1
|
Poliseno A, Quattrini AM, Lau YW, Pirro S, Reimer JD, McFadden CS. New mitochondrial gene order arrangements and evolutionary implications in the class Octocorallia. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 39431478 DOI: 10.1080/24701394.2024.2416173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
The complete mitochondrial genomes of octocorals typically range from 18.5 kb to 20.5 kb in length and include 14 protein-coding genes (PCGs), two ribosomal RNA genes and one tRNA. To date, seven different gene orders (A-G) have been described, yet comprehensive investigations of the actual number of arrangements, as well as comparative analyses and evolutionary reconstructions of mitochondrial genome evolution within the whole class Octocorallia, have been often overlooked. Here, we considered the complete mitochondrial genomes available for octocorals and explored their structure and gene order variability. Our results updated the actual number of mitochondrial gene order arrangements so far known for octocorals from 7 to 14 and allowed us to explore and preliminarily discuss the role of some of the structural and functional factors in the mitogenomes. We performed comparative mitogenomic analyses on the existing and novel octocoral gene orders, considering different mitogenomic structural features such as genome size, GC percentage, AT and GC skewness. The mitochondrial gene order history mapped on a recently published nuclear loci phylogeny showed that the most common rearrangement events in octocorals are inversions, inverted transpositions and transpositions. Furthermore, gene order rearrangement events were restricted only to some regions of the tree. Overall, different rearrangement events arose independently and from the ancestral and most common gene order, instead of being derived from other rearranged orders. Finally, our data demonstrate how the study of mitochondrial gene orders can be used to explore the evolution of octocorals and in some cases can be used to assess the phylogenetic placement of certain taxa.
Collapse
Affiliation(s)
- Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Yee Wah Lau
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | |
Collapse
|
2
|
Li J, Xu K, Li Y. The complete mitochondrial genome of the bubble-gum coral Paragorgia papillata (Octocorallia: Coralliidae) from the seamount in the tropical Western Pacific. Mitochondrial DNA B Resour 2024; 9:1243-1247. [PMID: 39301045 PMCID: PMC11411558 DOI: 10.1080/23802359.2024.2405531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The complete mitochondrial genome of Paragorgia papillata Li et al. 2021, a deep-sea gorgonian inhabiting at 858 m in Caroline Ridge, was obtained in this study. The length of the mitochondrial genome is 19,018 bp with 14 protein coding genes, one transfer RNA (tRNA-Met) and two ribosomal RNA genes contained in this circular molecule. Phylogenetic analysis indicated that P. papillata and P. coralloides Bayer, 1993 were two closely related species, and a total of 26 mutational sites (four nonsynonymous mutations included) can be detected between their mitochondrial genomes. This exhibits a case that mitochondrial genomes can be applied to differentiate closely related species in gorgonians. The phylogenetic tree constructed with mitochondrial genomes showed that the families in Octocorallia are reciprocally monophyletic, provided that the family names were revised according to the systematic revision of Octocorallia guided by phylogenomics. However, the relationships of the families within each order were different between the previous phylogenomic work and ours. Integrating mitochondrial genomes from a wider array of Octocorallia families is essential for a more accurate comparison of phylogenies derived from nuclear and mitochondrial sequences in future study.
Collapse
Affiliation(s)
- Junyuan Li
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Wei ZF, Ta KW, Zhang NN, Liu SS, Meng L, Liu KQ, Cai CY, Peng XT, Shao CW. Molecular phylogenetic relationships based on mitochondrial genomes of novel deep-sea corals (Octocorallia: Alcyonacea): Insights into slow evolution and adaptation to extreme deep-sea environments. Zool Res 2024; 45:215-225. [PMID: 38247179 PMCID: PMC10839654 DOI: 10.24272/j.issn.2095-8137.2023.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/11/2023] [Indexed: 01/23/2024] Open
Abstract
A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1 633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Based on mitochondrial genomic characteristics, morphological examination, and sclerite scanning electron microscopy, the samples were categorized into four suborders (Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera), and identified as 9 possible new cold-water coral species. Assessments of GC-skew dissimilarity, phylogenetic distance, and average nucleotide identity (ANI) revealed a slow evolutionary rate for the octocoral mitochondrial sequences. The nonsynonymous ( Ka) to synonymous ( Ks) substitution ratio ( Ka/ Ks) suggested that the 14 protein-coding genes (PCGs) were under purifying selection, likely due to specific deep-sea environmental pressures. Correlation analysis of the median Ka/ Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b (cyt b) and DNA mismatch repair protein ( mutS) may be influenced by environmental factors in the context of deep-sea species formation. This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.
Collapse
Affiliation(s)
- Zhan-Fei Wei
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Kai-Wen Ta
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Nan-Nan Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Shan-Shan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Liang Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Kai-Qiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Chong-Yang Cai
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xiao-Tong Peng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China. E-mail:
| | - Chang-Wei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China. E-mail:
| |
Collapse
|
4
|
Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI, Wirshing HH, Rodriguez E, McFadden CS. Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Sci Rep 2023; 13:7443. [PMID: 37156831 PMCID: PMC10167242 DOI: 10.1038/s41598-023-34059-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence of nad5 introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Karen E Snyder
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, São Sebastião, 11612-109, Brazil
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Natasha Floerke
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Herman H Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Estefanía Rodriguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | | |
Collapse
|
5
|
Ramos NI, DeLeo DM, Horowitz J, McFadden CS, Quattrini AM. Selection in coral mitogenomes, with insights into adaptations in the deep sea. Sci Rep 2023; 13:6016. [PMID: 37045882 PMCID: PMC10097804 DOI: 10.1038/s41598-023-31243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Corals are a dominant benthic fauna that occur across a vast range of depths from just below the ocean's surface to the abyssopelagic zone. However, little is known about the evolutionary mechanisms that enable them to inhabit such a wide range of environments. The mitochondrial (mt) genome, which is involved in energetic pathways, may be subject to selection pressures at greater depths to meet the metabolic demands of that environment. Here, we use a phylogenomic framework combined with codon-based models to evaluate whether mt protein-coding genes (PCGs) associated with cellular energy functions are under positive selection across depth in three groups of corals: Octocorallia, Scleractinia, and Antipatharia. The results demonstrated that mt PCGs of deep- and shallow-water species of all three groups were primarily under strong purifying selection (0.0474 < ω < 0.3123), with the exception of positive selection in atp6 (ω = 1.3263) of deep-sea antipatharians. We also found evidence for positive selection at fifteen sites across cox1, mtMutS, and nad1 in deep-sea octocorals and nad3 of deep-sea antipatharians. These results contribute to our limited understanding of mt adaptations as a function of depth and provide insight into the molecular response of corals to the extreme deep-sea environment.
Collapse
Affiliation(s)
- Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Danielle M DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Jeremy Horowitz
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | | | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| |
Collapse
|
6
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
7
|
Hogan RI, Hopkins K, Wheeler AJ, Yesson C, Allcock AL. Evolution of mitochondrial and nuclear genomes in Pennatulacea. Mol Phylogenet Evol 2023; 178:107630. [PMID: 36182053 DOI: 10.1016/j.ympev.2022.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
We examine the phylogeny of sea pens using sequences of whole mitochondrial genomes and the nuclear ribosomal cluster generated through low coverage Illumina sequencing. Taxon sampling includes 30 species in 19 genera representing 13 families. Ancestral state reconstruction shows that most sea pen mitochondrial genomes have the ancestral gene order, and that Pennatulacea with diverse gene orders are found in a single clade. The monophyly of Pennatulidae and Protoptilidae are rejected by both the mitochondrial and nuclear dataset, while the mitochondrial dataset further rejects monophyly of Virgulariidae, and the nuclear dataset rejects monophyly of Kophobelemnidae. We show discordance between nuclear ribosomal gene cluster phylogenies and whole mitochondrial genome phylogenies and highlight key Pennatulacea taxa that could be included in cnidarian genome-wide studies to better resolve the sea pen tree of life. We further illustrate how well frequently sequenced markers capture the overall diversity of the mitochondrial genome and the nuclear ribosomal genes in sea pens.
Collapse
Affiliation(s)
- Raissa I Hogan
- School of Natural Sciencecs & Ryan Institute, University of Galway, University Road, Galway, Ireland
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Andrew J Wheeler
- School of Biological, Earth & Environmental Science, Irish Centre for Research in Applied Geosciences, University College Cork, Ireland
| | - Chris Yesson
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - A Louise Allcock
- School of Natural Sciencecs & Ryan Institute, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
8
|
Full Mitochondrial Genomes Reveal Species Differences between the Venerid Clams Ruditapes philippinarum and R. variegatus. Genes (Basel) 2022; 13:genes13112157. [DOI: 10.3390/genes13112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
In natural sea areas along the coast of China, venerid clams Ruditapes philippinarum and R. variegatus exhibit similar adult shell forms and are especially difficult to distinguish as spat and juveniles. This study used comparative mitochondrial genome analysis to reveal differences between these species. The results showed that: (1) the mitochondrial genomes of R. philippinarum and R. variegatus share a large number of similar gene clusters arranged in consistent order, yet they also display noncommon genes, with both gene rearrangements and random losses found; (2) the 13 protein-coding genes in R. philippinarum as well as two-fold and four-fold degenerate sites in R. variegatus have an evident AT bias; (3) the Ka/Ks ratio of the mitochondrial ATP8 gene was significantly higher in R. philippinarum than in R. variegatus, and an analysis of selection pressure revealed that the mitochondrial NADH dehydrogenase subunit 2 gene and NADH dehydrogenase subunit 6 gene of R. variegatus were under great selective pressure during its evolution; and finally, (4) the two species clustered into one branch on a phylogenetic tree, further affirming their phylogenetic closeness. Based on these results, we speculate that the species differences between R. variegatus and R. philippinarum are largely attributable to adaptive evolution to the environment. The present findings provide a reference for the development of germplasm identification.
Collapse
|
9
|
Coelho MAG, Ledoux JB, Boavida J, Paulo D, Gómez-Gras D, Bensoussan N, López-Sendino P, Cerrano C, Kipson S, Bakran-Petricioli T, Garrabou J, Serrão EA, Pearson GA. Complete mitochondrial genome of the branching octocoral Paramuricea grayi (Johnson, 1861), phylogenetic relationships and divergence analysis. Mitochondrial DNA B Resour 2022; 7:1985-1988. [PMID: 36406821 PMCID: PMC9673786 DOI: 10.1080/23802359.2022.2143246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
The Gray's sea fan, Paramuricea grayi (Johnson, 1861), typically inhabits deep littoral and circalittoral habitats of the eastern temperate and tropical Atlantic Ocean. Along the Iberian Peninsula, where P. grayi is a dominant constituent of circalittoral coral gardens, two segregating lineages (yellow and purple morphotypes) were recently identified using single-copy nuclear orthologues. The mitochondrial genomes of 9 P. grayi individuals covering both color morphotypes were assembled from RNA-seq data, using samples collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. The complete circular mitogenome is 18,668 bp in length, has an A + T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes (atp6, atp8, cob, cox1-3, mt-mutS, nad1-6, and nad4L), the small and large subunit rRNAs (rns and rnl), and one transfer RNA (trnM). The mitogenomes were nearly identical for all specimens, though we identified a noteworthy polymorphism (two SNPs 9 bp apart) in the mt-mutS of one purple individual that is shared with the sister species P. clavata. The mitogenomes of the two species have a pairwise sequence identity of 99.0%, with nad6 and mt-mutS having the highest rates of non-synonymous substitutions.
Collapse
Affiliation(s)
- Márcio A. G. Coelho
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisboa, Portugal
| | - Jean-Baptiste Ledoux
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Joana Boavida
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Diogo Paulo
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Daniel Gómez-Gras
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nathaniel Bensoussan
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Paula López-Sendino
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Carlo Cerrano
- Dipartimento di Scienze della Vita e dell’Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Fano Marine Center, Fano, Italy
| | - Silvija Kipson
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- SEAFAN – Marine Research & Consultancy, Zagreb, Croatia
| | | | - Joaquim Garrabou
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Ester A. Serrão
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal
| | - Gareth A. Pearson
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
10
|
Revealing the Coral Species Diversity in Xiamen Bay: Spatial Distribution of Genus Astrogorgia (Cnidaria, Alcyonacea, Plexauridae) and Newly Recorded Species. WATER 2022. [DOI: 10.3390/w14152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coral reefs provide a habitat for many marine organisms and support the safety, coastal protection, well-being, and food and economic security of hundreds of millions of people. The focus on coral species diversity cannot be overemphasized. One of them, Astrogorgia, contains many marine natural active substances, and has important scientific research value and application prospects. Most of the current research on the active substances of the genus Astrogorgia is based on unidentified species, and in-depth taxonomic studies are urgently needed. A total of 1185 samples were collected from 2014 to 2021 in the waters of Xiamen Bay. Herein, the morphological identification, electronic microscopy, and gene fragment sequencing methods were used for the taxonomic study. There are three species of Astrogorgia identified, including Astrogorgia lafoa, A. arborea, and A. dumbea. Among them, A. lafoa and A. arborea are newly recorded species in the waters of China. A. lafoa is distributed in Qingyu Island, A. arborea is distributed in Wuyu Island, and A. dumbea is widely distributed in Baiha Reef, Qingyu Island, Wuyu Island, and Xiaobai Island. In this paper, the geographical distribution and the habits of 18 species of Astrogorgia are summarized, and the evolution of family and genus classification of Astrogorgia is discussed. The results enrich the geographical distribution information and coral species diversity records of Astrogorgia in China.
Collapse
|
11
|
López-González PJ, Drewery J. When distant relatives look too alike: a new family, two new genera and a new species of deep-sea. INVERTEBR SYST 2022. [DOI: 10.1071/is21040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among octocorals, colonies of the deep-sea pennatulacean genus Umbellula Gray, 1870 are some of the most instantly recognisable forms. Historically however, species identification in this genus has been usually based on few morphological characters with very little knowledge of associated intraspecific variability. This fact, combined with the very limited access to these deep-sea organisms, has resulted in numerous uncertainties about the true characters that should be used in species determination and recognition of synonyms and questionable species. Recent phylogenetic analyses based on mitochondrial and nuclear DNA markers has shown to be an excellent complementary source of information to morphological examination, being able to detect incongruent taxonomic assignments in classifications based only on morphological characters. Molecular analyses can reveal the presence of paraphyletic or polyphyletic groupings of taxa that may then be the subject of further research integrating morphological and molecular techniques. This paper addresses the existence of a set of specimens initially assigned to the genus Umbellula Gray, 1870 but that have been shown to be distantly related to the type species Umbellula encrinus (Linnaeus, 1758) based on molecular phylogenetic hypotheses. Phylogenetic analyses based on four genetic markers, three mitochondrial (mtMutS, ND2, Cox1) and one nuclear (28S), validate the definition of a new family (Pseudumbellulidae fam. nov.) and two new genera (Pseudumbellula gen. nov. and Solumbellula gen. nov). These analyses also justify the segregation of some of the morphological characters previously included in the diagnosis of the genus Umbellula and the monotypic family Umbellulidae Kölliker, 1880. Moreover, a new species, Pseudumbellula scotiae sp. nov. is described and illustrated with material from the North Eastern Atlantic and compared with congeners. Additionally, the well-known but atypical species Umbellula monocephalus Pasternak, 1964 is transferred and described here as Solumbellula monocephalus (Pasternak, 1964), comb. nov., based on both molecular data and morphology.
Collapse
|
12
|
Koido T, Imahara Y, Fukami H. Xeniakonohana sp. nov. (Cnidaria, Octocorallia, Alcyonacea), a new soft coral species in the family Xeniidae from Miyazaki, Japan. Zookeys 2022; 1085:29-49. [PMID: 35210904 PMCID: PMC8831390 DOI: 10.3897/zookeys.1085.77924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022] Open
Abstract
A new soft coral species, Xeniakonohana sp. nov. (Alcyonacea, Xeniidae), is described from Miyazaki in the warm-temperate region of Japan. This new species has conspicuous and unique spindle sclerites in addition to the simple ellipsoid platelet-shaped sclerites typically found in the genus Xenia. These unique spindles are a specific key morphological characteristic for this new species and for differentiating this species among congeneric species.
Collapse
Affiliation(s)
- Tatsuki Koido
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1–1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki 889–2192, JapanUniversity of MiyazakiMiyazakiJapan
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Kochi 788–0333, JapanKuroshio Biological Research FoundationOtsukiJapan
| | - Yukimitsu Imahara
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Kochi 788–0333, JapanKuroshio Biological Research FoundationOtsukiJapan
- Octocoral Research Laboratory, 300–11 Kire, Wakayama, 640–0351, JapanOctocoral Research LaboratoryKireJapan
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-3 Higashi, Tsukuba, Ibaraki 305–8567, JapanGeological Survey of Japan, National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1–1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki 889–2192, JapanMiyazaki UniversityMiyazakiJapan
| |
Collapse
|
13
|
Hooper L, Jenkins TL, Griffiths AM, Moore KA, Stevens JR. The complete mitochondrial genome of the pink sea fan, Eunicella verrucosa (Pallas, 1766). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3309-3311. [PMID: 34712818 PMCID: PMC8547875 DOI: 10.1080/23802359.2021.1994899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The pink sea fan, Eunicella verrucosa (Pallas, 1766), inhabits rocky substrates across the northeast Atlantic and the western Mediterranean. Across much of its range it has been detrimentally affected by fishing. DNA from 17 E. verrucosa specimens was amplified by phi29-induced rolling circle amplification. Following purification by sodium acetate-ethanol precipitation, the circular genomic DNA was sequenced on an Illumina MiSeq v2. Specimens originated from sites along the west coast of Ireland, southwest Wales, southwest/southern England, northwest France, southern Portugal, and the Mediterranean coast of northeast Spain. All samples had identical mitochondrial genome sequences of 19,267 bp and included 14 protein-coding genes (including the mutS gene), two ribosomal RNA subunits (12S and 16S) and one methionine tRNA gene. Two genes (nad2 and nad5) overlapped by 13 bp; all other genes were separated by non-coding intergenic regions. All protein-coding genes had the same start codon (ATG) and a TAA or TAG stop codon, except for cox1 that terminated with the incomplete stop codon T--. The mitochondrial genome of E. verrucosa (MW588805) showed 99.72% similarity with that of a related sea fan species, Eunicella cavolini, with six SNPs and a 49 bp deletion between nad5 and nad4 in E. verrucosa distinguishing the two.
Collapse
Affiliation(s)
- Luke Hooper
- Department of Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Tom L Jenkins
- Department of Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Andrew M Griffiths
- Department of Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Karen A Moore
- Department of Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Jamie R Stevens
- Department of Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Shen CY, Wang PZ, Xue W, Liu ZH, Zhao JY, Tong XB, Liu C, Wu XF, Mao X, Tian S, Fu C. The complete mitochondrial genome of soft coral Sinularia penghuensis Ofwegen and Benayahu, 2012 (Octocorallia: Alcyonacea): the analysis of mitogenome organization and phylogeny. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1348-1350. [PMID: 33889745 PMCID: PMC8043561 DOI: 10.1080/23802359.2021.1906174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete mitochondrial genome of Sinularia penghuensis was sequenced and analyzed using next-generation sequencing. The present mitochondrial genome was 18730 bp in length, containing 14 protein-coding genes (PCGs) (cox1-cox3.nad1-nad6, nad4L, atp6, atp8, cytb, and MutS), two ribosomal RNA genes (rRNAs) (12S and 16S), and one transfer RNA gene (Met-tRNA). The phylogenetic analysis of family Alcyoniidae revealed that S. penghuensis and Sinularia maxima cluster together. Five species in Sinularia reveals high identity in mitogenome sequences that the lowest variable sites (SNPs) were found between S. penghuensis and S. maxima.
Collapse
Affiliation(s)
- Chun-Yang Shen
- Department of Biology, Chengde Medical University, Hebei Province, Chengde, PR China
| | - Pei-Zheng Wang
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, PR China
| | - Wei Xue
- Department of Chemical Engineering, Chengde Petroleum College, Chengde, PR China
| | - Zhao-Hui Liu
- Department of Biology, Chengde Medical University, Hebei Province, Chengde, PR China
| | - Jing-Yi Zhao
- Department of Functional Center, Chengde Medical University, Hebei Province, Chengde, PR China
| | - Xiao-Bo Tong
- Hemorheology Center, Chengde Medical University, Hebei Province, Chengde, PR China
| | - Chunwei Liu
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, PR China
| | - Xiao-Fang Wu
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, PR China
| | - Xiaonan Mao
- Department of Biology, Chengde Medical University, Hebei Province, Chengde, PR China
| | - Sihan Tian
- Department of Biology, Chengde Medical University, Hebei Province, Chengde, PR China
| | - Chunzheng Fu
- Institute of Sericulture, Chengde Medical University, Hebei Province, Chengde, PR China
| |
Collapse
|
15
|
Papetti C, Babbucci M, Dettai A, Basso A, Lucassen M, Harms L, Bonillo C, Heindler FM, Patarnello T, Negrisolo E. Not Frozen in the Ice: Large and Dynamic Rearrangements in the Mitochondrial Genomes of the Antarctic Fish. Genome Biol Evol 2021; 13:6133229. [PMID: 33570582 PMCID: PMC7936035 DOI: 10.1093/gbe/evab017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
The vertebrate mitochondrial genomes generally present a typical gene order. Exceptions are uncommon and important to study the genetic mechanisms of gene order rearrangements and their consequences on phylogenetic output and mitochondrial function. Antarctic notothenioid fish carry some peculiar rearrangements of the mitochondrial gene order. In this first systematic study of 28 species, we analyzed known and undescribed mitochondrial genome rearrangements for a total of eight different gene orders within the notothenioid fish. Our reconstructions suggest that transpositions, duplications, and inversion of multiple genes are the most likely mechanisms of rearrangement in notothenioid mitochondrial genomes. In Trematominae, we documented an extremely rare inversion of a large genomic segment of 5,300 bp that partially affected the gene compositional bias but not the phylogenetic output. The genomic region delimited by nad5 and trnF, close to the area of the Control Region, was identified as the hot spot of variation in Antarctic fish mitochondrial genomes. Analyzing the sequence of several intergenic spacers and mapping the arrangements on a newly generated phylogeny showed that the entire history of the Antarctic notothenioids is characterized by multiple, relatively rapid, events of disruption of the gene order. We hypothesized that a pre-existing genomic flexibility of the ancestor of the Antarctic notothenioids may have generated a precondition for gene order rearrangement, and the pressure of purifying selection could have worked for a rapid restoration of the mitochondrial functionality and compactness after each event of rearrangement.
Collapse
Affiliation(s)
- Chiara Papetti
- Department of Biology, University of Padova, Padova 35121,Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma 00196, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Agnes Dettai
- Institut de Systematique, Evolution, Biodiversité (ISYEB) Muséum national d'Histoire naturelle-CNRS-Sorbonne Université-EPHE, MNHN, Paris 75005, France
| | - Andrea Basso
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Magnus Lucassen
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany
| | - Lars Harms
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany.,Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), Ammerlsity of Oldenburg (HIFMOldenburg 26129, Germany
| | - Celine Bonillo
- Service de Systématique Moléculaire, UMS2700 Acquisition et Analyse de Données (2AD), MNHN, Paris 75005, France
| | | | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy.,CRIBI Interdepartmental Research Centre for Innovative Biotechnologies, University of Padova, viale G. Colombo 3, Padova 35121, Italy
| |
Collapse
|
16
|
McFadden CS, Quattrini AM, Brugler MR, Cowman PF, Dueñas LF, Kitahara MV, Paz-García DA, Reimer JD, Rodríguez E. Phylogenomics, Origin, and Diversification of Anthozoans (Phylum Cnidaria). Syst Biol 2021; 70:635-647. [PMID: 33507310 DOI: 10.1093/sysbio/syaa103] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023] Open
Abstract
Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].
Collapse
Affiliation(s)
- Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.,Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA.,Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902, USA
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Luisa F Dueñas
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 30 No.45-03 Edificio 421, Bogotá, D.C., Colombia
| | - Marcelo V Kitahara
- Department of Marine Science, Federal University of São Paulo, Santos, SP 11070-100 Brazil.,Centre for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109 Brazil
| | - David A Paz-García
- CONACyT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Laboratorio de Necton y Ecología de Arrecifes. Calle IPN 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, B.C.S., México
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Science, Chemistry, and Biology, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
17
|
Poliseno A, Altuna A, Puetz LC, Mak SST, Ríos P, Petroni E, McFadden CS, Sørensen MV, Gilbert MTP. An integrated morphological–molecular approach reveals new insights on the systematics of the octocoral Telestula humilis (Thomson, 1927) (Octocorallia:Alcyonacea:Clavulariidae). INVERTEBR SYST 2021. [DOI: 10.1071/is20009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Telestula humilis (Thomson, 1927) is a rare deep-sea stoloniferan octocoral distributed in the eastern Atlantic. Here we compared seven putative colonies of this species collected off Spain with the lectotype from the Oceanographic Museum of Monaco and found them to be identical morphologically. Phylogenetic analyses on both full mitogenomes and a concatenated alignment containing two mtDNA genes (mtMutS and Cox1) and nuclear 28S rRNA gene recovered Telestula humilis sister to Incrustatus and Inconstantia rather than to other species of Telestula. This therefore supports its taxonomic reassignment to Pseudotelestula gen. nov. as Pseudotelestula humilis comb. nov. The taxonomic reassignment is also supported by subtle differences observed between the morphology of the colony and the sclerome of Pseudotelestula humilis comb. nov. and the two sister genera. The occurrence of an intrusion tissue with sclerites in the basal part of the gastric cavity of the adult polyps is shared among Telestula and Pseudotelestula gen. nov. However, Pseudotelestula gen. nov. has sclerites arranged in a collaret and points below the tentacles, the sclerites of the calyx wall and the stolon are plump warty spindles, and the intrusion tissue has long sticks and spindles with cone-like spines.
Collapse
|
18
|
Seiblitz IGL, Capel KCC, Stolarski J, Quek ZBR, Huang D, Kitahara MV. The earliest diverging extant scleractinian corals recovered by mitochondrial genomes. Sci Rep 2020; 10:20714. [PMID: 33244171 PMCID: PMC7693180 DOI: 10.1038/s41598-020-77763-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging "Basal" lineage remains poorly studied compared to "Robust" and "Complex" corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confirm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as well as its microstructural differences with Gardineriidae. The fact that both families share features with family Kilbuchophylliidae ultimately points towards a Middle Ordovician origin for Scleractinia.
Collapse
Affiliation(s)
- Isabela G L Seiblitz
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil.
| | - Kátia C C Capel
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | | | | | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Marcelo V Kitahara
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| |
Collapse
|
19
|
Patoka J, Prabowo RE, Petrtýl M, Reynolds JD, Kuříková P, Zámečníková-Wanma BPD, Kalous L. Marine hitchhikers: a preliminary study on invertebrates unintentionally transported via the international pet trade. NEOBIOTA 2020. [DOI: 10.3897/neobiota.61.57682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pet trade in aquatic organisms is a significant source of non-indigenous species introductions. In comparison with ornamental animals, unintentionally transported invertebrate assemblages are easily overlooked by traders and keepers. Moreover, hitchhiking species detection and identification is difficult even for experts. The densities of “hitchhikers” in aquaria may be relatively higher than those in the wild. These phenomena are known in freshwater aquaria but poorly studied in marine ones. We found 17 species of non-ornamental marine invertebrates in one of the leading importers of aquarium species in the Czech Republic in November 2017. The set comprised six gastropods, two bivalves, three cnidarians, two echinoderms, two crustaceans, and two polychaete worms. In one case, a symbiont was also detected, associated with the host “hitchhiker”. No “live rocks” are traded by the surveyed wholesaler. Thus, the found animals were not imported together with this item as larvae or eggs. Contrary to the transport of targeted ornamental species, it is clear that transport of “hitchhikers” is occurring despite standard legislative regulations and should be brought to the attention of conservationists, wildlife managers, policymakers and other stakeholders.
Collapse
|
20
|
Hill GE. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecol Evol 2020; 10:9048-9059. [PMID: 32953045 PMCID: PMC7487244 DOI: 10.1002/ece3.6640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding based on mitochondrial (mt) nucleotide sequences is an enigma. Neutral models of mt evolution predict DNA barcoding cannot work for recently diverged taxa, and yet, mt DNA barcoding accurately delimits species for many bilaterian animals. Meanwhile, mt DNA barcoding often fails for plants and fungi. I propose that because mt gene products must cofunction with nuclear gene products, the evolution of mt genomes is best understood with full consideration of the two environments that impose selective pressure on mt genes: the external environment and the internal genomic environment. Moreover, it is critical to fully consider the potential for adaptive evolution of not just protein products of mt genes but also of mt transfer RNAs and mt ribosomal RNAs. The tight linkage of genes on mt genomes that do not engage in recombination could facilitate selective sweeps whenever there is positive selection on any element in the mt genome, leading to the purging of mt genetic diversity within a population and to the rapid fixation of novel mt DNA sequences. Accordingly, the most important factor determining whether or not mt DNA sequences diagnose species boundaries may be the extent to which the mt chromosomes engage in recombination.
Collapse
|
21
|
Comparative Analysis of Complete Mitochondrial Genomes of Three Gerres Fishes (Perciformes: Gerreidae) and Primary Exploration of Their Evolution History. Int J Mol Sci 2020; 21:ijms21051874. [PMID: 32182936 PMCID: PMC7084342 DOI: 10.3390/ijms21051874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.
Collapse
|
22
|
Pérez CD, Cordeiro RTS. Ideogorgia laurae, an uncommon new octocoral species (Alcyonacea: Keroeididae) from a newly established Marine Protected Area at Burdwood Bank, Argentina. Polar Biol 2019. [DOI: 10.1007/s00300-019-02604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
24
|
Shen CY, Dan YT, Asem A, Wang PZ, Xue W, Tong XB, Li W. The complete mitochondrial genome of soft coral Sarcophyton trocheliophorum (Cnidaria: Anthozoa) using next-generation sequencing. Mitochondrial DNA B Resour 2019; 4:3734-3735. [PMID: 33366165 PMCID: PMC7707615 DOI: 10.1080/23802359.2019.1679677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022] Open
Abstract
The complete mitochondrial genome of Sarcophyton trocheliophorum was completed using next-generation sequencing (NGS) method. The mitochondrial genome is a circular molecule of 18,508 bp in length, containing 14 protein-coding genes, two ribosomal RNA genes and one transfer RNA gene (Met-tRNA). The base composition is 30.45% A, 16.03% C, 19.13% G, and 34.40% T, with an A + T content of 64.85%. A phylogenetic analysis of Alcyoniidae showed that genus Sarcophyton had the closest relationship with Sinularia.
Collapse
Affiliation(s)
- Chun-Yang Shen
- Department of Biology, Chengde Medical University, Chengde, Hebei Province, China
| | - Ya-Ting Dan
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Alireza Asem
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Pei-Zheng Wang
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Wei Xue
- Department of Chemical Engineering, Chengde Petroleum College, Chengde, China
| | - Xiao-Bo Tong
- Department of Physiology, Chengde Medical University, Chengde, Hebei Province, China
| | - Weidong Li
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
25
|
Li WN, Xue XF. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Oribatida s.l. represents one of the most species-rich mite lineages, including two recognized groups: oribatid mites (Oribatida s.s., non-astigmatan oribatids) and astigmatid mites (Astigmata). However, the relationship between these two groups has been debated. Here, we sequenced the complete mitochondrial (mt) genome of one oribatid mite and one astigmatid mite, retrieved complete mt genomes of three oribatid mites, and compared them with two other oribatid mites and 12 astigmatid mites sequenced previously. We find that gene orders in the mt genomes of both oribatid mites and astigmatid mites are rearranged relative to the hypothetical ancestral arrangement of the arthropods. Based on the shared derived gene clusters in each mt genome group, rearranged mt genomes are roughly divided into two groups corresponding to each mite group (oribatid mites or astigmatid mites). Phylogenetic results show that Astigmata nested in Oribatida. The monophyly of Astigmata is recovered, while paraphyly of Oribatida s.s. is observed. Our results show that rearranged gene orders in the mt genomes characterize various lineages of oribatid mites and astigmatid mites, and have potential phylogenetic information for resolving the high-level (cohort or supercohort) phylogeny of Oribatida.
Collapse
Affiliation(s)
- Wei-Ning Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | |
Collapse
|
26
|
Cole LW, Guo W, Mower JP, Palmer JD. High and Variable Rates of Repeat-Mediated Mitochondrial Genome Rearrangement in a Genus of Plants. Mol Biol Evol 2019; 35:2773-2785. [PMID: 30202905 DOI: 10.1093/molbev/msy176] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For 30 years, it has been clear that angiosperm mitochondrial genomes evolve rapidly in sequence arrangement (i.e., synteny), yet absolute rates of rearrangement have not been measured in any plant group, nor is it known how much these rates vary. To investigate these issues, we sequenced and reconstructed the rearrangement history of seven mitochondrial genomes in Monsonia (Geraniaceae). We show that rearrangements (occurring mostly as inversions) not only take place at generally high rates in these genomes but also uncover significant variation in rearrangement rates. For example, the hyperactive mitochondrial genome of Monsonia ciliata has accumulated at least 30 rearrangements over the last million years, whereas the branch leading to M. ciliata and its sister species has sustained rearrangement at a rate that is at least ten times lower. Furthermore, our analysis of published data shows that rates of mitochondrial genome rearrangement in seed plants vary by at least 600-fold. We find that sites of rearrangement are highly preferentially located in very close proximity to repeated sequences in Monsonia. This provides strong support for the hypothesis that rearrangement in angiosperm mitochondrial genomes occurs largely through repeat-mediated recombination. Because there is little variation in the amount of repeat sequence among Monsonia genomes, the variable rates of rearrangement in Monsonia probably reflect variable rates of mitochondrial recombination itself. Finally, we show that mitochondrial synonymous substitutions occur in a clock-like manner in Monsonia; rates of mitochondrial substitutions and rearrangements are therefore highly uncoupled in this group.
Collapse
Affiliation(s)
- Logan W Cole
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
27
|
Rivera-García L, Rivera-Vicéns RE, Veglia AJ, Schizas NV. De novo transcriptome assembly of the digitate morphotype of Briareum asbestinum (Octocorallia: Alcyonacea) from the southwest shelf of Puerto Rico. Mar Genomics 2019; 47:100676. [PMID: 31005610 DOI: 10.1016/j.margen.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
Abstract
Octocorals have now become the most visually dominant metazoan benthic taxa of most Caribbean reefs, following the precipitous decline of scleractinian corals. Yet taxonomic issues because of their extensive phenotypic plasticity are still abound. Briareum asbestinum one of the iconic octocorals of the shallow Caribbean coral reefs exhibits a biform morphology, the digitate and the encrusting one. The taxonomic status of each form has not been clarified, yet. Until recently, there were few genetic resources for non-model metazoans, however, affordable high-throughput DNA sequencing has removed this hindrance. We present the first transcriptome of the digitate form of Briareum asbestinum from southwest Puerto Rico. We used paired-end sequencing (Illumina NextSeq 500), with a total yield of 159,754,702 raw reads. De novo assembly was performed utilizing a multi-assembler approach generating 371,554 biologically true, non-redundant transcripts. Open reading frame analysis identified 102,839 putative ORFs of which 78,607 were with annotations. BUSCO analysis indicated a total of 96.4% complete orthologous genes from the metazoan dataset. The assembly presented here serves as an important new genomic reference for the Briareum genus that will facilitate future population and phylogenetic studies aiming to better understand the molecular basis of phenotypic plasticity exhibited throughout the genus.
Collapse
Affiliation(s)
- Liajay Rivera-García
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA
| | - Ramón E Rivera-Vicéns
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA; Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alex J Veglia
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA
| | - Nikolaos V Schizas
- Department of Marine Sciences, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR 00681, USA.
| |
Collapse
|
28
|
Easton EE, Hicks D. Complete mitochondrial genome of Callogorgia cf. gracilis (Octocorallia: Calcaxonia: Primnoidae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1544042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Erin E. Easton
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - David Hicks
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
29
|
Galaska MP, Li Y, Kocot KM, Mahon AR, Halanych KM. Conservation of mitochondrial genome arrangements in brittle stars (Echinodermata, Ophiuroidea). Mol Phylogenet Evol 2018; 130:115-120. [PMID: 30316947 DOI: 10.1016/j.ympev.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Brittle stars are conspicuous members of benthic ecosystems, fill many ecological niches and are the most speciose of all classes of echinoderms. With high levels of biodiversity, elucidating the evolutionary history of this group is important. Understanding of higher-level relationships within Ophiuroidea has been aided by multilocus nuclear data and DNA barcoding. However, the degree of consistency between mitochondrial and nuclear data within ophiuroids remains unclear and deserves further assessment. In this study, 17 mitochondrial genomes spanning the taxonomic breadth of Ophiuroidea were utilized to explore evolutionary relationships through maximum likelihood analyses, Bayesian inference and comparative assessment of gene order. Our phylogenetic analyses, based on both nucleotide and amino acid residues, support recent findings based on multilocus nuclear data and morphology, in that the brittle star clades Ophintegrida and Euryophiurida were recovered as monophyletic with the latter comprising Euyalida, Ophiuridae and Ophiopyrgidae. Only three different arrangements of the 13 protein coding and 2 ribosomal RNA genes were observed. As expected, tRNA genes were more likely to have undergone rearrangement but the order of all 37 genes was found to be conserved in all sampled Euryalida and Ophiuridae. Both Euryalida and the clade comprised of Ophiuridae and Ophiopyrgidae, each had their own conserved rearrangement of protein coding genes and ribosomal genes, after divergence from their last common ancestor. Euryalida has a rearrangement of the two ribosomal RNA genes, rrnS and rrnL, in contrast to Ophiuridae and Ophiopyrgidae, which had an inversion of the genes nad1, nad2, and cob relative to Ophintegrida. Further, our data support the gene order found in all sampled Euryalida as the most likely ancestral order for all Ophiuroidea.
Collapse
Affiliation(s)
- Matthew P Galaska
- Department of Biological Sciences, Auburn University, Molette Biology Laboratory for Environmental and Climate Change Studies, 101 Rouse Life Science Building, Auburn, AL 36849, USA; Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| | - Yuanning Li
- Department of Biological Sciences, Auburn University, Molette Biology Laboratory for Environmental and Climate Change Studies, 101 Rouse Life Science Building, Auburn, AL 36849, USA
| | - Kevin M Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Andrew R Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Kenneth M Halanych
- Department of Biological Sciences, Auburn University, Molette Biology Laboratory for Environmental and Climate Change Studies, 101 Rouse Life Science Building, Auburn, AL 36849, USA.
| |
Collapse
|
30
|
Poliseno A, Feregrino C, Sartoretto S, Aurelle D, Wörheide G, McFadden CS, Vargas S. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae). Mol Phylogenet Evol 2017; 115:181-189. [PMID: 28782594 DOI: 10.1016/j.ympev.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms.
Collapse
Affiliation(s)
- Angelo Poliseno
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 München, Germany.
| | - Christian Feregrino
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 München, Germany.
| | - Stéphane Sartoretto
- IFREMER, Z.P: de Brègaillon, CS 20330, 83507 La Seyne-sur-mer Cedex, France.
| | - Didier Aurelle
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, 13007 Marseille, France.
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 München, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 München, Germany; Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany.
| | | | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 München, Germany.
| |
Collapse
|
31
|
Abstract
BACKGROUND Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals. RESULTS We characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5' and/or 3' untranslated regions of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, the mtMutS, was found to undergo alternative polyadenylation, and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected. CONCLUSIONS Mt-mRNA processing in octocorals possessing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represent a first step towards understanding its functional and evolutionary implications.
Collapse
|
32
|
Soler-Hurtado MM, López-González PJ, Machordom A. Molecular phylogenetic relationships reveal contrasting evolutionary patterns in Gorgoniidae (Octocorallia) in the Eastern Pacific. Mol Phylogenet Evol 2017; 111:219-230. [PMID: 28344106 DOI: 10.1016/j.ympev.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
The description and delimitation of species in an evolutionary framework is essential for understanding patterns of biodiversity and distribution, and in the assessment of conservation strategies for natural resources. This study seeks to clarify the evolutionary history and genetic variation within and between closely related octocoral species that are fundamental to benthic marine ecosystems for harbouring a high diversity of associated fauna. For our study system, we focused on members of the Gorgoniidae family in the Eastern Pacific, particularly of the Ecuadorian littoral, a less studied marine ecosystem. According to our results, the diagnosis of the genus Pacifigorgia is here amended to include species previously considered in the genus Leptogorgia. The genera Leptogorgia and Eugorgia are included within a single clade, and neither are recovered as monophyletic. In this case, according to the priority rule of the International Code of Zoological Nomenclature (ICZN), our proposal is to include the species considered in these two genera in Leptogorgia. In addition, we found evidence of interesting speciation patterns: morphological differentiation with no apparent genetic differentiation (in Pacifigorgia), and inconsistencies between mitochondrial and nuclear data that suggest a hybridisation phenomenon (in Leptogorgia). In the first case, recent radiation, ancient hybridisation, sympatric speciation, and in the second, reticulate evolution may have contributed to the evolutionary history of the studied taxa. Therefore, incongruences observed between morphological and molecular evidences in these octocorals, and in corals in general, may reveal the types of events/patterns that have influenced their evolution.
Collapse
Affiliation(s)
- M M Soler-Hurtado
- Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain; Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto Nacional de Biodiversidad, Museo Ecuatoriano de Ciencias Naturales, Rumipamba 341 y Av. Shyris, Quito, Ecuador.
| | - P J López-González
- Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - A Machordom
- Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| |
Collapse
|
33
|
Historical biogeography and mitogenomics of two endemic Mediterranean gorgonians (Holaxonia, Plexauridae). ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0322-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Aguado MT, Richter S, Sontowski R, Golombek A, Struck TH, Bleidorn C. Syllidae mitochondrial gene order is unusually variable for Annelida. Gene 2016; 594:89-96. [DOI: 10.1016/j.gene.2016.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/21/2016] [Accepted: 08/29/2016] [Indexed: 01/16/2023]
|
35
|
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016; 8:2896-2913. [PMID: 27557826 PMCID: PMC5633667 DOI: 10.1093/gbe/evw195] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Walker Pett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
36
|
Lin MF, Kitahara MV, Luo H, Tracey D, Geller J, Fukami H, Miller DJ, Chen CA. Mitochondrial genome rearrangements in the scleractinia/corallimorpharia complex: implications for coral phylogeny. Genome Biol Evol 2016; 6:1086-95. [PMID: 24769753 PMCID: PMC4040992 DOI: 10.1093/gbe/evu084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Corallimorpharia is a small Order of skeleton-less animals that is closely related to the reef-building corals (Scleractinia) and of fundamental interest in the context of understanding the potential impacts of climate change in the future on coral reefs. The relationship between the nominal Orders Corallimorpharia and Scleractinia is controversial—the former is either the closest outgroup to the Scleractinia or alternatively is derived from corals via skeleton loss. This latter scenario, the “naked coral” hypothesis, is strongly supported by analyses based on mitochondrial (mt) protein sequences, whereas the former is equally strongly supported by analyses of mt nucleotide sequences. The “naked coral” hypothesis seeks to link skeleton loss in the putative ancestor of corallimorpharians with a period of elevated oceanic CO2 during the Cretaceous, leading to the idea that these skeleton-less animals may be harbingers for the fate of coral reefs under global climate change. In an attempt to better understand their evolutionary relationships, we examined mt genome organization in a representative range (12 species, representing 3 of the 4 extant families) of corallimorpharians and compared these patterns with other Hexacorallia. The most surprising finding was that mt genome organization in Corallimorphus profundus, a deep-water species that is the most scleractinian-like of all corallimorpharians on the basis of morphology, was much more similar to the common scleractinian pattern than to those of other corallimorpharians. This finding is consistent with the idea that C. profundus represents a key position in the coral <-> corallimorpharian transition.
Collapse
Affiliation(s)
- Mei-Fang Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Figueroa DF, Baco AR. Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and cnidarian phylogenetics. Genome Biol Evol 2014; 7:391-409. [PMID: 25539723 PMCID: PMC4316637 DOI: 10.1093/gbe/evu286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 11/24/2022] Open
Abstract
We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available.
Collapse
Affiliation(s)
- Diego F Figueroa
- Present address: Department of Biological Sciences, University of Texas, Brownsville, TX
| | - Amy R Baco
- Department of Earth, Ocean and Atmospheric Science, Florida State University
| |
Collapse
|
38
|
Wu JS, Ju YM, Hsiao ST, Hsu CH. Complete mitochondrial genome of Junceella fragilis (Gorgonacea, Ellisellidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1229-30. [PMID: 25090396 DOI: 10.3109/19401736.2014.945531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this article, the complete mitogenome of the Octocorallia, zooxanthellate, Junceella fragilis has been amplified and sequenced. This mitochondrial genome consists of 18,724 bp, with 14 protein-coding genes, 2 ribosomal RNA genes, 1 transfer RNA genes, no intron was observed. It has been observed that a mitochondrial mismatch repair (mtMutS) gene was present in all octocorals. The overall base composition of the heavy strand was A, 29.1%; G, 20.4%; C, 33.0%; and T, 17.5%, with a slight AT bias of 62.1%. The complete mitogenomic data may provide more informative for phylogenetic approach for soft corals phylogeny especially for octocorallian species.
Collapse
Affiliation(s)
- Jui-Shien Wu
- a Eastern Marine Biology Research Center of Fisheries Research Institute, Council of Agriculture , Taitung , Taiwan , R.O.C.
| | - Yu-Min Ju
- b National Museum of Marine Biology and Aquarium , Pingtung , Taiwan , R.O.C.
| | - Sheng-Tai Hsiao
- c Marine Fisheries Division , Fisheries Research Institute , Keelung , Taiwan , R.O.C. , and
| | - Chi-Hsin Hsu
- d Department of Marine Biotechnology and Resources , National Sun Yat-Sen University , Kaohsiung , Taiwan , R.O.C
| |
Collapse
|
39
|
Stampar SN, Maronna MM, Kitahara MV, Reimer JD, Morandini AC. Fast-evolving mitochondrial DNA in Ceriantharia: a reflection of hexacorallia paraphyly? PLoS One 2014; 9:e86612. [PMID: 24475157 PMCID: PMC3903554 DOI: 10.1371/journal.pone.0086612] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
The low evolutionary rate of mitochondrial genes in Anthozoa has challenged their utility for phylogenetic and systematic purposes, especially for DNA barcoding. However, the evolutionary rate of Ceriantharia, one of the most enigmatic "orders" within Anthozoa, has never been specifically examined. In this study, the divergence of mitochondrial DNA of Ceriantharia was compared to members of other Anthozoa and Medusozoa groups. In addition, nuclear markers were used to check the relative phylogenetic position of Ceriantharia in relation to other Cnidaria members. The results demonstrated a pattern of divergence of mitochondrial DNA completely different from those estimated for other anthozoans, and phylogenetic analyses indicate that Ceriantharia is not included within hexacorallians in most performed analyses. Thus, we propose that the Ceriantharia should be addressed as a separate clade.
Collapse
Affiliation(s)
- Sérgio N. Stampar
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Laboratório de Biologia Aquática - LABIA, Faculdade de Ciências e Letras de Assis, Departamento de Ciências Biológicas, Assis, São Paulo, Brazil
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, São Paulo, Brazil
| | - Maximiliano M. Maronna
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, São Paulo, Brazil
| | - Marcelo V. Kitahara
- Universidade de São Paulo, Centro de Biologia Marinha, São Sebastião, São Paulo, Brazil
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - André C. Morandini
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Mao M, Austin AD, Johnson NF, Dowton M. Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization. Mol Biol Evol 2013; 31:636-44. [PMID: 24336845 DOI: 10.1093/molbev/mst255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recombination has been proposed as a possible mechanism to explain mitochondrial (mt) gene rearrangements, although the issue of whether mtDNA recombination occurs in animals has been controversial. In this study, we sequenced the entire mt genome of the megaspilid wasp Conostigmus sp., which possessed a highly rearranged mt genome. The sequence of the A+T-rich region contained a number of different types of repeats, similar to those reported previously in the nematode Meloidogyne javanica, in which recombination was discovered. In Conostigmus, we detected the end products of recombination: a range of minicircles. However, using isolated (cloned) fragments of the A+T-rich region, we established that some of these minicircles were found to be polymerase chain reaction (PCR) artifacts. It appears that regions with repeats are prone to PCR template switching or PCR jumping. Nevertheless, there is strong evidence that one minicircle is real, as amplification primers that straddle the putative breakpoint junction produce a single strong amplicon from genomic DNA but not from the cloned A+T-rich region. The results provide support for the direct link between recombination and mt gene rearrangement. Furthermore, we developed a model of recombination which is important for our understanding of mtDNA evolution.
Collapse
Affiliation(s)
- Meng Mao
- Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
41
|
McFadden CS, van Ofwegen LP. Molecular phylogenetic evidence supports a new family of octocorals and a new genus of Alcyoniidae (Octocorallia, Alcyonacea). Zookeys 2013:59-83. [PMID: 24223488 PMCID: PMC3821066 DOI: 10.3897/zookeys.346.6270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/19/2013] [Indexed: 11/17/2022] Open
Abstract
Molecular phylogenetic evidence indicates that the octocoral family Alcyoniidae is highly polyphyletic, with genera distributed across Octocorallia in more than 10 separate clades. Most alcyoniid taxa belong to the large and poorly resolved Holaxonia–Alcyoniina clade of octocorals, but members of at least four genera of Alcyoniidae fall outside of that group. As a first step towards revision of the family, we describe a new genus, Parasphaerascleragen. n., and family, Parasphaerascleridae fam. n., of Alcyonacea to accommodate species of Eleutherobia Pütter, 1900 and Alcyonium Linnaeus, 1758 that have digitiform to digitate or lobate growth forms, completely lack sclerites in the polyps, and have radiates or spheroidal sclerites in the colony surface and interior. Parasphaerascleridae fam. n. constitutes a well-supported clade that is phylogenetically distinct from all other octocoral taxa. We also describe a new genus of Alcyoniidae, Sphaerascleragen. n., for a species of Eleutherobia with a unique capitate growth form. Sphaerascleragen. n. is a member of the Anthomastus–Corallium clade of octocorals, but is morphologically and genetically distinct from Anthomastus Verrill, 1878 and Paraminabea Williams & Alderslade, 1999, two similar but dimorphic genera of Alcyoniidae that are its sister taxa. In addition, we have re-assigned two species of Eleutherobia that have clavate to capitate growth forms, polyp sclerites arranged to form a collaret and points, and spindles in the colony interior to Alcyonium, a move that is supported by both morphological and molecular phylogenetic evidence.
Collapse
Affiliation(s)
- Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | | |
Collapse
|
42
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Buenteweg 17d, D-30559 Hannover, Germany.
| | | | | | | | | |
Collapse
|
43
|
Quattrini AM, Georgian SE, Byrnes L, Stevens A, Falco R, Cordes EE. Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol Ecol 2013; 22:4123-40. [PMID: 23786376 DOI: 10.1111/mec.12370] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/22/2013] [Accepted: 04/25/2013] [Indexed: 11/29/2022]
Abstract
Environmental variables that are correlated with depth have been suggested to be among the major forces underlying speciation in the deep sea. This study incorporated phylogenetics and ecological niche models (ENM) to examine whether congeneric species of Callogorgia (Octocorallia: Primnoidae) occupy different ecological niches across the continental slope of the Gulf of Mexico (GoM) and whether this niche divergence could be important in the evolution of these closely related species. Callogorgia americana americana, Callogorgia americana delta and Callogorgia gracilis were documented at 13 sites in the GoM (250-1000 m) from specimen collections and extensive video observations. On a first order, these species were separated by depth, with C. gracilis occurring at the shallowest sites, C. a. americana at mid-depths and C. a. delta at the deepest sites. Callogorgia a. delta was associated with areas of increased seep activity, whereas C. gracilis and C. a. americana were associated with narrow, yet warmer, temperature ranges and did not occur near cold seeps. ENM background and identity tests revealed little to no overlap in ecological niches between species. Temporal calibration of the phylogeny revealed the formation of the Isthmus of Panama was a vicariance event that may explain some of the patterns of speciation within this genus. These results elucidate the potential mechanisms for speciation in the deep sea, emphasizing both bathymetric speciation and vicariance events in the evolution of a genus across multiple regions.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Biology, Temple University, 1900 N 12th St, Philadelphia, PA 19122, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Uda K, Komeda Y, Fujita T, Iwasaki N, Bavestrello G, Giovine M, Cattaneo-Vietti R, Suzuki T. Complete mitochondrial genomes of the Japanese pink coral (Corallium elatius) and the Mediterranean red coral (Corallium rubrum): a reevaluation of the phylogeny of the family Coralliidae based on molecular data. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:209-19. [PMID: 23792378 DOI: 10.1016/j.cbd.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 11/30/2022]
Abstract
Precious corals are soft corals belonging to the family Coralliidae (Anthozoa: Octocorallia: Alcyonacea) and class Anthozoa, whose skeletal axes are used for jewelry. The family Coralliidae includes ca. 40 species and was originally thought to comprise of the single genus Corallium. In 2003, Corallium was split into two genera, Corallium and Paracorallium, and seven species were moved to this newly identified genus on the bases of morphological features. Previously, we determined the complete mitochondrial genome sequence of two precious corals Paracorallium japonicum and Corallium konojoi, in order to clarify their systematic positions. The two genomes showed high nucleotide sequence identity, but their gene order arrangements were not identical. Here, we determined three complete mitochondrial genome sequences from the one specimen of Mediterranean Corallium rubrum and two specimens of Corallium elatius coming from Kagoshima (South Japan). The circular mitochondrial genomes of C. rubrum and C. elatius are 18,915bp and 18,969-18,970bp in length, respectively, and encode 14 typical octocorallian protein-coding genes (nad1-6, nad4L, cox1-3, cob, atp6, atp8, and mtMutS, which is an octocoral-specific mismatch repair gene homologue), two ribosomal RNA genes (rns and rnl), and one transfer RNA (trnM). The overall nucleotide differences between C. konojoi and each C. elatius haplotype (T2007 and I2011) are only 10 and 11 nucleotides, respectively; this degree of similarity indicates that C. elatius and C. konojoi are very closely related species. Notably, the C. rubrum mitochondrial genome shows more nucleotide sequence identity to P. japonicum (99.5%) than to its congeneric species C. konojoi (95.3%) and C. elatius (95.3%). Moreover, the gene order arrangement of C. rubrum was the same as that of P. japonicum, while that of C. elatius was the same as C. konojoi. Phylogenetic analysis based on three mitochondrial genes from 24 scleraxonian species shows that the family Coralliidae is separated into two distinct groups, recovering Corallium as a paraphyletic genus. Our results indicate that the currently accepted generic classification of Coralliidae should be reconsidered.
Collapse
Affiliation(s)
- Kouji Uda
- Laboratories of Biochemistry, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pante E, Saucier EH, France SC. Molecular and morphological data support reclassification of the octocoral genus Isidoides. INVERTEBR SYST 2013. [DOI: 10.1071/is12053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The rare octocoral genus Isidoides Nutting, 1910 was originally placed in the Gorgonellidae (now the Ellisellidae), even though it showed a remarkable similarity to the Isidae (now the Isididae). Isidoides was not classified in the Isididae mostly because the type specimen lacked skeletal nodes, a defining characteristic of that family. The genus was later assigned to the Chrysogorgiidae based on sclerite morphology. Specimens were recently collected in the south-western Pacific, providing material for genetic analysis and detailed characterisation of the morphology, and allowing us to consider the systematic placement of this taxon within the suborder Calcaxonia. A previously reported phylogeny allowed us to reject monophyly with the Chrysogorgiidae, and infer a close relationship with the Isididae subfamily Keratoisidinae. While scanning for molecular variation across mitochondrial genes, we discovered a novel gene order that is, based on available data, unique among metazoans. Despite these new data, the systematic placement of Isidoides is still unclear, as (1) the phylogenetic relationships among Isididae subfamilies remain poorly resolved, (2) genetic distances between mitochondrial mtMutS sequences from Isidoides and Keratoisidinae are characteristic of intra-familial distances, and (3) mitochondrial gene rearrangements may occur among confamilial genera. For these reasons, and because a revision of the Isididae is beyond the scope of this contribution, we amend the familial placement of Isidoides to incertae sedis.
Collapse
|