1
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
2
|
Jiang H, Wang Y, Zhang G, Jia A, Wei Z, Wang Y. Identification and Evolutionary Analysis of the Widely Distributed CAP Superfamily in Spider Venom. Toxins (Basel) 2024; 16:240. [PMID: 38922134 PMCID: PMC11209345 DOI: 10.3390/toxins16060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, utilizing transcriptomic and genomic data, and highlighted their similarities and differences. We show that spiders have specific combinations of toxins for better predation and defense, typically comprising a core toxin expressed alongside several auxiliary toxins. Among them, the CAP superfamily is widely distributed and highly expressed in web-building Araneoidea spiders. Our analysis of evolutionary relationships revealed four subfamilies (subA-subD) of the CAP superfamily that differ in structure and potential functions. CAP proteins are composed of a conserved CAP domain and diverse C-terminal domains. CAP subC shares similar domains with the snake ion channel regulator svCRISP proteins, while CAP subD possesses a sequence similar to that of insect venom allergen 5 (Ag5). Furthermore, we show that gene duplication and selective expression lead to increased expression of CAP subD, making it a core member of the CAP superfamily. This study sheds light on the functional diversity of CAP subfamilies and their evolutionary history, which has important implications for fully understanding the composition of spider venom proteins and the core toxin components of web-building spiders.
Collapse
Affiliation(s)
- Hongcen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Yiru Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Guoqing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Anqiang Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Zhaoyuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (H.J.)
| |
Collapse
|
3
|
Miles LS, Waterman H, Ayoub NA, Garb JE, Haney RA, Rosenberg MS, Krabbenhoft TJ, Verrelli BC. Insight into the adaptive role of arachnid genome-wide duplication through chromosome-level genome assembly of the Western black widow spider. J Hered 2024; 115:241-252. [PMID: 38567866 DOI: 10.1093/jhered/esae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Although spiders are one of the most diverse groups of arthropods, the genetic architecture of their evolutionary adaptations is largely unknown. Specifically, ancient genome-wide duplication occurring during arachnid evolution ~450 mya resulted in a vast assembly of gene families, yet the extent to which selection has shaped this variation is understudied. To aid in comparative genome sequence analyses, we provide a chromosome-level genome of the Western black widow spider (Latrodectus hesperus)-a focus due to its silk properties, venom applications, and as a model for urban adaptation. We used long-read and Hi-C sequencing data, combined with transcriptomes, to assemble 14 chromosomes in a 1.46 Gb genome, with 38,393 genes annotated, and a BUSCO score of 95.3%. Our analyses identified high repetitive gene content and heterozygosity, consistent with other spider genomes, which has led to challenges in genome characterization. Our comparative evolutionary analyses of eight genomes available for species within the Araneoidea group (orb weavers and their descendants) identified 1,827 single-copy orthologs. Of these, 155 exhibit significant positive selection primarily associated with developmental genes, and with traits linked to sensory perception. These results support the hypothesis that several traits unique to spiders emerged from the adaptive evolution of ohnologs-or retained ancestrally duplicated genes-from ancient genome-wide duplication. These comparative spider genome analyses can serve as a model to understand how positive selection continually shapes ancestral duplications in generating novel traits today within and between diverse taxonomic groups.
Collapse
Affiliation(s)
- Lindsay S Miles
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, United States
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hannah Waterman
- Department of Biological Sciences and Research and Education in Energy, Environment, and Water Institute, University at Buffalo, Buffalo, NY, United States
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Robert A Haney
- Department of Biology, Ball State University, Muncie, IN, United States
| | - Michael S Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Trevor J Krabbenhoft
- Department of Biological Sciences and Research and Education in Energy, Environment, and Water Institute, University at Buffalo, Buffalo, NY, United States
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Yu N, Li J, Bao H, Zhang Y, Yang Z, Li F, Wang J, Liu Z. Chromosome-level genome of spider Pardosa pseudoannulata and cuticle protein genes in environmental stresses. Sci Data 2024; 11:121. [PMID: 38267470 PMCID: PMC10810088 DOI: 10.1038/s41597-024-02966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Spiders are representative arthropods of adaptive radiation. The high-quality genomes have only been reported in several web weaver spider species, leaving the wandering spiders' genomic information scarce. The pond wolf spider, Pardosa pseudoannulata, is a representative species in the retrolateral titial apophysis (RTA) clade. We present a chromosome-level P. pseusoannulata genome assembly of 2.42 Gb in size with a scaffold N50 of 169.99 Mb. Hi-C scaffolding assigns 94.83% of the bases to 15 pseudo-chromosomes. The repeats account for 52.79% of the assembly. The assembly includes 96.2% of the complete arthropod universal single-copy orthologs. Gene annotation predicted 24,530 protein-coding genes with a BUSCO score of 95.8% complete. We identified duplicate clusters of Hox genes and an expanded cuticle protein gene family with 243 genes. The expression patterns of CPR genes change in response to environmental stresses such as coldness and insecticide exposure. The high-quality P. pseudoannulata genome provides valuable information for functional and comparative studies in spiders.
Collapse
Affiliation(s)
- Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhiming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Fangfang Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
5
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Cerca J, Cotoras DD, Santander CG, Bieker VC, Hutchins L, Morin-Lagos J, Prada CF, Kennedy S, Krehenwinkel H, Rominger AJ, Meier J, Dimitrov D, Struck TH, Gillespie RG. Multiple paths toward repeated phenotypic evolution in the spiny-leg adaptive radiation (Tetragnatha; Hawai'i). Mol Ecol 2023; 32:4971-4985. [PMID: 37515430 DOI: 10.1111/mec.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The repeated evolution of phenotypes provides clear evidence for the role of natural selection in driving evolutionary change. However, the evolutionary origin of repeated phenotypes can be difficult to disentangle as it can arise from a combination of factors such as gene flow, shared ancestral polymorphisms or mutation. Here, we investigate the presence of these evolutionary processes in the Hawaiian spiny-leg Tetragnatha adaptive radiation, which includes four microhabitat-specialists or ecomorphs, with different body pigmentation and size (Green, Large Brown, Maroon, and Small Brown). We investigated the evolutionary history of this radiation using 76 newly generated low-coverage, whole-genome resequenced samples, along with phylogenetic and population genomic tools. Considering the Green ecomorph as the ancestral state, our results suggest that the Green ecomorph likely re-evolved once, the Large Brown and Maroon ecomorphs evolved twice and the Small Brown evolved three times. We found that the evolution of the Maroon and Small Brown ecomorphs likely involved ancestral hybridization events, while the Green and Large Brown ecomorphs likely evolved through novel mutations, despite a high rate of incomplete lineage sorting in the dataset. Our findings demonstrate that the repeated evolution of ecomorphs in the Hawaiian spiny-leg Tetragnatha is influenced by multiple evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California, USA
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, Oslo, Norway
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California, USA
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leke Hutchins
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California, USA
| | - Jaime Morin-Lagos
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Carlos F Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Tolima, Colombia
| | - Susan Kennedy
- Department of Biogeography, Trier University, Trier, Germany
| | | | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Joana Meier
- Department of Zoology, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Sanger Institute, Hinxton, UK
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Torsten H Struck
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, Oslo, Norway
| | - Rosemary G Gillespie
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Fan Z, Wang LY, Xiao L, Tan B, Luo B, Ren TY, Liu N, Zhang ZS, Bai M. Lampshade web spider Ectatosticta davidi chromosome-level genome assembly provides evidence for its phylogenetic position. Commun Biol 2023; 6:748. [PMID: 37463957 PMCID: PMC10354039 DOI: 10.1038/s42003-023-05129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
The spider of Ectatosticta davidi, belonging to the lamp-shade web spider family, Hypochilidae, which is closely related to Hypochilidae and Filistatidae and recovered as sister of the rest Araneomorphs spiders. Here we show the final assembled genome of E. davidi with 2.16 Gb in 15 chromosomes. Then we confirm the evolutionary position of Hypochilidae. Moreover, we find that the GMC gene family exhibit high conservation throughout the evolution of true spiders. We also find that the MaSp genes of E. davidi may represent an early stage of MaSp and MiSp genes in other true spiders, while CrSp shares a common origin with AgSp and PySp but differ from MaSp. Altogether, this study contributes to addressing the limited availability of genomic sequences from Hypochilidae spiders, and provides a valuable resource for investigating the genomic evolution of spiders.
Collapse
Affiliation(s)
- Zheng Fan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Lu-Yu Wang
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Lin Xiao
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Bing Tan
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Bin Luo
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Tian-Yu Ren
- School of Life Sciences, Southwest University, 400700, Chongqing, China
| | - Ning Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Zhi-Sheng Zhang
- School of Life Sciences, Southwest University, 400700, Chongqing, China.
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, 150040, Harbin, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Adams SA, Graham NR, Holmquist AJ, Sheffer MM, Steigerwald EC, Sahasrabudhe R, Nguyen O, Beraut E, Fairbairn C, Sacco S, Seligmann W, Escalona M, Shaffer HB, Toffelmier E, Gillespie RG. Reference genome of the long-jawed orb-weaver, Tetragnatha versicolor (Araneae: Tetragnathidae). J Hered 2023; 114:395-403. [PMID: 37042574 PMCID: PMC10287146 DOI: 10.1093/jhered/esad013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
Climate-driven changes in hydrological regimes are of global importance and are particularly significant in riparian ecosystems. Riparian ecosystems in California provide refuge to many native and vulnerable species within a xeric landscape. California Tetragnatha spiders play a key role in riparian ecosystems, serving as a link between terrestrial and aquatic elements. Their tight reliance on water paired with the widespread distributions of many species make them ideal candidates to better understand the relative role of waterways versus geographic distance in shaping the population structure of riparian species. To assist in better understanding population structure, we constructed a reference genome assembly for Tetragnatha versicolor using long-read sequencing, scaffolded with proximity ligation Omni-C data. The near-chromosome-level assembly is comprised of 174 scaffolds spanning 1.06 Gb pairs, with a scaffold N50 of 64.1 Mb pairs and BUSCO completeness of 97.6%. This reference genome will facilitate future study of T. versicolor population structure associated with the rapidly changing environment of California.
Collapse
Affiliation(s)
- Seira A Adams
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
| | - Natalie R Graham
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
| | - Anna J Holmquist
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
| | - Monica M Sheffer
- Department of Biology, University of Washington, Seattle, WA, United States
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Emma C Steigerwald
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, United States
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
- La Kretz Center for California Conservation Science, Institute for Environment and Sustainability, University of California, Los Angeles, CA, United States
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
- La Kretz Center for California Conservation Science, Institute for Environment and Sustainability, University of California, Los Angeles, CA, United States
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
| |
Collapse
|
9
|
Leal JL, Milesi P, Salojärvi J, Lascoux M. Phylogenetic Analysis of Allotetraploid Species Using Polarized Genomic Sequences. Syst Biol 2023; 72:372-390. [PMID: 36932679 PMCID: PMC10275558 DOI: 10.1093/sysbio/syad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/14/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Phylogenetic analysis of polyploid hybrid species has long posed a formidable challenge as it requires the ability to distinguish between alleles of different ancestral origins in order to disentangle their individual evolutionary history. This problem has been previously addressed by conceiving phylogenies as reticulate networks, using a two-step phasing strategy that first identifies and segregates homoeologous loci and then, during a second phasing step, assigns each gene copy to one of the subgenomes of an allopolyploid species. Here, we propose an alternative approach, one that preserves the core idea behind phasing-to produce separate nucleotide sequences that capture the reticulate evolutionary history of a polyploid-while vastly simplifying its implementation by reducing a complex multistage procedure to a single phasing step. While most current methods used for phylogenetic reconstruction of polyploid species require sequencing reads to be pre-phased using experimental or computational methods-usually an expensive, complex, and/or time-consuming endeavor-phasing executed using our algorithm is performed directly on the multiple-sequence alignment (MSA), a key change that allows for the simultaneous segregation and sorting of gene copies. We introduce the concept of genomic polarization that, when applied to an allopolyploid species, produces nucleotide sequences that capture the fraction of a polyploid genome that deviates from that of a reference sequence, usually one of the other species present in the MSA. We show that if the reference sequence is one of the parental species, the polarized polyploid sequence has a close resemblance (high pairwise sequence identity) to the second parental species. This knowledge is harnessed to build a new heuristic algorithm where, by replacing the allopolyploid genomic sequence in the MSA by its polarized version, it is possible to identify the phylogenetic position of the polyploid's ancestral parents in an iterative process. The proposed methodology can be used with long-read and short-read high-throughput sequencing data and requires only one representative individual for each species to be included in the phylogenetic analysis. In its current form, it can be used in the analysis of phylogenies containing tetraploid and diploid species. We test the newly developed method extensively using simulated data in order to evaluate its accuracy. We show empirically that the use of polarized genomic sequences allows for the correct identification of both parental species of an allotetraploid with up to 97% certainty in phylogenies with moderate levels of incomplete lineage sorting (ILS) and 87% in phylogenies containing high levels of ILS. We then apply the polarization protocol to reconstruct the reticulate histories of Arabidopsis kamchatica and Arabidopsis suecica, two allopolyploids whose ancestry has been well documented. [Allopolyploidy; Arabidopsis; genomic polarization; homoeologs; incomplete lineage sorting; phasing; polyploid phylogenetics; reticulate evolution.].
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
10
|
Cerca J, Cotoras DD, Bieker VC, De-Kayne R, Vargas P, Fernández-Mazuecos M, López-Delgado J, White O, Stervander M, Geneva AJ, Guevara Andino JE, Meier JI, Roeble L, Brée B, Patiño J, Guayasamin JM, Torres MDL, Valdebenito H, Castañeda MDR, Chaves JA, Díaz PJ, Valente L, Knope ML, Price JP, Rieseberg LH, Baldwin BG, Emerson BC, Rivas-Torres G, Gillespie R, Martin MD. Evolutionary genomics of oceanic island radiations. Trends Ecol Evol 2023:S0169-5347(23)00032-0. [PMID: 36870806 DOI: 10.1016/j.tree.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pablo Vargas
- Biodiversity and Conservation, Real Jardín Botánico, 28014 Madrid, Spain
| | - Mario Fernández-Mazuecos
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Calle Darwin 2, 28049 Madrid, Spain
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Oliver White
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin Stervander
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Joana Isabel Meier
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Baptiste Brée
- Université de Pau et des Pays de l'Adour (UPPA), Energy Environment Solutions (E2S), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), 64000 Pau, France
| | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Calle Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - María de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - Hugo Valdebenito
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador; Herbarium of Economic Botany of Ecuador (Herabario QUSF), Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador
| | | | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA; Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Matthew L Knope
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Jonathan P Price
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Baldwin
- Jepson Herbarium and Department of Integrative Biology, 1001 Valley Life Sciences Building 2465, University of California, Berkeley, CA 94720-2465, USA
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Spain
| | - Gonzalo Rivas-Torres
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Miller J, Zimin AV, Gordus A. Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus. Gigascience 2022; 12:giad002. [PMID: 36762707 PMCID: PMC9912274 DOI: 10.1093/gigascience/giad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
The orb web is a remarkable example of animal architecture that is observed in families of spiders that diverged over 200 million years ago. While several genomes exist for araneid orb-weavers, none exist for other orb-weaving families, hampering efforts to investigate the genetic basis of this complex behavior. Here we present a chromosome-level genome assembly for the cribellate orb-weaving spider Uloborus diversus. The assembly reinforces evidence of an ancient arachnid genome duplication and identifies complete open reading frames for every class of spidroin gene, which encode the proteins that are the key structural components of spider silks. We identified the 2 X chromosomes for U. diversus and identify candidate sex-determining loci. This chromosome-level assembly will be a valuable resource for evolutionary research into the origins of orb-weaving, spidroin evolution, chromosomal rearrangement, and chromosomal sex determination in spiders.
Collapse
Affiliation(s)
- Jeremiah Miller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Rapid molecular diversification and homogenization of clustered major ampullate silk genes in Argiope garden spiders. PLoS Genet 2022; 18:e1010537. [PMID: 36508456 PMCID: PMC9779670 DOI: 10.1371/journal.pgen.1010537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.
Collapse
|
13
|
Yu N, Yang Z, Fan Z, Liu Z. Classification and functional characterization of spidroin genes in a wandering spider, Pardosa pseudoannulata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103862. [PMID: 36328175 DOI: 10.1016/j.ibmb.2022.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Spiders impress us with their sophisticated use of silk and the stunningly distinct silk proteins (spidroins) in each spider species. Understanding how silks and spidroins function and evolve within the spider world is one profound interest to expand our knowledge on spider evolution. Spidroins are characterized with the divergent repeat core region flanked with the relatively conserved N- and C-terminus. The structure and number of the repeats contribute to the unique mechanical properties of the spidroin and the silk. Spidroins have been intensively studied in web-weaver spiders, but information regarding their diversity in wandering spiders remains scarce. Here, twenty spidroin genes were identified in the pond wolf spider, Pardosa pseudoannulata, belonging to the retrolateral tibial apophysis (RTA) clade. These spidroins were categorized into four classes, including twelve ampullate spidroin (AmpSp), four aciniform spidroin (AcSp), one tubuliform spidroin (TuSp), one pyriform spidroin (PiSp), and two spidroin-like proteins. Multiple copies of the AmpSp and AcSp genes were tandemly arranged in a cluster within the genome, and the N-terminal domains and repetitive sequences of the proximately located spidroins were highly similar, suggesting that the spidroin genes diversified via tandem duplication. Only four types of morphologically distinct silk glands were found in P. pseudoannulata, namely Ma, Mi, Ac, and Pi glands, consistent with the glandular affiliation hypothesis that spidroins co-evolved with glandular specialization to fit species-specific needs. Expression profiling revealed that the single tubuliform spidroin (TuSp) gene was highly expressed in gravid females and two AcSp genes displayed synchronous expression. Knock-down of the TuSp gene via RNAi resulted in fragile and cracked eggsacs and prolonged the female pre-oviposition period, validating its importance in spider reproduction. The genome-scale characterization and functional study of spidroin genes allows associating the presence of specific spidroins with silk utility in P. pseudoannulata and will expand our knowledge of spider evolution.
Collapse
Affiliation(s)
- Na Yu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhiming Yang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zheng Fan
- School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
14
|
Cerca J, Petersen B, Lazaro-Guevara JM, Rivera-Colón A, Birkeland S, Vizueta J, Li S, Li Q, Loureiro J, Kosawang C, Díaz PJ, Rivas-Torres G, Fernández-Mazuecos M, Vargas P, McCauley RA, Petersen G, Santos-Bay L, Wales N, Catchen JM, Machado D, Nowak MD, Suh A, Sinha NR, Nielsen LR, Seberg O, Gilbert MTP, Leebens-Mack JH, Rieseberg LH, Martin MD. The genomic basis of the plant island syndrome in Darwin's giant daisies. Nat Commun 2022; 13:3729. [PMID: 35764640 PMCID: PMC9240058 DOI: 10.1038/s41467-022-31280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the ‘plant island syndrome’, include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin’s giant daisies. Many island plant species share a syndrome of characteristic phenotype and life history. Cerca et al. find the genomic basis of the plant island syndrome in one of Darwin’s giant daisies, while separating ancestral genomes in a chromosome-resolved polyploid assembly.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Bent Petersen
- Centre for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark.,Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - José Miguel Lazaro-Guevara
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Angel Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Siri Birkeland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Joel Vizueta
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Siyu Li
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Qionghou Li
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-095, Coimbra, Portugal
| | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador.,Department of Botany and Plant Physiology, University of Malaga, Malaga, Spain
| | - Gonzalo Rivas-Torres
- Colegio de Ciencias Biológicas y Ambientales COCIBA & Extensión Galápagos, Universidad San Francisco de Quito USFQ, Quito, 170901, Ecuador.,Galapagos Science Center, USFQ, UNC Chapel Hill, San Cristobal, Galapagos, Ecuador.,Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Courtesy Faculty, Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | | | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Ross A McCauley
- Department of Biology, Fort Lewis College, Durango, CO, 81301, USA
| | - Gitte Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Luisa Santos-Bay
- Centre for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | - Nathan Wales
- Department of Archaeology, University of York, York, UK
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel Machado
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TU, Norwich, UK.,Department of Organismal Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, 75236, Uppsala, Sweden
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Ole Seberg
- The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|