1
|
Li Z, Ran Z, Xiao X, Yan C, Xu J, Tang M, An M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC PLANT BIOLOGY 2024; 24:955. [PMID: 39395971 PMCID: PMC11475203 DOI: 10.1186/s12870-024-05673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Collapse
Affiliation(s)
- Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jian Xu
- Guizhou Botanical Garden, Guiyang, 550000, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Kubota K, Oishi M, Taniguchi E, Akazawa A, Matsui K, Kitazaki K, Toyoda A, Toh H, Matsuhira H, Kuroda Y, Kubo T. Mitochondrial phylogeny and distribution of cytoplasmic male sterility-associated genes in Beta vulgaris. PLoS One 2024; 19:e0308551. [PMID: 39331563 PMCID: PMC11432856 DOI: 10.1371/journal.pone.0308551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 09/29/2024] Open
Abstract
Cytoplasmic male sterility (CMS) is a mitochondrial-encoded trait that confers reproductive defects in males but not in females or any vegetative function. Why CMS is so often found in plants should be investigated from the viewpoint of mitochondrial phylogeny. Beta vulgaris, including the wild subspecies maritima and cultivated subspecies vulgaris (e.g., sugar beet), is known to be mitochondrially polymorphic, from which multiple CMS mitochondria have been found, but their evolutionary relationship has been obscure. We first refined the B. vulgaris reference mitochondrial genome to conduct a more accurate phylogenetic study. We identified mitochondrial single-nucleotide polymorphic sites from 600 B. vulgaris accessions. Principal component analysis, hierarchical clustering analysis, and creation of a phylogenetic tree consistently suggested that B. vulgaris mitochondria can be classified into several groups whose geographical distribution tends to be biased toward either the Atlantic or Mediterranean coasts. We examined the distribution of CMS-associated mitochondrial genes from Owen, E- and G-type CMS mitochondria. About one-third of cultivated beets had Owen-type CMS, which reflects the prevalence of using Owen-type CMS in hybrid breeding. Occurrence frequencies for each of the three CMS genes in wild beet were less than 4%. CMS genes were tightly associated with specific mitochondrial groups that are phylogenetically distinct, suggesting their independent origin. However, homologous sequences of the Owen type CMS gene occurred in several different mitochondrial groups, for which an intricate explanation is necessary. Whereas the origin of cultivated beet had been presumed to be Greece, we found an absence of Owen-type mitochondria in Greek accessions.
Collapse
Affiliation(s)
- Keishi Kubota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mion Oishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Eigo Taniguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Katsunori Matsui
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Hidehiro Toh
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Liu Y, Sun H, Ye R, Du J, Zhang H, Zhou A, Qiao K, Wang J. Potential candidate genes and pathways related to cytoplasmic male sterility in Dianthus spiculifolius as revealed by transcriptome analysis. PLANT CELL REPORTS 2023; 42:1503-1516. [PMID: 37452219 DOI: 10.1007/s00299-023-03045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
KEY MESSAGE We introduced the candidate gene DsHSP70 into Arabidopsis thaliana, resulting in male gametophyte sterility and abnormal degeneration of sepals and petals. Cytoplasmic male sterility (CMS) is a useful tool for hybrid production. However, the regulatory mechanism of CMS in Dianthus spiculifolius remains unclear. In this study, we investigated whether male-sterile line of D. spiculifolius has a malformed tapetum and fails to produce normal fertile pollen. RNA sequencing technology was used to compare the gene expression patterns of the D. spiculifolius male-sterile line and its male fertility maintainer line during anther development. A total of 12,365 differentially expressed genes (DEGs) were identified, among which 1765 were commonly expressed in the S1, S2 and S3 stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these DEGs were mainly involved in oxidation-reduction processes, signal transduction and programmed cell death. Additionally, weighted correlation network analysis (WGCNA) showed that three modules may be related to male sterility. A putative regulatory pathway for the male sterility traits was constructed based on the reproductive development network. After introducing the candidate DsHSP70 gene into Arabidopsis thaliana, we found that overexpressing plants showed anther abortion and shorter filaments, and accompanied by abnormal degeneration of sepals and petals. In summary, our results identified potential candidate genes and pathways related to CMS in D. spiculifolius, providing new insights for further research on the mechanism of male sterility.
Collapse
Affiliation(s)
- Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Han Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Ye
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinxue Du
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Sun Z, Wu Y, Fan P, Guo D, Zhang S, Song C. Assembly and analysis of the mitochondrial genome of Prunella vulgaris. FRONTIERS IN PLANT SCIENCE 2023; 14:1237822. [PMID: 37600185 PMCID: PMC10433383 DOI: 10.3389/fpls.2023.1237822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Prunella vulgaris (Lamiaceae) is widely distributed in Eurasia. Former studies have demonstrated that P. vulgaris has a wide range of pharmacological effects. Nevertheless, no complete P. vulgaris mitochondrial genome has been reported, which limits further understanding of the biology of P. vulgaris. Here, we assembled the first complete mitochondrial genome of P. vulgaris using a hybrid assembly strategy based on sequencing data from both Nanopore and Illumina platforms. Then, the mitochondrial genome of P. vulgaris was analyzed comprehensively in terms of gene content, codon preference, intercellular gene transfer, phylogeny, and RNA editing. The mitochondrial genome of P. vulgaris has two circular structures. It has a total length of 297, 777 bp, a GC content of 43.92%, and 29 unique protein-coding genes (PCGs). There are 76 simple sequence repeats (SSRs) in the mitochondrial genome, of which tetrameric accounts for a large percentage (43.4%). A comparative analysis between the mitochondrial and chloroplast genomes revealed that 36 homologous fragments exist in them, with a total length of 28, 895 bp. The phylogenetic analysis showed that P. vulgaris belongs to the Lamiales family Lamiaceae and P. vulgaris is closely related to Salvia miltiorrhiza. In addition, the mitochondrial genome sequences of seven species of Lamiaceae are unconservative in their alignments and undergo frequent genome reorganization. This work reports for the first time the complete mitochondrial genome of P. vulgaris, which provides useful genetic information for further Prunella studies.
Collapse
Affiliation(s)
- Zhihao Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Wu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengyu Fan
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei, China
| | - Dengli Guo
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Fan W, Liu F, Jia Q, Du H, Chen W, Ruan J, Lei J, Li DZ, Mower JP, Zhu A. Fragaria mitogenomes evolve rapidly in structure but slowly in sequence and incur frequent multinucleotide mutations mediated by microinversions. THE NEW PHYTOLOGIST 2022; 236:745-759. [PMID: 35731093 DOI: 10.1111/nph.18334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plant mitochondrial DNA has been described as evolving rapidly in structure but slowly in sequence. However, many of the noncoding portions of plant mitogenomes are not homologous among species, raising questions about the rate and spectrum of mutations in noncoding regions. Recent studies have suggested that the lack of homology in noncoding regions could be due to increased sequence divergence. We compared 30 kb of coding and 200 kb of noncoding DNA from 13 sequenced Fragaria mitogenomes, followed by analysis of the rate of sequence divergence, microinversion events and structural variations. Substitution rates in synonymous sites and nongenic sites are nearly identical, suggesting that the genome-wide point mutation rate is generally consistent. A surprisingly high number of large multinucleotide substitutions were detected in Fragaria mitogenomes, which may have resulted from microinversion events and could affect phylogenetic signal and local rate estimates. Fragaria mitogenomes preferentially accumulate deletions relative to insertions and substantial genomic arrangements, whereas mutation rates could positively associate with these sequence and structural changes among species. Together, these observations suggest that plant mitogenomes exhibit low point mutations genome-wide but exceptionally high structural variations, and our results favour a gain-and-loss model for the rapid loss of homology among plant mitogenomes.
Collapse
Affiliation(s)
- Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoya Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
7
|
Zhong Y, Yu R, Chen J, Liu Y, Zhou R. Highly active repeat-mediated recombination in the mitogenome of the holoparasitic plant Aeginetia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:988368. [PMID: 36212306 PMCID: PMC9532969 DOI: 10.3389/fpls.2022.988368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mitogenomes of most flowering plants evolve slowly in sequence, but rapidly in structure. The rearrangements in structure are mainly caused by repeat-mediated recombination. However, patterns of repeat-mediated recombination vary substantially among plants, and to provide a comprehensive picture, characterization of repeat-mediated recombination should extend to more plant species, including parasitic plants with a distinct heterotrophic lifestyle. Here we assembled the mitogenome of the holoparasitic plant Aeginetia indica (Orobanchaceae) using Illumina sequencing reads. The mitogenome was assembled into a circular chromosome of 420,362 bp, 18,734 bp longer than that of another individual of A. indica which was assembled before as a linear molecule. Synteny analysis between the two mitogenomes revealed numerous rearrangements, unique regions of each individual and 0.2% sequence divergence in their syntenic regions. The A. indica mitogenome contains a gene content typical of flowering plants (33 protein-coding, 3 rRNA, and 17 tRNA genes). Repetitive sequences >30 bp in size totals 57,060 bp, representing 13.6% of the mitogenome. We examined recombination mediated by repeats >100 bp in size and found highly active recombination for all the repeats, including a very large repeat of ~16 kb. Recombination between these repeats can form much smaller subgenomic circular chromosomes, which may lead to rapid replication of mitochondrial DNA and thus be advantageous for A. indica with a parasitic lifestyle. In addition, unlike some other parasitic plants, A. indica shows no evidence for horizontal gene transfer of protein-coding genes in its mitogenome.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runxian Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
David P, Degletagne C, Saclier N, Jennan A, Jarne P, Plénet S, Konecny L, François C, Guéguen L, Garcia N, Lefébure T, Luquet E. Extreme mitochondrial DNA divergence underlies genetic conflict over sex determination. Curr Biol 2022; 32:2325-2333.e6. [PMID: 35483362 DOI: 10.1016/j.cub.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 01/06/2023]
Abstract
Cytoplasmic male sterility (CMS) is a form of genetic conflict over sex determination that results from differences in modes of inheritance between genomic compartments.1-3 Indeed, maternally transmitted (usually mitochondrial) genes sometimes enhance their transmission by suppressing the male function in a hermaphroditic organism to the detriment of biparentally inherited nuclear genes. Therefore, these hermaphrodites become functionally female and may coexist with regular hermaphrodites in so-called gynodioecious populations.3 CMS has been known in plants since Darwin's times4 but is previously unknown in the animal kingdom.5-8 We relate the first observation of CMS in animals. It occurs in a freshwater snail population, where some individuals appear unable to sire offspring in controlled crosses and show anatomical, physiological, and behavioral characters consistent with a suppression of the male function. Male sterility is associated with a mitochondrial lineage that underwent a spectacular acceleration of DNA substitution rates, affecting the entire mitochondrial genome-this acceleration concerns both synonymous and non-synonymous substitutions and therefore results from increased mitogenome mutation rates. Consequently, mitochondrial haplotype divergence within the population is exceptionally high, matching that observed between snail taxa that diverged 475 million years ago. This result is reminiscent of similar accelerations in mitogenome evolution observed in plant clades where gynodioecy is frequent,9,10 both being consistent with arms-race evolution of genome regions implicated in CMS.11,12 Our study shows that genomic conflicts can trigger independent evolution of similar sex-determination systems in plants and animals and dramatically accelerate molecular evolution.
Collapse
Affiliation(s)
- Patrice David
- CEFE, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France.
| | - Cyril Degletagne
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| | | | - Aurel Jennan
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| | - Philippe Jarne
- CEFE, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
| | - Sandrine Plénet
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| | - Lara Konecny
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| | | | - Laurent Guéguen
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Noéline Garcia
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| | - Tristan Lefébure
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| | - Emilien Luquet
- University of Lyon, CNRS, ENTPE, UMR5023 LEHNA, 69622 Villeurbanne, France
| |
Collapse
|
9
|
Nguyen TT, Planchard N, Dahan J, Arnal N, Balzergue S, Benamar A, Bertin P, Brunaud V, Dargel-Graffin C, Macherel D, Martin-Magniette ML, Quadrado M, Namy O, Mireau H. A Case of Gene Fragmentation in Plant Mitochondria Fixed by the Selection of a Compensatory Restorer of Fertility-Like PPR Gene. Mol Biol Evol 2021; 38:3445-3458. [PMID: 33878189 PMCID: PMC8321540 DOI: 10.1093/molbev/msab115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.
Collapse
Affiliation(s)
- Tan-Trung Nguyen
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Paris-Sud University, Université Paris-Saclay, Orsay, France
| | - Jennifer Dahan
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Nadège Arnal
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sandrine Balzergue
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Université d’Angers, Angers, France
| | - Abdelilah Benamar
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Université d’Angers, Angers, France
| | - Pierre Bertin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Macherel
- Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Université d’Angers, Angers, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
10
|
Mohd Saad NS, Severn-Ellis AA, Pradhan A, Edwards D, Batley J. Genomics Armed With Diversity Leads the Way in Brassica Improvement in a Changing Global Environment. Front Genet 2021; 12:600789. [PMID: 33679880 PMCID: PMC7930750 DOI: 10.3389/fgene.2021.600789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Meeting the needs of a growing world population in the face of imminent climate change is a challenge; breeding of vegetable and oilseed Brassica crops is part of the race in meeting these demands. Available genetic diversity constituting the foundation of breeding is essential in plant improvement. Elite varieties, land races, and crop wild species are important resources of useful variation and are available from existing genepools or genebanks. Conservation of diversity in genepools, genebanks, and even the wild is crucial in preventing the loss of variation for future breeding efforts. In addition, the identification of suitable parental lines and alleles is critical in ensuring the development of resilient Brassica crops. During the past two decades, an increasing number of high-quality nuclear and organellar Brassica genomes have been assembled. Whole-genome re-sequencing and the development of pan-genomes are overcoming the limitations of the single reference genome and provide the basis for further exploration. Genomic and complementary omic tools such as microarrays, transcriptomics, epigenetics, and reverse genetics facilitate the study of crop evolution, breeding histories, and the discovery of loci associated with highly sought-after agronomic traits. Furthermore, in genomic selection, predicted breeding values based on phenotype and genome-wide marker scores allow the preselection of promising genotypes, enhancing genetic gains and substantially quickening the breeding cycle. It is clear that genomics, armed with diversity, is set to lead the way in Brassica improvement; however, a multidisciplinary plant breeding approach that includes phenotype = genotype × environment × management interaction will ultimately ensure the selection of resilient Brassica varieties ready for climate change.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences Western Australia and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
The Tempo and Mode of Angiosperm Mitochondrial Genome Divergence Inferred from Intraspecific Variation in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2020; 10:1077-1086. [PMID: 31964685 PMCID: PMC7056966 DOI: 10.1534/g3.119.401023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mechanisms of sequence divergence in angiosperm mitochondrial genomes have long been enigmatic. In particular, it is difficult to reconcile the rapid divergence of intergenic regions that can make non-coding sequences almost unrecognizable even among close relatives with the unusually high levels of sequence conservation found in genic regions. It has been hypothesized that different mutation and repair mechanisms act on genic and intergenic sequences or alternatively that mutational input is relatively constant but that selection has strikingly different effects on these respective regions. To test these alternative possibilities, we analyzed mtDNA divergence within Arabidopsis thaliana, including variants from the 1001 Genomes Project and changes accrued in published mutation accumulation (MA) lines. We found that base-substitution frequencies are relatively similar for intergenic regions and synonymous sites in coding regions, whereas indel and nonsynonymous substitutions rates are greatly depressed in coding regions, supporting a conventional model in which mutation/repair mechanisms are consistent throughout the genome but differentially filtered by selection. Most types of sequence and structural changes were undetectable in 10-generation MA lines, but we found significant shifts in relative copy number across mtDNA regions for lines grown under stressed vs. benign conditions. We confirmed quantitative variation in copy number across the A. thaliana mitogenome using both whole-genome sequencing and droplet digital PCR, further undermining the classic but oversimplified model of a circular angiosperm mtDNA structure. Our results suggest that copy number variation is one of the most fluid features of angiosperm mitochondrial genomes.
Collapse
|
12
|
Krüger M, Abeyawardana OAJ, Juříček M, Krüger C, Štorchová H. Variation in plastid genomes in the gynodioecious species Silene vulgaris. BMC PLANT BIOLOGY 2019; 19:568. [PMID: 31856730 PMCID: PMC6921581 DOI: 10.1186/s12870-019-2193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/10/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.
Collapse
Affiliation(s)
- Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Miloslav Juříček
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| |
Collapse
|
13
|
Varré JS, D'Agostino N, Touzet P, Gallina S, Tamburino R, Cantarella C, Ubrig E, Cardi T, Drouard L, Gualberto JM, Scotti N. Complete Sequence, Multichromosomal Architecture and Transcriptome Analysis of the Solanum tuberosum Mitochondrial Genome. Int J Mol Sci 2019; 20:E4788. [PMID: 31561566 PMCID: PMC6801519 DOI: 10.3390/ijms20194788] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.
Collapse
Affiliation(s)
- Jean-Stéphane Varré
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France.
| | - Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - José Manuel Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| |
Collapse
|
14
|
Cole LW, Guo W, Mower JP, Palmer JD. High and Variable Rates of Repeat-Mediated Mitochondrial Genome Rearrangement in a Genus of Plants. Mol Biol Evol 2019; 35:2773-2785. [PMID: 30202905 DOI: 10.1093/molbev/msy176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For 30 years, it has been clear that angiosperm mitochondrial genomes evolve rapidly in sequence arrangement (i.e., synteny), yet absolute rates of rearrangement have not been measured in any plant group, nor is it known how much these rates vary. To investigate these issues, we sequenced and reconstructed the rearrangement history of seven mitochondrial genomes in Monsonia (Geraniaceae). We show that rearrangements (occurring mostly as inversions) not only take place at generally high rates in these genomes but also uncover significant variation in rearrangement rates. For example, the hyperactive mitochondrial genome of Monsonia ciliata has accumulated at least 30 rearrangements over the last million years, whereas the branch leading to M. ciliata and its sister species has sustained rearrangement at a rate that is at least ten times lower. Furthermore, our analysis of published data shows that rates of mitochondrial genome rearrangement in seed plants vary by at least 600-fold. We find that sites of rearrangement are highly preferentially located in very close proximity to repeated sequences in Monsonia. This provides strong support for the hypothesis that rearrangement in angiosperm mitochondrial genomes occurs largely through repeat-mediated recombination. Because there is little variation in the amount of repeat sequence among Monsonia genomes, the variable rates of rearrangement in Monsonia probably reflect variable rates of mitochondrial recombination itself. Finally, we show that mitochondrial synonymous substitutions occur in a clock-like manner in Monsonia; rates of mitochondrial substitutions and rearrangements are therefore highly uncoupled in this group.
Collapse
Affiliation(s)
- Logan W Cole
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
15
|
Bergero R, Levsen N, Wolff K, Charlesworth D. Arms races with mitochondrial genome soft sweeps in a gynodioecious plant, Plantago lanceolata. Mol Ecol 2019; 28:2772-2785. [PMID: 31100183 DOI: 10.1111/mec.15121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/26/2022]
Abstract
Biological situations involving conflict can create arms race situations with repeated fixations of different functional variants, producing selective sweeps and lowering neutral diversity in genome regions linked to the functional locus. However, they can sometimes lead to balancing selection, potentially creating long coalescent times for sites with functionally different variants, and, if recombination occurs rarely, for extended haplotypes carrying such variants. We tested between these possibilities in a gynodioecious plant, Plantago lanceolata, in which cytoplasmic male-sterility factors conflict with nuclear restorers of male fertility. We find low mitochondrial diversity, which does not support very long-term coexistence of highly diverged mitochondrial haplotypes. Interestingly, however, we found a derived haplotype that is associated with male fertility in a restricted geographic region, and that has fixed differences from the ancestral sequence in several genes, suggesting that it did not arise very recently. Taken together, the results suggest arms race events that involved "soft" selective sweeps involving a moderately old-established haplotype, consistent with the frequency fluctuations predicted by theoretical models of gynodioecy.
Collapse
Affiliation(s)
- Roberta Bergero
- Ashworth Laboratory, School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Nick Levsen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | - Deborah Charlesworth
- Ashworth Laboratory, School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Müller K, Walterová J, Pažoutová M. Homologous recombination changes the context of Cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics 2018; 19:874. [PMID: 30514207 PMCID: PMC6280394 DOI: 10.1186/s12864-018-5254-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Silene vulgaris (bladder campion) is a gynodioecious species existing as two genders – male-sterile females and hermaphrodites. Cytoplasmic male sterility (CMS) is generally encoded by mitochondrial genes, which interact with nuclear fertility restorer genes. Mitochondrial genomes of this species vary in DNA sequence, gene order and gene content. Multiple CMS genes are expected to exist in S. vulgaris, but little is known about their molecular identity. Results We assembled the complete mitochondrial genome from the haplotype KRA of S. vulgaris. It consists of five chromosomes, two of which recombine with each other. Two small non-recombining chromosomes exist in linear, supercoiled and relaxed circle forms. We compared the mitochondrial transcriptomes from females and hermaphrodites and confirmed the differentially expressed chimeric gene bobt as the strongest CMS candidate gene in S. vulgaris KRA. The chimeric gene bobt is co-transcribed with the Cytochrome b (cob) gene in some genomic configurations. The co-transcription of a CMS factor with an essential gene may constrain transcription inhibition as a mechanism for fertility restoration because of the need to maintain appropriate production of the necessary protein. Homologous recombination places the gene cob outside the control of bobt, which allows for the suppression of the CMS gene by the fertility restorer genes. We found the loss of three editing sites in the KRA mitochondrial genome and identified four sites with highly distinct editing rates between KRA and another S. vulgaris haplotypes (KOV). Three of these highly differentially edited sites were located in the transport membrane protein B (mttB) gene. They resulted in differences in MttB protein sequences between haplotypes. Conclusions Frequent homologous recombination events that are widespread in plant mitochondrial genomes may change chromosomal configurations and also the control of gene transcription including CMS gene expression. Posttranscriptional processes, e.g. RNA editing shall be evaluated in evolutionary and co-evolutionary studies of mitochondrial genes, because they may change protein composition despite the sequence identity of the respective genes. The investigation of natural populations of wild species such as S. vulgaris are necessary to reveal important aspects of CMS missed in domesticated crops, the traditional focus of the CMS studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5254-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - James D Stone
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Oushadee A J Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Karel Müller
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Jana Walterová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Marie Pažoutová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| |
Collapse
|
17
|
Kim HT, Lee JM. Organellar genome analysis reveals endosymbiotic gene transfers in tomato. PLoS One 2018; 13:e0202279. [PMID: 30183712 PMCID: PMC6124701 DOI: 10.1371/journal.pone.0202279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023] Open
Abstract
We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific variations. The mitogenomes were 423,596-446,257 bp in length. Despite numerous rearrangements between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the mitogenomes were similar to each other. These mitogenomes were compared with plastid and nuclear genomes to investigate genetic material transfers among DNA-containing organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found. Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and NUPT locations differed between the two species. Our results demonstrate the recent occurrence of frequent endosymbiotic gene transfers in tomato genomes.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
18
|
Fishman L, Sweigart AL. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:707-731. [PMID: 29505737 DOI: 10.1146/annurev-arplant-042817-040113] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybrids between flowering plant species often exhibit reduced fitness, including sterility and inviability. Such hybrid incompatibilities create barriers to genetic exchange that can promote reproductive isolation between diverging populations and, ultimately, speciation. Additionally, hybrid breakdown opens a window into hidden molecular and evolutionary processes occurring within species. Here, we review recent work on the mechanisms and origins of hybrid incompatibility in flowering plants, including both diverse genic interactions and chromosomal incompatibilities. Conflict and coevolution among and within plant genomes contributes to the evolution of some well-characterized genic incompatibilities, but duplication and drift also play important roles. Inversions, while contributing to speciation by suppressing recombination, rarely cause underdominant sterility. Translocations cause severe F1 sterility by disrupting meiosis in heterozygotes, making their fixation in outcrossing sister species a paradox. Evolutionary genomic analyses of both genic and chromosomal incompatibilities, in the context of population genetic theory, can explicitly test alternative scenarios for their origins.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA;
| |
Collapse
|
19
|
CMS-G from Beta vulgaris ssp. maritima is maintained in natural populations despite containing an atypical cytochrome c oxidase. Biochem J 2018; 475:759-773. [PMID: 29358189 DOI: 10.1042/bcj20170655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
While mitochondrial mutants of the respiratory machinery are rare and often lethal, cytoplasmic male sterility (CMS), a mitochondrially inherited trait that results in pollen abortion, is frequently encountered in wild populations. It generates a breeding system called gynodioecy. In Beta vulgaris ssp. maritima, a gynodioecious species, we found CMS-G to be widespread across the distribution range of the species. Despite the sequencing of the mitochondrial genome of CMS-G, the mitochondrial sterilizing factor causing CMS-G is still unknown. By characterizing biochemically CMS-G, we found that the expression of several mitochondrial proteins is altered in CMS-G plants. In particular, Cox1, a core subunit of the cytochrome c oxidase (complex IV), is larger but can still assemble into complex IV. However, the CMS-G-specific complex IV was only detected as a stabilized dimer. We did not observe any alteration of the affinity of complex IV for cytochrome c; however, in CMS-G, complex IV capacity is reduced. Our results show that CMS-G is maintained in many natural populations despite being associated with an atypical complex IV. We suggest that the modified complex IV could incur the associated cost predicted by theoretical models to maintain gynodioecy in wild populations.
Collapse
|
20
|
Štorchová H. The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants. Int J Mol Sci 2017; 18:E2429. [PMID: 29144434 PMCID: PMC5713397 DOI: 10.3390/ijms18112429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The interactions between mitochondria and nucleus substantially influence plant development, stress response and morphological features. The prominent example of a mitochondrial-nuclear interaction is cytoplasmic male sterility (CMS), when plants produce aborted anthers or inviable pollen. The genes responsible for CMS are located in mitochondrial genome, but their expression is controlled by nuclear genes, called fertility restorers. Recent explosion of high-throughput sequencing methods enabled to study transcriptomic alterations in the level of non-coding RNAs under CMS biogenesis. We summarize current knowledge of the role of nucleus encoded regulatory non-coding RNAs (long non-coding RNA, microRNA as well as small interfering RNA) in CMS. We also focus on the emerging data of non-coding RNAs encoded by mitochondrial genome and their possible involvement in mitochondrial-nuclear interactions and CMS development.
Collapse
Affiliation(s)
- Helena Štorchová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic.
| |
Collapse
|
21
|
Hatono S, Nishimura K, Murakami Y, Tsujimura M, Yamagishi H. Complete mitochondrial genome sequences of Brassica rapa (Chinese cabbage and mizuna), and intraspecific differentiation of cytoplasm in B. rapa and Brassica juncea. BREEDING SCIENCE 2017; 67:357-362. [PMID: 29085245 PMCID: PMC5654463 DOI: 10.1270/jsbbs.17023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
The complete sequence of the mitochondrial genome was determined for two cultivars of Brassica rapa. After determining the sequence of a Chinese cabbage variety, 'Oushou hakusai', the sequence of a mizuna variety, 'Chusei shiroguki sensuji kyomizuna', was mapped against the sequence of Chinese cabbage. The precise sequences where the two varieties demonstrated variation were ascertained by direct sequencing. It was found that the mitochondrial genomes of the two varieties are identical over 219,775 bp, with a single nucleotide polymorphism (SNP) between the genomes. Because B. rapa is the maternal species of an amphidiploid crop species, Brassica juncea, the distribution of the SNP was observed both in B. rapa and B. juncea. While the mizuna type SNP was restricted mainly to cultivars of mizuna (japonica group) in B. rapa, the mizuna type was widely distributed in B. juncea. The finding that the two Brassica species have these SNP types in common suggests that the nucleotide substitution occurred in wild B. rapa before both mitotypes were domesticated. It was further inferred that the interspecific hybridization between B. rapa and B. nigra took place twice and resulted in the two mitotypes of cultivated B. juncea.
Collapse
Affiliation(s)
- Saki Hatono
- Graduate School of Life Sciences, Kyoto Sangyo University,
Kamigamo, Motoyama, Kita, Kyoto 603-8555,
Japan
| | - Kaori Nishimura
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Motoyama, Kita, Kyoto 603-8555,
Japan
| | - Yoko Murakami
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Motoyama, Kita, Kyoto 603-8555,
Japan
| | - Mai Tsujimura
- Plant Organelle Genome Research Center, Kyoto Sangyo University,
Kamigamo, Motoyama, Kita, Kyoto 603-8555,
Japan
| | - Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Motoyama, Kita, Kyoto 603-8555,
Japan
| |
Collapse
|
22
|
Gualberto JM, Newton KJ. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:225-252. [PMID: 28226235 DOI: 10.1146/annurev-arplant-043015-112232] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France;
| | - Kathleen J Newton
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
23
|
Martin H, Touzet P, Dufay M, Godé C, Schmitt E, Lahiani E, Delph LF, Van Rossum F. Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution 2017; 71:1519-1531. [PMID: 28384386 DOI: 10.1111/evo.13245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co-occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Hélène Martin
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Pascal Touzet
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Mathilde Dufay
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Cécile Godé
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Eric Schmitt
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Emna Lahiani
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Lynda F Delph
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Fabienne Van Rossum
- Meise Botanic Garden (formerly National Botanic Garden of Belgium), Nieuwelaan 38, BE-1860, Meise, Belgium.,Écologie végétale et Biogéochimie, Université Libre de Bruxelles, CP244, Boulevard du Triomphe, BE-1050, Brussels, Belgium.,Fédération Wallonie-Bruxelles, rue A. Lavallée 1, BE-1080, Brussels, Belgium
| |
Collapse
|
24
|
Stone JD, Koloušková P, Sloan DB, Štorchová H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1599-1612. [PMID: 28369520 PMCID: PMC5444436 DOI: 10.1093/jxb/erx057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytoplasmic male sterility (CMS) is a widespread phenomenon in flowering plants caused by mitochondrial (mt) genes. CMS genes typically encode novel proteins that interfere with mt functions and can be silenced by nuclear fertility-restorer genes. Although the molecular basis of CMS is well established in a number of crop systems, our understanding of it in natural populations is far more limited. To identify CMS genes in a gynodioecious plant, Silene vulgaris, we constructed mt transcriptomes and compared transcript levels and RNA editing patterns in floral bud tissue from female and hermaphrodite full siblings. The transcriptomes from female and hermaphrodite individuals were very similar overall with respect to variation in levels of transcript abundance across the genome, the extent of RNA editing, and the order in which RNA editing and intron splicing events occurred. We found only a single genomic region that was highly overexpressed and differentially edited in females relative to hermaphrodites. This region is not located near any other transcribed elements and lacks an open-reading frame (ORF) of even moderate size. To our knowledge, this transcript would represent the first non-coding mt RNA associated with CMS in plants and is, therefore, an important target for future functional validation studies.
Collapse
Affiliation(s)
- James D Stone
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague, 16502 Czech Republic
- Institute of Botany v.v.i, Academy of Sciences of the Czech Republic, Průhonice, Central Bohemia, 25243 Czech Republic
| | - Pavla Koloušková
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague, 16502Czech Republic
| | - Daniel B Sloan
- Colorado State University, Department of Biology, Fort Collins, CO 80523, USA
| | - Helena Štorchová
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague, 16502Czech Republic
| |
Collapse
|
25
|
Yang J, Liu G, Zhao N, Chen S, Liu D, Ma W, Hu Z, Zhang M. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:527-536. [PMID: 27079962 DOI: 10.1111/plb.12414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome.
Collapse
Affiliation(s)
- J Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - G Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - N Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - S Chen
- School of Plant Biology (M084), The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - D Liu
- Biomarker Technologies Corporation, Beijing, China
| | - W Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Z Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - M Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
26
|
Havird JC, Whitehill NS, Snow CD, Sloan DB. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 2015; 69:3069-81. [PMID: 26514987 DOI: 10.1111/evo.12808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| | - Nicholas S Whitehill
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| |
Collapse
|
27
|
Tang M, Chen Z, Grover CE, Wang Y, Li S, Liu G, Ma Z, Wendel JF, Hua J. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics 2015; 16:770. [PMID: 26459858 PMCID: PMC4603758 DOI: 10.1186/s12864-015-1988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Methods Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. Results The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. Conclusion These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyong Tang
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Zhiwen Chen
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Shuangshuang Li
- Present address: Saskatchewan Cancer Agency, Division of Oncology, Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Guozheng Liu
- Present address: Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt, Seeland, Germany.
| | - Zhiying Ma
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Jinping Hua
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Bonavita S, Regina TMR. The evolutionary conservation of rps3 introns and rps19-rps3-rpl16 gene cluster in Adiantum capillus-veneris mitochondria. Curr Genet 2015; 62:173-84. [PMID: 26281979 DOI: 10.1007/s00294-015-0512-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022]
Abstract
Ferns are a large and evolutionarily critical group of vascular land plants for which quite limited mitochondrial gene content and genome organization data are, currently, available. This study reports that the gene for the ribosomal protein S3 (rps3) is preserved and physically clustered to an upstream rps19 and a downstream overlapping rpl16 locus in the mitochondrial DNA of the true fern Adiantum capillus-veneris L. Sequence analysis also revealed that the rps3 gene is interrupted by two cis-splicing group II introns, like the counterpart in lycopod and gymnosperm representatives. A preliminary polymerase chain reaction (PCR) survey confirmed a scattered distribution pattern of both the rps3 introns also in other fern lineages. Northern blot and reverse transcription (RT)-PCR analyses demonstrated that the three ribosomal protein genes are co-transcribed as a polycistronic mRNA and modified by RNA editing. Particularly, the U-to-C type editing amends numerous genomic stop codons in the A. capillus-veneris rps19, rps3 and rpl16 sequences, thus, assuring the synthesis of complete and functional polypeptides. Collectively, the findings from this study further expand our knowledge of the mitochondrial rps3 architecture and evolution, also, bridging the significant molecular data gaps across the so far underrepresented ferns and all land plants.
Collapse
Affiliation(s)
- Savino Bonavita
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Teresa Maria Rosaria Regina
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via Ponte P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
29
|
The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes. Proc Natl Acad Sci U S A 2015; 112:10185-91. [PMID: 25944937 DOI: 10.1073/pnas.1421397112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Across eukaryotes, mitochondria exhibit staggering diversity in genomic architecture, including the repeated evolution of multichromosomal structures. Unlike in the nucleus, where mitosis and meiosis ensure faithful transmission of chromosomes, the mechanisms of inheritance in fragmented mitochondrial genomes remain mysterious. Multichromosomal mitochondrial genomes have recently been found in multiple species of flowering plants, including Silene noctiflora, which harbors an unusually large and complex mitochondrial genome with more than 50 circular-mapping chromosomes totaling ∼7 Mb in size. To determine the extent to which such genomes are stably maintained, we analyzed intraspecific variation in the mitochondrial genome of S. noctiflora. Complete genomes from two populations revealed a high degree of similarity in the sequence, structure, and relative abundance of mitochondrial chromosomes. For example, there are no inversions between the genomes, and there are only nine SNPs in 25 kb of protein-coding sequence. Remarkably, however, these genomes differ in the presence or absence of 19 entire chromosomes, all of which lack any identifiable genes or contain only duplicate gene copies. Thus, these mitochondrial genomes retain a full gene complement but carry a highly variable set of chromosomes that are filled with presumably dispensable sequence. In S. noctiflora, conventional mechanisms of mitochondrial sequence divergence are being outstripped by an apparently nonadaptive process of whole-chromosome gain/loss, highlighting the inherent challenge in maintaining a fragmented genome. We discuss the implications of these findings in relation to the question of why mitochondria, more so than plastids and bacterial endosymbionts, are prone to the repeated evolution of multichromosomal genomes.
Collapse
|
30
|
Yamagishi H, Tanaka Y, Terachi T. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC). Genome 2015; 57:577-82. [PMID: 25767903 DOI: 10.1139/gen-2014-0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto 603-8555, Japan
| | | | | |
Collapse
|
31
|
Sloan DB, Wu Z. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes. Genome Biol Evol 2014; 6:3210-21. [PMID: 25416619 PMCID: PMC4986453 DOI: 10.1093/gbe/evu253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of nonadaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous intergenic sequences for comparative analyses. Here, we report an analysis of angiosperm mitochondrial DNA sequences that are derived from inserted plastid DNA (mtpts). The availability of numerous completely sequenced plastid genomes allows us to infer the evolutionary history of these insertions, including the specific nucleotide substitutions and indels that have occurred because their incorporation into the mitochondrial genome. Our analysis confirmed that many mtpts have a complex history, including frequent gene conversion and multiple examples of horizontal transfer between divergent angiosperm lineages. Nevertheless, it is clear that the majority of extant mtpt sequence in angiosperms is the product of recent transfer (or gene conversion) and is subject to rapid loss/deterioration, suggesting that most mtpts are evolving relatively free from functional constraint. The evolution of mtpt sequences reveals a pattern of biased mutational input in angiosperm mitochondrial genomes, including an excess of small deletions over insertions and a skew toward nucleotide substitutions that increase AT content. However, these mutation biases are far weaker than have been observed in many other cellular genomes, providing insight into some of the notable features of angiosperm mitochondrial architecture, including the retention of large intergenic regions and the relatively neutral GC content found in these regions.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins
| |
Collapse
|
32
|
Hao W, Fan S, Hua W, Wang H. Effective extraction and assembly methods for simultaneously obtaining plastid and mitochondrial genomes. PLoS One 2014; 9:e108291. [PMID: 25251391 PMCID: PMC4177114 DOI: 10.1371/journal.pone.0108291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/15/2014] [Indexed: 11/25/2022] Open
Abstract
Background In conventional approaches to plastid and mitochondrial genome sequencing, the sequencing steps are performed separately; thus, plastid DNA (ptDNA) and mitochondrial DNA (mtDNA) should be prepared independently. However, it is difficult to extract pure ptDNA and mtDNA from plant tissue. Following the development of high-throughput sequencing technology, many researchers have attempted to obtain plastid genomes or mitochondrial genomes using high-throughput sequencing data from total DNA. Unfortunately, the huge datasets generated consume massive computing and storage resources and cost a great deal, and even more importantly, excessive pollution reads affect the accuracy of the assembly. Therefore, it is necessary to develop an effective method that can generate base sequences from plant tissue and that is suitable for all plant species. Here, we describe a highly effective, low-cost method for obtaining plastid and mitochondrial genomes simultaneously. Results First, we obtained high-quality DNA employing Partial Concentration Extraction. Second, we evaluated the purity of the DNA sample and determined the sequencing dataset size employing Vector Control Quantitative Analysis. Third, paired-end reads were obtained using a high-throughput sequencing platform. Fourth, we obtained scaffolds employing Two-step Assembly. Finally, we filled in gaps using specific methods and obtained complete plastid and mitochondrial genomes. To ensure the accuracy of plastid and mitochondrial genomes, we validated the assembly using PCR and Sanger sequencing. Using this method,we obtained complete plastid and mitochondrial genomes with lengths of 153,533 nt and 223,412 nt separately. Conclusion A simple method for extracting, evaluating, sequencing and assembling plastid and mitochondrial genomes was developed. This method has many advantages: it is timesaving, inexpensive and reproducible and produces high-quality sequence. Furthermore, this method can produce plastid and mitochondrial genomes simultaneously and be used for other plant species. Due to its simplicity and extensive applicability, this method will support research on plant cytoplasmic genomes.
Collapse
Affiliation(s)
- Wanjun Hao
- Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shihang Fan
- Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, China
- College of Life Sciences, Hubei University, Wuhan, China
| | - Wei Hua
- Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 2014; 19 Pt B:166-71. [PMID: 24769053 DOI: 10.1016/j.mito.2014.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic male sterility (CMS) is a common feature encountered in plant species. It is the result of a genomic conflict between the mitochondrial and the nuclear genomes. CMS is caused by mitochondrial encoded factors which can be counteracted by nuclear encoded factors restoring male fertility. Despite extensive work, the molecular mechanism of male sterility still remains unknown. Several studies have suggested the involvement of respiration on the disruption of pollen production through an energy deficiency. By comparing recent works on CMS and respiratory mutants, we suggest that the "ATP hypothesis" might not be as obvious as previously suggested.
Collapse
|
34
|
Castric V, Billiard S, Vekemans X. Trait transitions in explicit ecological and genomic contexts: plant mating systems as case studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:7-36. [PMID: 24277293 DOI: 10.1007/978-94-007-7347-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Plants are astonishingly diverse in how they reproduce sexually, and the study of plant mating systems provides some of the most compelling cases of parallel and independent evolutionary transitions. In this chapter, we review how the massive amount of genomic data being produced is allowing long-standing predictions from ecological and evolutionary theory to be put to test. After a review of theoretical predictions about the importance of considering the genomic architecture of the mating system, we focus on a set of recent discoveries on how the mating system is controlled in a variety of model and non-model species. In parallel, genomic approaches have revealed the complex interaction between the evolution of genes controlling mating systems and genome evolution, both genome-wide and in the mating system control region. In several cases, major transitions in the mating system can be clearly associated with important ecological changes, hence illuminating an important interplay between ecological and genomic approaches. We also list a number of major unsolved questions that remain for the field, and highlight foreseeable conceptual developments that are likely to play a major role in our understanding of how plant mating systems evolve in Nature.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales (GEPV), UMR 8198; CNRS, Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France,
| | | | | |
Collapse
|
35
|
Noyszewski AK, Ghavami F, Alnemer LM, Soltani A, Gu YQ, Huo N, Meinhardt S, Kianian PMA, Kianian SF. Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat. BMC Genomics 2014; 15:67. [PMID: 24460856 PMCID: PMC3942274 DOI: 10.1186/1471-2164-15-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line. RESULTS The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line. CONCLUSIONS Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.
Collapse
|
36
|
Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 2014; 342:1468-73. [PMID: 24357311 DOI: 10.1126/science.1246275] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.
Collapse
Affiliation(s)
- Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sloan DB. One ring to rule them all? Genome sequencing provides new insights into the 'master circle' model of plant mitochondrial DNA structure. THE NEW PHYTOLOGIST 2013; 200:978-85. [PMID: 24712049 DOI: 10.1111/nph.12395] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The in vivo molecular structure of plant mitochondrial DNA (mtDNA) has been a long-standing source of intrigue and controversy. Recent deep sequencing analyses of mitochondrial genomes from numerous plant species have provided the opportunity to revisit this decades-old question from a novel perspective. Whole-genome sequencing approaches have yielded new lines of evidence that the 'master circle' is not the predominant form of plant mtDNA and have revealed striking structural variation both within and among species. Here, I review these recent studies,including the discovery that at least two independent angiosperm lineages have evolved multichromosomal mitochondrial genome structures. These findings raise fascinating questions regarding the mechanisms of plant mtDNA replication and inheritance.
Collapse
|
38
|
Müller K, Storchova H. Transcription of atp1 is influenced by both genomic configuration and nuclear background in the highly rearranged mitochondrial genomes of Silene vulgaris. PLANT MOLECULAR BIOLOGY 2013; 81:495-505. [PMID: 23361622 DOI: 10.1007/s11103-013-0018-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/19/2013] [Indexed: 06/01/2023]
Abstract
An extraordinary variation in mitochondrial DNA sequence exists in angiosperm Silene vulgaris. The atp1 gene is flanked by very variable regions, as deduced from four completely sequenced mitochondrial genomes of this species. This diversity contributed to a highly variable transcript profile of this gene observed across S. vulgaris populations. We examined the atp1 transcript in the KOV mitochondrial genome and found three 5' ends, created most likely by the combination of transcription initiation and RNA processing. Most atp1 transcripts terminated about 70 bp upstream of the translation stop codon, which was present in only 10 % of them. Controlled crosses between a KOV mother and a geographically distant pollen donor (Krasnoyarsk, Russia) showed that nuclear background also affected atp1 transcription. The distant pollen donor introduced the factor(s) preventing the formation of a long 2,100 nt-transcript, because this long atp1 transcript reappeared in the progeny from self-crosses. The highly rearranged mitochondrial genomes with a variation in gene flanking regions make S. vulgaris an excellent model for the study of mitochondrial gene expression in plants.
Collapse
Affiliation(s)
- Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| | | |
Collapse
|
39
|
Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. THE NEW PHYTOLOGIST 2012; 196:1228-1239. [PMID: 23009072 DOI: 10.1111/j.1469-8137.2012.04340.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/17/2012] [Indexed: 05/04/2023]
Abstract
In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| | - David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Helena Štorchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| |
Collapse
|
40
|
Mower JP, Case AL, Floro ER, Willis JH. Evidence against equimolarity of large repeat arrangements and a predominant master circle structure of the mitochondrial genome from a monkeyflower (Mimulus guttatus) lineage with cryptic CMS. Genome Biol Evol 2012; 4:670-86. [PMID: 22534162 PMCID: PMC3381676 DOI: 10.1093/gbe/evs042] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite intense investigation for over 25 years, the in vivo structure of plant mitochondrial genomes remains uncertain. Mapping studies and genome sequencing generally produce large circular chromosomes, whereas electrophoretic and microscopic studies typically reveal linear and multibranched molecules. To more fully assess the structure of plant mitochondrial genomes, the complete sequence of the monkeyflower (Mimulus guttatus DC. line IM62) mitochondrial DNA was constructed from a large (35 kb) paired-end shotgun sequencing library to a high depth of coverage (∼30×). The complete genome maps as a 525,671 bp circular molecule and exhibits a fairly conventional set of features including 62 genes (encoding 35 proteins, 24 transfer RNAs, and 3 ribosomal RNAs), 22 introns, 3 large repeats (2.7, 9.6, and 29 kb), and 96 small repeats (40–293 bp). Most paired-end reads (71%) mapped to the consensus sequence at the expected distance and orientation across the entire genome, validating the accuracy of assembly. Another 10% of reads provided clear evidence of alternative genomic conformations due to apparent rearrangements across large repeats. Quantitative assessment of these repeat-spanning read pairs revealed that all large repeat arrangements are present at appreciable frequencies in vivo, although not always in equimolar amounts. The observed stoichiometric differences for some arrangements are inconsistent with a predominant master circular structure for the mitochondrial genome of M. guttatus IM62. Finally, because IM62 contains a cryptic cytoplasmic male sterility (CMS) system, an in silico search for potential CMS genes was undertaken. The three chimeric open reading frames (ORFs) identified in this study, in addition to the previously identified ORFs upstream of the nad6 gene, are the most likely CMS candidate genes in this line.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, NE, USA.
| | | | | | | |
Collapse
|
41
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
De Cauwer I, Arnaud JF, Courseaux A, Dufay M. Sex-specific fitness variation in gynodioecious Beta vulgaris ssp. maritima: do empirical observations fit theoretical predictions? J Evol Biol 2011; 24:2456-72. [PMID: 21955089 DOI: 10.1111/j.1420-9101.2011.02380.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.
Collapse
Affiliation(s)
- I De Cauwer
- Laboratoire de Génétique et Évolution des Populations Végétales, FRE CNRS 3268, Bâtiment SN2, Université des Sciences et Technologies de Lille - Lille 1, Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|