agent anti-PD-1 immune checkpoint inhibitors (ICIs) demonstrated promising efficacy in early-phase trials, a finding that was not confirmed in phase III studies. The combination of atezolizumab (an anti-PD-L1 ICI) with bevacizumab (an anti-VEGF antibody) was approved as first-line therapy in 2020, however, with significant improvement in response rate, progression-free survival, and overall survival in comparison with the previous standard of care, sorafenib. Numerous ongoing clinical trials are assessing ICIs in combination with each other or with targeted agents, and also in earlier stages with local therapies. This review summarizes the latest concepts in the use of ICIs for the management of HCC. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rubens Copia Sperandio
- Centro de Oncologia e Hematologia Einstein Família Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil, 05652-900
| | - Roberto Carmagnani Pestana
- Centro de Oncologia e Hematologia Einstein Família Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil, 05652-900
| | - Beatriz Viesser Miyamura
- Departamento de Medicina, Hospital da Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil, 01221-010
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
40
|
Songjang W, Nensat C, Pongcharoen S, Jiraviriyakul A. The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomed Rep 2021; 15:86. [PMID: 34512974 PMCID: PMC8411483 DOI: 10.3892/br.2021.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Modern cancer immunotherapy techniques are aimed at enhancing the responses of the patients' immune systems to fight against the cancer. The main promising strategies include active vaccination of tumor antigens, passive vaccination with antibodies specific to cancer antigens, adoptive transfer of cancer-specific T cells and manipulation of the patient's immune response by inhibiting immune checkpoints. The application of immunogenic cell death (ICD) inducers has been proven to enhance the immunity of patients undergoing various types of immunotherapy. The dying, stressed or injured cells release or present molecules on the cell surface, which function as either adjuvants or danger signals for detection by the innate immune system. These molecules are now termed 'damage-associated molecular patterns'. The term 'ICD' indicates a type of cell death that triggers an immune response against dead-cell antigens, particularly those derived from cancer cells, and it was initially proposed with regards to the effects of anticancer chemotherapy with conventional cytotoxic drugs. The aim of the present study was to review and discuss the role and mechanisms of ICD as a promising combined immunotherapy for gastrointestinal tumors.
Collapse
Affiliation(s)
- Worawat Songjang
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Chatchai Nensat
- Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Arunya Jiraviriyakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
41
|
Wang Z, Little N, Chen J, Lambesis KT, Le KT, Han W, Scott AJ, Lu J. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2021; 16:1130-1140. [PMID: 34385682 PMCID: PMC8855709 DOI: 10.1038/s41565-021-00950-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/28/2021] [Indexed: 05/02/2023]
Abstract
Despite the enormous therapeutic potential of immune checkpoint blockade (ICB), it benefits only a small subset of patients. Some chemotherapeutics can switch 'immune-cold' tumours to 'immune-hot' to synergize with ICB. However, safe and universal therapeutic platforms implementing such immune effects remain scarce. We demonstrate that sphingomyelin-derived camptothecin nanovesicles (camptothesomes) elicit potent granzyme-B- and perforin-mediated cytotoxic T lymphocyte (CTL) responses, potentiating PD-L1/PD-1 co-blockade to eradicate subcutaneous MC38 adenocarcinoma with developed memory immunity. In addition, camptothesomes improve the pharmacokinetics and lactone stability of camptothecin, avoid systemic toxicities, penetrate deeply into the tumour and outperform the antitumour efficacy of Onivyde. Camptothesome co-load the indoleamine 2,3-dioxygenase inhibitor indoximod into its interior using the lipid-bilayer-crossing capability of the immunogenic cell death inducer doxorubicin, eliminating clinically relevant advanced orthotopic CT26-Luc tumours and late-stage B16-F10-Luc2 melanoma, and achieving complete metastasis remission when combined with ICB and folate targeting. The sphingomyelin-derived nanotherapeutic platform and doxorubicin-enabled transmembrane transporting technology are generalizable to various therapeutics, paving the way for transformation of the cancer immunochemotherapy paradigm.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Jiawei Chen
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Kevin Tyler Lambesis
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Kimberly Thi Le
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Weiguo Han
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Aaron James Scott
- NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA.
- NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
42
|
Zaiachuk M, Pryimak N, Kovalchuk O, Kovalchuk I. Cannabinoids, Medical Cannabis, and Colorectal Cancer Immunotherapy. Front Med (Lausanne) 2021; 8:713153. [PMID: 34631734 PMCID: PMC8497796 DOI: 10.3389/fmed.2021.713153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a major public health problem. Unfortunately, currently, no effective curative option exists for this type of malignancy. The most promising cancer treatment nowadays is immunotherapy which is also called biological or targeted therapy. This type of therapy boosts the patient's immune system ability to fight the malignant tumor. However, cancer cells may become resistant to immunotherapy and escape immune surveillance by obtaining genetic alterations. Therefore, new treatment strategies are required. In the recent decade, several reports suggest the effectiveness of cannabinoids and Cannabis sativa extracts for inhibiting cancer proliferation in vitro and in vivo, including intestinal malignancies. Cannabinoids were shown to modulate the pathways involved in cell proliferation, angiogenesis, programmed cell death and metastasis. Because of that, they are proposed as adjunct therapy for many malignancies. By far less information exists on the potential of the use of cannabis in combination with immunotherapy. Here, we explore the possibility of the use of cannabinoids for modulation of immunotherapy of colon cancer and discuss possible advantages and limitations.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
43
|
Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.699266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently occurring tumor in the human population. CRCs are usually adenocarcinomatous and originate as a polyp on the inner wall of the colon or rectum which may become malignant in the due course of time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may play an important role in preventive and therapeutic interventions to decrease the mortality rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as the novel strategy to develop newer approaches for the treatment of the disease. Nanotechnology consists of a wide array of innovative and astonishing nanomaterials with both diagnostics and therapeutic potential. Several nanomaterials and nano formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles, Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations, Nano-emulsion System, etc can be used to targeted anticancer drug delivery and diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent advancement of nanotechnology in the diagnosis and treatment of CRC.
Collapse
|
44
|
Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CC, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021; 175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
Collapse
|
45
|
Saffari-Chaleshtori J, Asadi-Samani M, Rasouli M, Shafiee SM. Autophagy and Ubiquitination as Two Major Players in Colorectal Cancer: A Review on Recent Patents. Recent Pat Anticancer Drug Discov 2021; 15:143-153. [PMID: 32603286 DOI: 10.2174/1574892815666200630103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As one of the most commonly diagnosed cancers among men and women, Colorectal Cancer (CRC) leads to high rates of morbidity and mortality across the globe. Recent anti- CRC therapies are now targeting specific signaling pathways involved in colorectal carcinogenesis. Ubiquitin Proteasome System (UPS) and autophagy are two main protein quality control systems, which play major roles in the carcinogenesis of colorectal cancer. A balanced function of these two pathways is necessary for the regulation of cell proliferation and cell death. OBJECTIVE In this systematic review, we discuss the available evidence regarding the roles of autophagy and ubiquitination in progression and inhibition of CRC. METHODS The search terms "colorectal cancer" or "colon cancer" or "colorectal carcinoma" or "colon carcinoma" in combination with "ubiquitin proteasome" and "autophagy" were searched in PubMed, Web of Science, and Scopus databases, and also Google Patents (https://patents.google .com) from January 2000 to Feb 2020. RESULTS The most important factors involved in UPS and autophagy have been investigated. There are many important factors involved in UPS and autophagy but this systematic review shows the studies that have mostly focused on the role of ATG, 20s proteasome and mTOR in CRC, and the more important factors such as ATG8, FIP200, and TIGAR factors that are effective in the regulation of autophagy in CRC cells have not been yet investigated. CONCLUSION The most important factors involved in UPS and autophagy such as ATG, 20s proteasome and mTOR, ATG8, FIP200, and TIGAR can be considered in drug therapy for controlling or activating autophagy.
Collapse
Affiliation(s)
- Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Rasouli
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
The Anti-Tumor Effect of Lactococcus lactis Bacteria-Secreting Human Soluble TRAIL Can Be Enhanced by Metformin Both In Vitro and In Vivo in a Mouse Model of Human Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13123004. [PMID: 34203951 PMCID: PMC8232584 DOI: 10.3390/cancers13123004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a major cause of morbidity and mortality in Europe, and accounts for over 10% of all cancer-related deaths worldwide. These indicate an urgent need for novel therapeutic options in CRC. Here, we analysed if genetically modified non-pathogenic Lactococcus lactis bacteria can be used for local delivery of human recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and induction of tumor cells death in vitro and in vivo in CRC mouse model. We showed that modified L. lactis bacteria were able to secrete biologically active human soluble TRAIL (L. lactis(hsTRAIL+)), which selectively eliminated human CRC cells in vitro, and was further strengthened by metformin (MetF). Our results from in vitro studies were confirmed in vivo using subcutaneous NOD-SCID mouse model of human CRC. The data showed a significant reduction of the tumor growth by intratumor injection of L. lactis(hsTRAIL+) bacteria producing hsTRAIL. This effect could be further enhanced by oral administration of MetF. Abstract Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) induces apoptosis of many cancer cells, including CRC cells, being non-harmful for normal ones. However, recombinant form of human TRAIL failed in clinical trial when administered intravenously. To assess the importance of TRAIL in CRC patients, new form of TRAIL delivery would be required. Here we used genetically modified, non-pathogenic Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. Operating under the Nisin Controlled Gene Expression System (NICE), the modified bacteria (L. lactis(hsTRAIL+)) were able to induce cell death of HCT116 and SW480 human cancer cells and reduce the growth of HCT116-tumor spheres in vitro. This effect was cancer cell specific as the cells of normal colon epithelium (FHC cells) were not affected by hsTRAIL-producing bacteria. Metformin (MetF), 5-fluorouracil (5-FU) and irinotecan (CPT-11) enhanced the anti-tumor actions of hsTRAIL in vitro. In the NOD-SCID mouse model, treatment of subcutaneous HCT116-tumors with L. lactis(hsTRAIL+) bacteria given intratumorally, significantly reduced the tumor growth. This anti-tumor activity of hsTRAIL in vivo was further enhanced by oral administration of MetF. These findings indicate that L. lactis bacteria could be suitable for local delivery of biologically active human proteins. At the same time, we documented that anti-tumor activity of hsTRAIL in experimental therapy of CRC can be further enhanced by MetF given orally, opening a venue for alternative CRC-treatment strategies.
Collapse
|
47
|
Pecci F, Cantini L, Bittoni A, Lenci E, Lupi A, Crocetti S, Giglio E, Giampieri R, Berardi R. Beyond Microsatellite Instability: Evolving Strategies Integrating Immunotherapy for Microsatellite Stable Colorectal Cancer. Curr Treat Options Oncol 2021; 22:69. [PMID: 34110510 PMCID: PMC8192371 DOI: 10.1007/s11864-021-00870-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Advanced colorectal cancer (CRC) is a heterogeneous disease, characterized by several subtypes with distinctive genetic and epigenetic patterns. During the last years, immune checkpoint inhibitors (ICIs) have revamped the standard of care of several tumors such as non-small cell lung cancer and melanoma, highlighting the role of immune cells in tumor microenvironment (TME) and their impact on cancer progression and treatment efficacy. An "immunoscore," based on the percentage of two lymphocyte populations both at tumor core and invasive margin, has been shown to improve prediction of treatment outcome when added to UICC-TNM classification. To date, pembrolizumab, an anti-programmed death protein 1 (PD1) inhibitor, has gained approval as first-line therapy for mismatch-repair-deficient (dMMR) and microsatellite instability-high (MSI-H) advanced CRC. On the other hand, no reports of efficacy have been presented in mismatch-repair-proficient (pMMR) and microsatellite instability-low (MSI-L) or microsatellite stable (MSS) CRC. This group includes roughly 95% of all advanced CRC, and standard chemotherapy, in addition to anti-EGFR or anti-angiogenesis drugs, still represents first treatment choice. Hopefully, deeper understanding of CRC immune landscape and of the impact of specific genetic and epigenetic alterations on tumor immunogenicity might lead to the development of new drug combination strategies to overcome ICIs resistance in pMMR CRC, thus paving the way for immunotherapy even in this subgroup.
Collapse
Affiliation(s)
- Federica Pecci
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Luca Cantini
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Alessandro Bittoni
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Edoardo Lenci
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Alessio Lupi
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Sonia Crocetti
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Enrica Giglio
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Riccardo Giampieri
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Rossana Berardi
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
48
|
Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal 2021; 35:e23810. [PMID: 33938589 PMCID: PMC8183910 DOI: 10.1002/jcla.23810] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Due to advances in understanding the immune microenvironment of colorectal cancer (CRC), microsatellite classification (dMMR/MSI-H and pMMR/MSS) has become a key biomarker for the diagnosis and treatment of CRC patients and therefore has important clinical value. Microsatellite status is associated with a variety of clinicopathological features and affects drug resistance and the prognosis of patients. CRC patients with different microsatellite statuses have different compositions and distributions of immune cells and cytokines within their tumor microenvironments (TMEs). Therefore, there is great interest in reversing or reshaping CRC TMEs to transform immune tolerant "cold" tumors into immune sensitive "hot" tumors. This requires a thorough understanding of differences in the immune microenvironments of MSI-H and MSS type tumors. This review focuses on the relationship between CRC microsatellite status and the immune microenvironment. It focuses on how this relationship has value for clinical application in diagnosis and treatment, as well as exploring the limitations of its current application.
Collapse
Affiliation(s)
- Junge Bai
- The Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Hongsheng Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Xuefeng Bai
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
49
|
Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitor Therapies in Mismatch Repair Deficient Metastatic Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13112638. [PMID: 34072037 PMCID: PMC8199207 DOI: 10.3390/cancers13112638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary A subset of colorectal cancers (CRCs) is characterized by a mismatch repair deficiency that is frequently associated with microsatellite instability (MSI). The compromised DNA repair machinery leads to the accumulation of tumor neoantigens affecting the sensitivity of MSI metastatic CRC to immune checkpoint inhibitors (CPIs), both upfront and in later lines of treatment. However, up to 30% of MSI CRCs exhibit primary resistance to frontline immune based therapy, and an additional subset develops acquired resistance. Here, we first discuss the clinical and molecular features of MSI CRCs and then we review how the loss of antigenicity, immunogenicity, and a hostile tumor microenvironment could influence primary and acquired resistance to CPIs. Finally, we describe strategies to improve the outcome of MSI CRC patients upon CPI treatment. Abstract Immune checkpoint inhibitors (CPIs) represent an effective therapeutic strategy for several different types of solid tumors and are remarkably effective in mismatch repair deficient (MMRd) tumors, including colorectal cancer (CRC). The prevalent view is that the elevated and dynamic neoantigen burden associated with the mutator phenotype of MMRd fosters enhanced immune surveillance of these cancers. In addition, recent findings suggest that MMRd tumors have increased cytosolic DNA, which triggers the cGAS STING pathway, leading to interferon-mediated immune response. Unfortunately, approximately 30% of MMRd CRC exhibit primary resistance to CPIs, while a substantial fraction of tumors acquires resistance after an initial benefit. Profiling of clinical samples and preclinical studies suggests that alterations in the Wnt and the JAK-STAT signaling pathways are associated with refractoriness to CPIs. Intriguingly, mutations in the antigen presentation machinery, such as loss of MHC or Beta-2 microglobulin (B2M), are implicated in initial immune evasion but do not impair response to CPIs. In this review, we outline how understanding the mechanistic basis of immune evasion and CPI resistance in MMRd CRC provides the rationale for innovative strategies to increase the subset of patients benefiting from CPIs.
Collapse
|
50
|
Keshinro A, Vanderbilt C, Kim JK, Firat C, Chen CT, Yaeger R, Ganesh K, Segal NH, Gonen M, Shia J, Stadler Z, Weiser MR. Tumor-Infiltrating Lymphocytes, Tumor Mutational Burden, and Genetic Alterations in Microsatellite Unstable, Microsatellite Stable, or Mutant POLE/POLD1 Colon Cancer. JCO Precis Oncol 2021; 5:PO.20.00456. [PMID: 34250404 PMCID: PMC8232557 DOI: 10.1200/po.20.00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
To characterize the relationship between tumor-infiltrating lymphocytes (TIL), tumor mutational burden (TMB), and genetic alterations in microsatellite stable (MSS), microsatellite instability (MSI), or mutant POLE/POLD1 colon cancer. MATERIALS AND METHODS Four hundred ninety-nine resected stage I-III colon tumors treated between 2014 and 2019 were assessed for TIL; somatic mutations, copy number alterations, and structural changes in > 400 oncogenes; and MSI status. RESULTS Of the 499 tumors analyzed, 313 were MSS, 175 were MSI, and 11 had POLE/POLD1 pathogenic mutations. Both the percentage of tumors with a high level of TIL (≥ 4 lymphocytes per high-power field) and the median TMB differed significantly between the three phenotypes: MSS, 4.5% and 6 mutations/Mb; MSI, 68% and 54 mutations/Mb; POLE/POLD1, 82% and 158 mutations/Mb (P < .05). Within each phenotype, TMB did not vary significantly with TIL level. Among MSI tumors, the median number of frameshift indels was significantly higher in tumors with high levels of TIL (20 v 17; P = .018). In the MSS group, significantly higher proportions of tumors with high levels of TIL had mutations in the transforming growth factor-β (36% v 12%; P = .01), RAS (86% v 54%; P = .02), and Hippo (7% v 1%; P = .046) pathways; in contrast, TP53 alterations were associated with low levels of TIL (74% v 43%; P = .01). CONCLUSION The association between TIL, TMB, and genetic alterations varies significantly between MSI, MSS, and mutant POLE/POLD1 colon tumors. These differences may help explain tumoral immunity and lead to predictors of response to immunotherapy.
Collapse
Affiliation(s)
- Ajaratu Keshinro
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jin K. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chin-Tung Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neil H. Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin R. Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|