1
|
Chang Y, Rochon D, Sekimoto S, Wang Y, Chovatia M, Sandor L, Salamov A, Grigoriev IV, Stajich JE, Spatafora JW. Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi. Sci Rep 2021; 11:3217. [PMID: 33547391 PMCID: PMC7865070 DOI: 10.1038/s41598-021-82607-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
The zoosporic obligate endoparasites, Olpidium, hold a pivotal position to the reconstruction of the flagellum loss in fungi, one of the key morphological transitions associated with the colonization of land by the early fungi. We generated genome and transcriptome data from non-axenic zoospores of Olpidium bornovanus and used a metagenome approach to extract phylogenetically informative fungal markers. Our phylogenetic reconstruction strongly supported Olpidium as the closest zoosporic relative of the non-flagellated terrestrial fungi. Super-alignment analyses resolved Olpidium as sister to the non-flagellated terrestrial fungi, whereas a super-tree approach recovered different placements of Olpidium, but without strong support. Further investigations detected little conflicting signal among the sampled markers but revealed a potential polytomy in early fungal evolution associated with the branching order among Olpidium, Zoopagomycota and Mucoromycota. The branches defining the evolutionary relationships of these lineages were characterized by short branch lengths and low phylogenetic content and received equivocal support for alternative phylogenetic hypotheses from individual markers. These nodes were marked by important morphological innovations, including the transition to hyphal growth and the loss of flagellum, which enabled early fungi to explore new niches and resulted in rapid and temporally concurrent Precambrian diversifications of the ancestors of several phyla of fungi.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Oregon, USA.
| | - D'Ann Rochon
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC, Canada
| | - Satoshi Sekimoto
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Research and Development Center, Mitsubishi-Chemical Foods Corporation, Yokohama, Japan
| | - Yan Wang
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Mansi Chovatia
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Laura Sandor
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Oregon, USA
| |
Collapse
|
2
|
Biganski S, Wennmann JT, Vossbrinck CR, Kaur R, Jehle JA, Kleespies RG. Molecular and morphological characterisation of a novel microsporidian species, Tubulinosema suzukii, infecting Drosophila suzukii (Diptera: Drosophilidae). J Invertebr Pathol 2020; 174:107440. [DOI: 10.1016/j.jip.2020.107440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
|
3
|
Min B, Park JH, Park H, Shin HD, Choi IG. Genome Analysis of a Zygomycete Fungus Choanephora cucurbitarum Elucidates Necrotrophic Features Including Bacterial Genes Related to Plant Colonization. Sci Rep 2017; 7:40432. [PMID: 28091548 PMCID: PMC5238444 DOI: 10.1038/srep40432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022] Open
Abstract
A zygomycete fungus, Choanephora cucurbitarum is a plant pathogen that causes blossom rot in cucurbits and other plants. Here we report the genome sequence of Choanephora cucurbitarum KUS-F28377 isolated from squash. The assembled genome has a size of 29.1 Mbp and 11,977 protein-coding genes. The genome analysis indicated that C. cucurbitarum may employ a plant pathogenic mechanism similar to that of bacterial plant pathogens. The genome contained 11 genes with a Streptomyces subtilisin inhibitor-like domain, which plays an important role in the defense against plant immunity. This domain has been found only in bacterial genomes. Carbohydrate active enzyme analysis detected 312 CAZymes in this genome where carbohydrate esterase family 6, rarely found in dikaryotic fungal genomes, was comparatively enriched. The comparative genome analysis showed that the genes related to sexual communication such as the biosynthesis of β-carotene and trisporic acid were conserved and diverged during the evolution of zygomycete genomes. Overall, these findings will help us to understand how zygomycetes are associated with plants.
Collapse
Affiliation(s)
- Byoungnam Min
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ji-Hyun Park
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hongjae Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyeon-Dong Shin
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Karácsony Z, Gácser A, Vágvölgyi C, Scazzocchio C, Hamari Z. A dually located multi-HMG-box protein of Aspergillus nidulans has a crucial role in conidial and ascospore germination. Mol Microbiol 2014; 94:383-402. [PMID: 25156107 DOI: 10.1111/mmi.12772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 11/28/2022]
Abstract
Seven HMG-box proteins of Aspergillus nidulans have been identified in the genomic databases. Three of these have the characteristics of non-specific DNA-binding proteins. One of these, AN1267 (HmbB), comprises one canonical HMG-box in its C-terminus and upstream of the canonical box two structurally related boxes, to be called Shadow-HMG-boxes. This protein defines, together with the Podospora anserina mtHMG1, a clade of proteins present in the Pezizomycotina, with orthologues in some of the Taphrinomycotina. HmbB localizes primarily to the mitochondria but occasionally in nuclei. The deletion of the cognate gene results in a number of pleiotropic effects, including those on hyphal morphology, sensitivity to oxidative stress, absence of sterigmatocystin production and changes in the profile of conidial metabolites. The most striking phenotype of deletion strains is a dramatic decrease in conidial and ascospore viability. We show that this is most likely due to the protein being essential to maintain mitochondrial DNA in spores.
Collapse
Affiliation(s)
- Zoltán Karácsony
- University of Szeged Faculty of Sciences and Informatics, Department of Microbiology, H-6726, Szeged, Közép fasor 52, Hungary
| | | | | | | | | |
Collapse
|
5
|
Xiang H, Zhang R, De Koeyer D, Pan G, Li T, Liu T, Zhou Z. New evidence on the relationship between Microsporidia and Fungi: a genome-wide analysis by DarkHorse software. Can J Microbiol 2014; 60:557-68. [DOI: 10.1139/cjm-2014-0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microsporidia are a group of obligate intracellular eukaryotic parasites that infect a wide variety of species, including humans. Phylogenetic analysis indicates a relationship between the Microsporidia and the Fungi. However, most results are based on the analysis of relatively few genes. DarkHorse analysis involves the transformation of BLAST results into a lineage probability index (LPI) value and allows for the comparison of genes for an entire genome with those of other genomes. Thus, we can see which genes from the microsporidia score most closely based on the LPI with other eukaryotic organisms. In this analysis, we calculated the LPI for each gene from the genomes of 7 Microsporidia, Antonospora locustae, Enterocytozoon bieneusi, Encephalitozoon cuniculi, Encephalitozoon intestinalis, Nosema bombycis, Nosema ceranae, and Nematocida parisii, to analyze the genetic relationships between Microsporidia and other species. It was found that many (91%) genes were most closely correlated with genes from other microsporidial genomes and had the highest mean LPI (0.985), indicating a monophyletic origin of the Microsporidia. In a subsequent analysis, we excluded the other Microsporidia from the analysis to look for relationships before the divergence of Microsporidia, and found that 43% of the microsporidial genes scored highest with fungal genes, and a higher mean LPI was found with Fungi than with other kingdoms, suggesting that Microsporidia is closely related to Fungi at the genomic level. Microsporidial genes were functionally clustered based on the KOG (Eukaryotic COG) database, and the possible lineages for each gene family were discussed in concert with the DarkHorse results.
Collapse
Affiliation(s)
- Heng Xiang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, People’s Republic of China
- Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Ruizhi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing 400715, People’s Republic of China
| | - David De Koeyer
- Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, People’s Republic of China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, People’s Republic of China
| | - Tie Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, People’s Republic of China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing 400715, People’s Republic of China
| |
Collapse
|
6
|
Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller KD, Michel R. Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 2014; 113:1909-18. [DOI: 10.1007/s00436-014-3838-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/24/2014] [Indexed: 12/28/2022]
|
7
|
Halary S, Daubois L, Terrat Y, Ellenberger S, Wöstemeyer J, Hijri M. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont. PLoS One 2013; 8:e80729. [PMID: 24260466 PMCID: PMC3834313 DOI: 10.1371/journal.pone.0080729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/05/2013] [Indexed: 12/15/2022] Open
Abstract
The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.
Collapse
Affiliation(s)
- Sébastien Halary
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Laurence Daubois
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Yves Terrat
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| | - Sabrina Ellenberger
- Institute of General Microbiology and Microbe Genetics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Johannes Wöstemeyer
- Institute of General Microbiology and Microbe Genetics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Dang X, Pan G, Li T, Lin L, Ma Q, Geng L, He Y, Zhou Z. Characterization of a subtilisin-like protease with apical localization from microsporidian Nosema bombycis. J Invertebr Pathol 2013. [DOI: 10.1016/j.jip.2012.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Torres G, Izquierdo F, Capó V, López LX, López MC, Limonta D, Fenoy S, Del Águila C, Bornay-Llinares FJ. Genital microsporidiosis in women with AIDS: A post-mortem study. Rev Iberoam Micol 2013; 30:47-50. [DOI: 10.1016/j.riam.2012.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 04/02/2012] [Accepted: 04/19/2012] [Indexed: 11/16/2022] Open
|
10
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
11
|
The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 2012; 8:e1002979. [PMID: 23133373 PMCID: PMC3486916 DOI: 10.1371/journal.ppat.1002979] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. Microsporidians are enormously successful obligate intracellular parasites of animals, including humans. Despite their economic and medical importance, there are major gaps in our understanding of how microsporidians have made the transition from a free-living organism to one that can only complete its life cycle by living inside another cell. We present the larger genome of Trachipleistophora hominis isolated from a human patient with HIV/AIDS. Our analyses provide insights into the gene content, genome architecture and intergenic regions of a known opportunistic pathogen, and will facilitate the development of T. hominis as a much-needed model species that can also be grown in co-culture. The genome of T. hominis has more genes than other microsporidians, it has diverse regulatory motifs, and it contains a variety of transposable elements coupled with the machinery for RNA interference, which may eventually allow experimental down-regulation of T. hominis genes. Comparison of the genome of T. hominis with other microsporidians allowed us to infer properties of their common ancestor. Our analyses predict an ancestral microsporidian that was already an intracellular parasite with a reduced core proteome but one with a relatively large genome populated with diverse repetitive elements and a complex transcriptional regulatory network.
Collapse
|
12
|
Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 2012; 10:47. [PMID: 22651672 PMCID: PMC3586952 DOI: 10.1186/1741-7007-10-47] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsporidia is one of the taxa that have experienced the most dramatic taxonomic reclassifications. Once thought to be among the earliest diverging eukaryotes, the fungal nature of this group of intracellular pathogens is now widely accepted. However, the specific position of microsporidia within the fungal tree of life is still debated. Due to the presence of accelerated evolutionary rates, phylogenetic analyses involving microsporidia are prone to methodological artifacts, such as long-branch attraction, especially when taxon sampling is limited. RESULTS Here we exploit the recent availability of six complete microsporidian genomes to re-assess the long-standing question of their phylogenetic position. We show that microsporidians have a similar low level of conservation of gene neighborhood with other groups of fungi when controlling for the confounding effects of recent segmental duplications. A combined analysis of thousands of gene trees supports a topology in which microsporidia is a sister group to all other sequenced fungi. Moreover, this topology received increased support when less informative trees were discarded. This position of microsporidia was also strongly supported based on the combined analysis of 53 concatenated genes, and was robust to filters controlling for rate heterogeneity, compositional bias, long branch attraction and heterotachy. CONCLUSIONS Altogether, our data strongly support a scenario in which microsporidia is the earliest-diverging clade of sequenced fungi.
Collapse
Affiliation(s)
- Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme. Centre for Genomic Regulation (CRG) and UPF. Doctor Aiguader, 88. 08003 Barcelona, Spain
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme. Centre for Genomic Regulation (CRG) and UPF. Doctor Aiguader, 88. 08003 Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme. Centre for Genomic Regulation (CRG) and UPF. Doctor Aiguader, 88. 08003 Barcelona, Spain
| |
Collapse
|
13
|
Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia 2011; 16:357-72. [PMID: 21968538 PMCID: PMC3208832 DOI: 10.1007/s10911-011-9236-y] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/21/2011] [Indexed: 11/30/2022] Open
Abstract
Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.
Collapse
Affiliation(s)
- Ruth N Zadoks
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK.
| | | | | | | | | |
Collapse
|
14
|
Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothe E, Voigt K, von Haeseler A. A consistent phylogenetic backbone for the fungi. Mol Biol Evol 2011; 29:1319-34. [PMID: 22114356 PMCID: PMC3339314 DOI: 10.1093/molbev/msr285] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses.
Collapse
Affiliation(s)
- Ingo Ebersberger
- Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University of Vienna, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML. A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 2011; 11:331. [PMID: 22085768 PMCID: PMC3247622 DOI: 10.1186/1471-2148-11-331] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 11/15/2011] [Indexed: 01/02/2023] Open
Abstract
Background From a common ancestor with animals, the earliest fungi inherited flagellated zoospores for dispersal in water. Terrestrial fungi lost all flagellated stages and reproduce instead with nonmotile spores. Olpidium virulentus (= Olpidium brassicae), a unicellular fungus parasitizing vascular plant root cells, seemed anomalous. Although Olpidium produces zoospores, in previous phylogenetic studies it appeared nested among the terrestrial fungi. Its position was based mainly on ribosomal gene sequences and was not strongly supported. Our goal in this study was to use amino acid sequences from four genes to reconstruct the branching order of the early-diverging fungi with particular emphasis on the position of Olpidium. Results We concatenated sequences from the Ef-2, RPB1, RPB2 and actin loci for maximum likelihood and Bayesian analyses. In the resulting trees, Olpidium virulentus, O. bornovanus and non-flagellated terrestrial fungi formed a strongly supported clade. Topology tests rejected monophyly of the Olpidium species with any other clades of flagellated fungi. Placing Olpidium at the base of terrestrial fungi was also rejected. Within the terrestrial fungi, Olpidium formed a monophyletic group with the taxa traditionally classified in the phylum Zygomycota. Within Zygomycota, Mucoromycotina was robustly monophyletic. Although without bootstrap support, Monoblepharidomycetes, a small class of zoosporic fungi, diverged from the basal node in Fungi. The zoosporic phylum Blastocladiomycota appeared as the sister group to the terrestrial fungi plus Olpidium. Conclusions This study provides strong support for Olpidium as the closest living flagellated relative of the terrestrial fungi. Appearing nested among hyphal fungi, Olpidium's unicellular thallus may have been derived from ancestral hyphae. Early in their evolution, terrestrial hyphal fungi may have reproduced with zoospores.
Collapse
Affiliation(s)
- Satoshi Sekimoto
- Department of Botany, 3529-6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada.
| | | | | | | | | |
Collapse
|
16
|
Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol 2011; 90:41-57. [PMID: 21336930 DOI: 10.1007/s00253-011-3143-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 12/12/2022]
Abstract
The goal of modern taxonomy is to understand the relationships of living organisms in terms of evolutionary descent. Thereby, the relationships between living organisms are understood in terms of nested clades--every time a speciation event takes place, two new clades are produced. Life comprises three domains of living organisms, these are the Bacteria, the Archaea and the Eukaryota. Within the eukaryotic domain, the fungi form a monophyletic group of the eukaryotic crown group and are thus high up in the evolutionary hierarchy of life. Fungus-like organisms possess certain morphological features of fungi, such as the hyphal organization of the Oomycota or the spores and reproductive structures inside a fructification of plasmodiophorids (Plasmodiophoromycota) and slime moulds (Mycetozoa). The first group are algae which secondarily lost their plastids during evolution and contain cellulose in their cell walls. Both osmotrophic phyla, the Oomycota and the Plasmidiophoromycota belong to the Chromista and Rhizaria, respectively, whereas the last group, the cellular and plasmodial slime moulds (Mycetozoa) are phagotrophic amoeboid protists belonging to the Amoebozoa. These fungus-like organisms are not considered further in this review. The Fungi sensu stricto comprise a heterogenous, often inconspicuous group of microorganisms which (1) are primarily heterotrophic with an (2) osmotrophic style of nutrition containing (3) chitin and its derivatives in the cell wall. This review discusses species concepts and current strategies in fungal taxonomy, phylogenetic affiliations of miscellaneous fungus-like groups like the microsporidia, perspectives of fungal nomenclature, and their impact on natural product research.
Collapse
|