1
|
Lu Z, Yuan C, An X, Chen Z, Guo T, Liu J. Chromosome-level genome assembly of Guide Black-Fur sheep (Ovis aries). Sci Data 2024; 11:711. [PMID: 38951548 PMCID: PMC11217409 DOI: 10.1038/s41597-024-03564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Guide Black-Fur sheep (GD) is a breed of Tibetan sheep (Ovis aries) that lives in the Qinghai-Tibetan plateau region at an altitude of over 4,000 m. However, a lack of genomic information has made it difficult to understand the high-altitude adaptation of these sheep. We sequenced and assembled the GD reference genome using PacBio, Hi-C, and Illumina sequencing technologies. The final assembled genome size was 2.73 Gb, with a contig N50 of 20.30 Mb and a scaffold N50 of 107.63 Mb. The genome is predicted to contain 20,759 protein-coding genes, of which 98.42 have functional annotations. Repeat elements account for approximately 52.2% of the genomic landscape. The completeness of the GD genome assembly is highlighted by a BUSCO score of 93.1%. This high-quality genome assembly provides a critical resource for future molecular breeding and genetic improvement of Tibetan sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | | | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
2
|
Cheng H, Zhang Z, Wen J, Lenstra JA, Heller R, Cai Y, Guo Y, Li M, Li R, Li W, He S, Wang J, Shao J, Song Y, Zhang L, Billah M, Wang X, Liu M, Jiang Y. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet 2023; 19:e1010615. [PMID: 36821549 PMCID: PMC9949681 DOI: 10.1371/journal.pgen.1010615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenrong Li
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masum Billah
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
- * E-mail: (ML); (YJ)
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- * E-mail: (ML); (YJ)
| |
Collapse
|
3
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
4
|
Qiao G, Xu P, Guo T, Wu Y, Lu X, Zhang Q, He X, Zhu S, Zhao H, Lei Z, Sun W, Yang B, Yue Y. Genetic Basis of Dorper Sheep ( Ovis aries) Revealed by Long-Read De Novo Genome Assembly. Front Genet 2022; 13:846449. [PMID: 35480318 PMCID: PMC9035736 DOI: 10.3389/fgene.2022.846449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dorper sheep (Ovis aries) (DPS), developed in the 1930s by crossing Dorset Horn and Blackhead Persian sheep in South Africa, is a world-famous composite breed for mutton production. The genetic basis underlying this breed is yet to be elucidated. Here, we report the sequencing and assembly of a highly contiguous Dorper sheep genome via integration of Oxford Nanopore Technology (ONT) sequencing and Hi-C (chromatin conformation capture) approaches. The assembled genome was around 2.64 Gb with a contig N50 of 73.33 Mb and 140 contigs in total. More than 99.5% of the assembled sequences could be anchored to 27 chromosomes and they were annotated with 20,450 protein-coding genes. Allele-specific expression (ASE) genes of Dorper sheep were revealed through ASE analysis and they were involved in the immune system, lipid metabolism, and environmental adaptation. A total of 5,701 and 456 allelic sites were observed in the SNP and indels loci identified from relevant whole-genome resequencing data. These allelic SNP and INDEL sites were annotated in 1,002 and 294 genes, respectively. Moreover, we calculated the number of variant sites and related genes derived from the maternal and paternal ancestors, revealing the genetic basis of outstanding phenotypic performance of Dorper sheep. In conclusion, this study reports the first reference genome of Dorper sheep and reveals its genetic basis through ASE. This study also provides a pipeline for mining genetic information of composite breeds, which has an implication for future hybrid-breeding practices.
Collapse
Affiliation(s)
- Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Pan Xu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yi Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaofang Lu
- Tianjin Aoqun Animal Husbandry Pty., Ltd., Tianjin, China
- The Enterprises Key Laboratory of Tianjin Meat-Type-Sheep Genetics and Breeding, Tianjin, China
| | - Qingfeng Zhang
- Tianjin Aoqun Animal Husbandry Pty., Ltd., Tianjin, China
- The Enterprises Key Laboratory of Tianjin Meat-Type-Sheep Genetics and Breeding, Tianjin, China
| | - Xue He
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhihui Lei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weibo Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Prunier J, Carrier A, Gilbert I, Poisson W, Albert V, Taillon J, Bourret V, Côté SD, Droit A, Robert C. CNVs with adaptive potential in Rangifer tarandus: genome architecture and new annotated assembly. Life Sci Alliance 2021; 5:5/3/e202101207. [PMID: 34911809 PMCID: PMC8711850 DOI: 10.26508/lsa.202101207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
Rangifer tarandus has experienced recent drastic population size reductions throughout its circumpolar distribution and preserving the species implies genetic diversity conservation. To facilitate genomic studies of the species populations, we improved the genome assembly by combining long read and linked read and obtained a new highly accurate and contiguous genome assembly made of 13,994 scaffolds (L90 = 131 scaffolds). Using de novo transcriptome assembly of RNA-sequencing reads and similarity with annotated human gene sequences, 17,394 robust gene models were identified. As copy number variations (CNVs) likely play a role in adaptation, we additionally investigated these variations among 20 genomes representing three caribou ecotypes (migratory, boreal and mountain). A total of 1,698 large CNVs (length > 1 kb) showing a genome distribution including hotspots were identified. 43 large CNVs were particularly distinctive of the migratory and sedentary ecotypes and included genes annotated for functions likely related to the expected adaptations. This work includes the first publicly available annotation of the caribou genome and the first assembly allowing genome architecture analyses, including the likely adaptive CNVs reported here.
Collapse
Affiliation(s)
- Julien Prunier
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - William Poisson
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec, Quebec City, Canada
| | - Steeve D Côté
- Caribou Ungava, département de biologie, Faculté des Sciences et de Génie, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Canada
| |
Collapse
|
6
|
Santos SHD, Peery RM, Miller JM, Dao A, Lyu FH, Li X, Li MH, Coltman DW. Ancient hybridization patterns between bighorn and thinhorn sheep. Mol Ecol 2021; 30:6273-6288. [PMID: 34845798 DOI: 10.1111/mec.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Whole-genome sequencing has advanced the study of species evolution, including the detection of genealogical discordant events such as ancient hybridization and incomplete lineage sorting (ILS). The evolutionary history of bighorn (Ovis canadensis) and thinhorn (Ovis dalli) sheep present an ideal system to investigate evolutionary discordance due to their recent and rapid radiation and putative secondary contact between bighorn and thinhorn sheep subspecies, specifically the dark pelage Stone sheep (O. dalli stonei) and predominately white Dall sheep (O. dalli dalli), during the last ice age. Here, we used multiple genomes of bighorn and thinhorn sheep, together with snow (O. nivicola) and the domestic sheep (O. aries) as outgroups, to assess their phylogenomic history, potential introgression patterns and their adaptive consequences. Among the Pachyceriforms (snow, bighorn and thinhorn sheep) a consistent monophyletic species tree was retrieved; however, many genealogical discordance patterns were observed. Alternative phylogenies frequently placed Stone and bighorn as sister clades. This relationship occurred more often and was less divergent than that between Dall and bighorn. We also observed many blocks containing introgression signal between Stone and bighorn genomes in which coat colour genes were present. Introgression signals observed between Dall and bighorn were more random and less frequent, and therefore probably due to ILS or intermediary secondary contact. These results strongly suggest that Stone sheep originated from a complex series of events, characterized by multiple, ancient periods of secondary contact with bighorn sheep.
Collapse
Affiliation(s)
- Sarah H D Santos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rhiannon M Peery
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anh Dao
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Feng-Hua Lyu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Upadhyay M, Kunz E, Sandoval-Castellanos E, Hauser A, Krebs S, Graf A, Blum H, Dotsev A, Okhlopkov I, Shakhin A, Bagirov V, Brem G, Fries R, Zinovieva N, Medugorac I. Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Mol Ecol 2021; 30:6701-6717. [PMID: 34534381 DOI: 10.1111/mec.16184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Arsen Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | | | - Alexey Shakhin
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Vugar Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, VMU, Vienna, Austria
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Natalia Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Lamb HJ, Hayes BJ, Nguyen LT, Ross EM. The Future of Livestock Management: A Review of Real-Time Portable Sequencing Applied to Livestock. Genes (Basel) 2020; 11:E1478. [PMID: 33317066 PMCID: PMC7763041 DOI: 10.3390/genes11121478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Oxford Nanopore Technologies' MinION has proven to be a valuable tool within human and microbial genetics. Its capacity to produce long reads in real time has opened up unique applications for portable sequencing. Examples include tracking the recent African swine fever outbreak in China and providing a diagnostic tool for disease in the cassava plant in Eastern Africa. Here we review the current applications of Oxford Nanopore sequencing in livestock, then focus on proposed applications in livestock agriculture for rapid diagnostics, base modification detection, reference genome assembly and genomic prediction. In particular, we propose a future application: 'crush-side genotyping' for real-time on-farm genotyping for extensive industries such as northern Australian beef production. An initial in silico experiment to assess the feasibility of crush-side genotyping demonstrated promising results. SNPs were called from simulated Nanopore data, that included the relatively high base call error rate that is characteristic of the data, and calling parameters were varied to understand the feasibility of SNP calling at low coverages in a heterozygous population. With optimised genotype calling parameters, over 85% of the 10,000 simulated SNPs were able to be correctly called with coverages as low as 6×. These results provide preliminary evidence that Oxford Nanopore sequencing has potential to be used for real-time SNP genotyping in extensive livestock operations.
Collapse
Affiliation(s)
- Harrison J. Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4067, Australia; (B.J.H.); (L.T.N.); (E.M.R.)
| | | | | | | |
Collapse
|