1
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
2
|
Yang X, Liu Z, Zhang Y, Shi X, Wu Z. Dinoflagellate-Bacteria Interactions: Physiology, Ecology, and Evolution. BIOLOGY 2024; 13:579. [PMID: 39194517 DOI: 10.3390/biology13080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
Dinoflagellates and heterotrophic bacteria are two major micro-organism groups within marine ecosystems. Their coexistence has led to a co-evolutionary relationship characterized by intricate interactions that not only alter their individual behaviors but also exert a significant influence on the broader biogeochemical cycles. Our review commenced with an analysis of bacterial populations, both free-living and adherent to dinoflagellate surfaces. Members of Alphaproteobacteria, Gammaproteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group are repeatedly found to be associated with dinoflagellates, with representation by relatively few genera, such as Methylophaga, Marinobacter, and Alteromonas. These bacterial taxa engage with dinoflagellates in a limited capacity, involving nutrient exchange, the secretion of pathogenic substances, or participation in chemical production. Furthermore, the genomic evolution of dinoflagellates has been profoundly impacted by the horizontal gene transfer from bacteria. The integration of bacterial genes into dinoflagellates has been instrumental in defining their biological characteristics and nutritional strategies. This review aims to elucidate the nuanced interactions between dinoflagellates and their associated bacteria, offering a detailed perspective on their complex relationship.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yanwen Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xinguo Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
3
|
Wang H, Wu P, Xiong L, Kim HS, Kim JH, Ki JS. Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms. Eur J Protistol 2024; 93:126061. [PMID: 38394997 DOI: 10.1016/j.ejop.2024.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lu Xiong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
4
|
Park H, Kim HS, Abassi S, Bui QTN, Ki JS. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169983. [PMID: 38215848 DOI: 10.1016/j.scitotenv.2024.169983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The present study identified two novel glutathione S-transferase (GST) genes from the toxic dinoflagellate Alexandrium pacificum and examined their molecular characteristics and transcriptional responses to algicides and environmental contaminants. Bioinformatic analysis revealed that both ApGSTs are cytosolic, belonging to the chi-like class (ApGST1) and an undefined class (ApGST2). The overall expression of ApGSTs showed similar patterns depending on the exposed contaminants, while they were differently regulated by polychlorinated biphenyl (PCB). Copper treatments (CuCl2 and CuSO4) did not significantly induce the expression of ApGSTs. The highest up-regulations of ApGST1 and ApGST2 were under 6-h treatments of 0.10 and 0.50 mg L-1 NaOCl. Interestingly, only ApGST1 increased significantly after 0.10, 0.50, and 1.00 mg L-1 of PCB exposure (6 h). Intracellular reactive oxygen species (ROS) increased considerably under NaOCl; however, it was not significantly higher in the PCB-treated cells. GST activity was increased by NaOCl and PCB treatments, but only PCB caused apoptosis. These results suggest that GSTs are involved in the first line of phase II detoxification, protecting dinoflagellate cells against oxidative damage.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea; Department of Biotechnology, Sangmyung University, Seoul, South Korea.
| |
Collapse
|
5
|
Kim HS, Park H, Wang H, Kim T, Ki JS. Saxitoxins-producing potential of the marine dinoflagellate Alexandrium affine and its environmental implications revealed by toxins and transcriptome profiling. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105874. [PMID: 36689843 DOI: 10.1016/j.marenvres.2023.105874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The marine dinoflagellate Alexandrium occurs widely in coastal waters, and some of them can produce saxitoxins (STXs) that cause paralytic shellfish poisoning (PSP). Alexandrium affine is a harmful algal bloom (HAB)-forming species off the coast of Asia; however, its ability to produce STXs has been controversial. In the present study, we detected STXs in A. affine Alex02 isolated from the southern coast of Korea. The total STXs equivalent (STXs eq) and profiles of Alex02 varied depending on the tested environmental conditions, including the temperature and nitrate concentrations. STXs toxicity levels of A. affine Alex02 (<0.8 STXs eq fmol cell-1) were significantly lower than those of toxic A. catenella Alex03 and A. pacificum Alex05. On a genetic basis, we identified all the STX biosynthesis sxt genes, except sxtX in A. affine, via large-scale transcriptome analysis. Interestingly, the two proteins, sxtA4 and sxtG, were similar in sequence and domain structure to those of other toxic dinoflagellates and cyanobacteria; however, their transcript levels were extremely low. Our results suggest that A. affine has the potential to produce STXs, while its toxicity is much lower or negligible, which is unlikely to cause PSP incidents in marine environments.
Collapse
Affiliation(s)
- Han-Sol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Taehee Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
6
|
Gozashti L, Roy SW, Thornlow B, Kramer A, Ares M, Corbett-Detig R. Transposable elements drive intron gain in diverse eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2209766119. [PMID: 36417430 PMCID: PMC9860276 DOI: 10.1073/pnas.2209766119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
There is massive variation in intron numbers across eukaryotic genomes, yet the major drivers of intron content during evolution remain elusive. Rapid intron loss and gain in some lineages contrast with long-term evolutionary stasis in others. Episodic intron gain could be explained by recently discovered specialized transposons called Introners, but so far Introners are only known from a handful of species. Here, we performed a systematic search across 3,325 eukaryotic genomes and identified 27,563 Introner-derived introns in 175 genomes (5.2%). Species with Introners span remarkable phylogenetic diversity, from animals to basal protists, representing lineages whose last common ancestor dates to over 1.7 billion years ago. Aquatic organisms were 6.5 times more likely to contain Introners than terrestrial organisms. Introners exhibit mechanistic diversity but most are consistent with DNA transposition, indicating that Introners have evolved convergently hundreds of times from nonautonomous transposable elements. Transposable elements and aquatic taxa are associated with high rates of horizontal gene transfer, suggesting that this combination of factors may explain the punctuated and biased diversity of species containing Introners. More generally, our data suggest that Introners may explain the episodic nature of intron gain across the eukaryotic tree of life. These results illuminate the major source of ongoing intron creation in eukaryotic genomes.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| | - Scott W. Roy
- Department of Biology, San Francisco State University, San Francisco, CA94117
| | - Bryan Thornlow
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| | - Alexander Kramer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA95064
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA95064
| |
Collapse
|
7
|
Benites LF, Stephens TG, Bhattacharya D. Multiple waves of viral invasions in Symbiodiniaceae algal genomes. Virus Evol 2022; 8:veac101. [PMID: 36381231 PMCID: PMC9651163 DOI: 10.1093/ve/veac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Dinoflagellates from the family Symbiodiniaceae are phototrophic marine protists that engage in symbiosis with diverse hosts. Their large and distinct genomes are characterized by pervasive gene duplication and large-scale retroposition events. However, little is known about the role and scale of horizontal gene transfer (HGT) in the evolution of this algal family. In other dinoflagellates, high levels of HGTs have been observed, linked to major genomic transitions, such as the appearance of a viral-acquired nucleoprotein that originated via HGT from a large DNA algal virus. Previous work showed that Symbiodiniaceae from different hosts are actively infected by viral groups, such as giant DNA viruses and ssRNA viruses, that may play an important role in coral health. Latent viral infections may also occur, whereby viruses could persist in the cytoplasm or integrate into the host genome as a provirus. This hypothesis received experimental support; however, the cellular localization of putative latent viruses and their taxonomic affiliation are still unknown. In addition, despite the finding of viral sequences in some genomes of Symbiodiniaceae, viral origin, taxonomic breadth, and metabolic potential have not been explored. To address these questions, we searched for putative viral-derived proteins in thirteen Symbiodiniaceae genomes. We found fifty-nine candidate viral-derived HGTs that gave rise to twelve phylogenies across ten genomes. We also describe the taxonomic affiliation of these virus-related sequences, their structure, and their genomic context. These results lead us to propose a model to explain the origin and fate of Symbiodiniaceae viral acquisitions.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
8
|
Judd M, Place AR. A Strategy for Gene Knockdown in Dinoflagellates. Microorganisms 2022; 10:microorganisms10061131. [PMID: 35744649 PMCID: PMC9228228 DOI: 10.3390/microorganisms10061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Dinoflagellates are unicellular protists that display unusual nuclear features such as large genomes, condensed chromosomes and multiple gene copies organized as tandem gene arrays. Genetic regulation is believed to be controlled at the translational rather than transcriptional level. An important player in this process is initiation factor eIF4E which binds the 7-methylguanosine cap structure (m7G) at the 5′-end of mRNA. Transcriptome analysis of eleven dinoflagellate species has established that each species encodes between eight to fifteen eIF4E family members. Determining the role of eIF4E family members in gene expression requires a method of knocking down their expression. In other eukaryotes this can be accomplished using translational blocking morpholinos that bind to complementary strands of RNA, therefore inhibiting the mRNA processing. Previously, unmodified morpholinos lacked the ability to pass through cell membranes, however peptide-based reagents have been used to deliver substances into the cytosol of cells by an endocytosis-mediated process without damaging the cell membrane. We have successfully delivered fluorescently-tagged morpholinos to the cytosol of Amphidinium carterae by using a specific cell penetrating peptide with the goal to target an eIF4e-1a sequence to inhibit translation. Specific eIF4e knockdown success (up to 42%) has been characterized via microscopy and western blot analysis.
Collapse
|
9
|
Slater B, Kosmützky D, Nisbet RER, Howe CJ. The Evolution of the Cytochrome c6 Family of Photosynthetic Electron Transfer Proteins. Genome Biol Evol 2021; 13:evab146. [PMID: 34165554 PMCID: PMC8358224 DOI: 10.1093/gbe/evab146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
During photosynthesis, electrons are transferred between the cytochrome b6f complex and photosystem I. This is carried out by the protein plastocyanin in plant chloroplasts, or by either plastocyanin or cytochrome c6 in many cyanobacteria and eukaryotic algal species. There are three further cytochrome c6 homologs: cytochrome c6A in plants and green algae, and cytochromes c6B and c6C in cyanobacteria. The function of these proteins is unknown. Here, we present a comprehensive analysis of the evolutionary relationship between the members of the cytochrome c6 family in photosynthetic organisms. Our phylogenetic analyses show that cytochromes c6B and c6C are likely to be orthologs that arose from a duplication of cytochrome c6, but that there is no evidence for separate origins for cytochromes c6B and c6C. We therefore propose renaming cytochrome c6C as cytochrome c6B. We show that cytochrome c6A is likely to have arisen from cytochrome c6B rather than by an independent duplication of cytochrome c6, and present evidence for an independent origin of a protein with some of the features of cytochrome c6A in peridinin dinoflagellates. We conclude with a new comprehensive model of the evolution of the cytochrome c6 family which is an integral part of understanding the function of the enigmatic cytochrome c6 homologs.
Collapse
Affiliation(s)
- Barnaby Slater
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Darius Kosmützky
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
10
|
Cusick K, Duran G. sxtA4+ and sxtA4- Genotypes Occur Together within Natural Pyrodinium bahamense Sub-Populations from the Western Atlantic. Microorganisms 2021; 9:microorganisms9061128. [PMID: 34071086 PMCID: PMC8224543 DOI: 10.3390/microorganisms9061128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Saxitoxin (STX) is a secondary metabolite and potent neurotoxin produced by several genera of harmful algal bloom (HAB) marine dinoflagellates. The basis for variability in STX production within natural bloom populations is undefined as both toxic and non-toxic strains (of the same species) have been isolated from the same geographic locations. Pyrodinium bahamense is a STX-producing bioluminescent dinoflagellate that blooms along the east coast of Florida as well as the bioluminescent bays in Puerto Rico (PR), though no toxicity reports exist for PR populations. The core genes in the dinoflagellate STX biosynthetic pathway have been identified, and the sxtA4 gene is essential for toxin production. Using sxtA4 as a molecular proxy for the genetic capacity of STX production, we examined sxtA4+ and sxtA4- genotype frequency at the single cell level in P. bahamense populations from different locations in the Indian River Lagoon (IRL), FL, and Mosquito Bay (MB), a bioluminescent bay in PR. Multiplex PCR was performed on individual cells with Pyrodinium-specific primers targeting the 18S rRNA gene and sxtA4. The results reveal that within discrete natural populations of P. bahamense, both sxtA4+ and sxtA4- genotypes occur, and the sxtA4+ genotype dominates. In the IRL, the frequency of the sxtA4+ genotype ranged from ca. 80–100%. In MB, sxtA4+ genotype frequency ranged from ca 40–66%. To assess the extent of sxtA4 variation within individual cells, sxtA4 amplicons from single cells representative of the different sampling sites were cloned and sequenced. Overall, two variants were consistently obtained, one of which is likely a pseudogene based on alignment with cDNA sequences. These are the first data demonstrating the existence of both genotypes in natural P. bahamense sub-populations, as well as sxtA4 presence in P. bahamense from PR. These results provide insights on underlying genetic factors influencing the potential for toxin variability among natural sub-populations of HAB species and highlight the need to study the genetic diversity within HAB sub-populations at a fine level in order to identify the molecular mechanisms driving HAB evolution.
Collapse
|
11
|
Kim H, Park H, Wang H, Yoo HY, Park J, Ki JS. Low Temperature and Cold Stress Significantly Increase Saxitoxins (STXs) and Expression of STX Biosynthesis Genes sxtA4 and sxtG in the Dinoflagellate Alexandrium catenella. Mar Drugs 2021; 19:291. [PMID: 34064031 PMCID: PMC8224010 DOI: 10.3390/md19060291] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Toxic dinoflagellate Alexandrium spp. produce saxitoxins (STXs), whose biosynthesis pathway is affected by temperature. However, the link between the regulation of the relevant genes and STXs' accumulation and temperature is insufficiently understood. In the present study, we evaluated the effects of temperature on cellular STXs and the expression of two core STX biosynthesis genes (sxtA4 and sxtG) in the toxic dinoflagellate Alexandrium catenella Alex03 isolated from Korean waters. We analyzed the growth rate, toxin profiles, and gene responses in cells exposed to different temperatures, including long-term adaptation (12, 16, and 20 °C) and cold and heat stresses. Temperature significantly affected the growth of A. catenella, with optimal growth (0.49 division/day) at 16 °C and the largest cell size (30.5 µm) at 12 °C. High concentration of STXs eq were detected in cells cultured at 16 °C (86.3 fmol/cell) and exposed to cold stress at 20→12 °C (96.6 fmol/cell) compared to those at 20 °C and exposed to heat stress. Quantitative real-time PCR (qRT-PCR) revealed significant gene expression changes of sxtA4 in cells cultured at 16 °C (1.8-fold) and cold shock at 20→16 °C (9.9-fold). In addition, sxtG was significantly induced in cells exposed to cold shocks (20→16 °C; 19.5-fold) and heat stress (12→20 °C; 25.6-fold). Principal component analysis (PCA) revealed that low temperature (12 and 16 °C) and cold stress were positively related with STXs' production and gene expression levels. These results suggest that temperature may affect the toxicity and regulation of STX biosynthesis genes in dinoflagellates.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (H.K.); (H.P.); (H.W.); (H.Y.Y.)
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (H.K.); (H.P.); (H.W.); (H.Y.Y.)
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (H.K.); (H.P.); (H.W.); (H.Y.Y.)
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (H.K.); (H.P.); (H.W.); (H.Y.Y.)
| | - Jaeyeon Park
- Environment and Resource Convergence Center, Advanced Institute of Convergence Technologies, Suwon 16229, Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (H.K.); (H.P.); (H.W.); (H.Y.Y.)
| |
Collapse
|
12
|
|
13
|
Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability. HARMFUL ALGAE 2020; 98:101850. [PMID: 33129462 DOI: 10.1016/j.hal.2020.101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.
Collapse
Affiliation(s)
- Kathleen D Cusick
- University of Maryland Baltimore County, Department of Biological Sciences, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Edith A Widder
- Ocean Research and Conservation Association, 1420 Seaway Dr, Fort Pierce, FL 34949, United States.
| |
Collapse
|
14
|
Matthews JL, Raina J, Kahlke T, Seymour JR, Oppen MJH, Suggett DJ. Symbiodiniaceae‐bacteria interactions: rethinking metabolite exchange in reef‐building corals as multi‐partner metabolic networks. Environ Microbiol 2020; 22:1675-1687. [DOI: 10.1111/1462-2920.14918] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster University of Technology Sydney 2007 New South Wales Australia
| | - Jean‐Baptiste Raina
- Climate Change Cluster University of Technology Sydney 2007 New South Wales Australia
| | - Tim Kahlke
- Climate Change Cluster University of Technology Sydney 2007 New South Wales Australia
| | - Justin R. Seymour
- Climate Change Cluster University of Technology Sydney 2007 New South Wales Australia
| | - Madeleine J. H. Oppen
- The University of Melbourne Parkville 3010 Victoria Australia
- Australian Institute of Marine Science PMB No 3 Townsville MC 4810 QLD Australia
| | - David J. Suggett
- Climate Change Cluster University of Technology Sydney 2007 New South Wales Australia
| |
Collapse
|
15
|
Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Appl Environ Microbiol 2019; 85:AEM.00988-19. [PMID: 31126947 DOI: 10.1128/aem.00988-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Survival and growth of the anaerobic gut fungi (AGF; Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. The patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 277 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. The majority of HGT events were AGF specific (91.7%) and wide (70.8%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This study strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.IMPORTANCE The anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryote-dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. We assess here the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota postsequestration in the herbivorous gut. Analysis of 27 transcriptomes that represent the broad diversity of Neocallimastigomycota identified 277 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This study represents a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.
Collapse
|
16
|
Beedessee G, Hisata K, Roy MC, Van Dolah FM, Satoh N, Shoguchi E. Diversified secondary metabolite biosynthesis gene repertoire revealed in symbiotic dinoflagellates. Sci Rep 2019; 9:1204. [PMID: 30718591 PMCID: PMC6361889 DOI: 10.1038/s41598-018-37792-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
Symbiodiniaceae dinoflagellates possess smaller nuclear genomes than other dinoflagellates and produce structurally specialized, biologically active, secondary metabolites. Till date, little is known about the evolution of secondary metabolism in dinoflagellates as comparative genomic approaches have been hampered by their large genome sizes. Here, we overcome this challenge by combining genomic and metabolomics approaches to investigate how chemical diversity arises in three decoded Symbiodiniaceae genomes (clades A3, B1 and C). Our analyses identify extensive diversification of polyketide synthase and non-ribosomal peptide synthetase genes from two newly decoded genomes of Symbiodinium tridacnidorum (A3) and Cladocopium sp. (C). Phylogenetic analyses indicate that almost all the gene families are derived from lineage-specific gene duplications in all three clades, suggesting divergence for environmental adaptation. Few metabolic pathways are conserved among the three clades and we detect metabolic similarity only in the recently diverged clades, B1 and C. We establish that secondary metabolism protein architecture guides substrate specificity and that gene duplication and domain shuffling have resulted in diversification of secondary metabolism genes.
Collapse
Affiliation(s)
- Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michael C Roy
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Frances M Van Dolah
- College of Charleston, School of Sciences and Mathematics, 66 George St., Charleston, South Carolina, 29424, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
17
|
Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 2016; 6:39734. [PMID: 28004835 PMCID: PMC5177918 DOI: 10.1038/srep39734] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 01/23/2023] Open
Abstract
Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.
Collapse
Affiliation(s)
- M. Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Y. Li
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Y. J. Liew
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - S. Baumgarten
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - O. Simakov
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - M. C. Wilson
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - J. Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - H. Ashoor
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - S. Bougouffa
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - V. B. Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - T. Ryu
- KAUST Environmental Epigenetics Program (KEEP), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - T. Ravasi
- KAUST Environmental Epigenetics Program (KEEP), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - T. Bayer
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- GEOMAR Department: Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - G. Micklem
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - H. Kim
- Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea
| | - J. Bhak
- Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea
| | - T. C. LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - C. R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Gagat P, Mackiewicz P. Cymbomonas tetramitiformis - a peculiar prasinophyte with a taste for bacteria sheds light on plastid evolution. Symbiosis 2016; 71:1-7. [PMID: 28066124 PMCID: PMC5167767 DOI: 10.1007/s13199-016-0464-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022]
Abstract
Cymbomonas tetramitiformis is a peculiar green alga that unites in one cell the abilities of photosynthesis and phagocytosis, which makes it a very useful model for the study of the evolution of plastid endosymbiosis. We have pondered over this issue and propose an evolutionary scenario of trophic strategies in eukaryotes, including primary and secondary plastid endosymbioses. C. tetramitiformis is a prototroph, just like the common ancestor of Archaeplastida was, and can synthesize most small organic molecules contrary to other eukaryotic phagotrophs, e.g. some metazoans, amoebozoans, and ciliates, which have not evolved tight endosymbiotic relationships. In order to establish a permanent photosynthetic endosymbiont they do not have to become prototrophs, but have to acquire the genes necessary for plastid retention via horizontal (including endosymbiotic) gene transfer. Such processes occurred successfully in the ancestors of eukaryotes with permanent secondary plastids and thus led to their great diversification. The preservation of phagocytosis in Cymbomonas (and some other prasinophytes as well) seems to result from nutrient deficiency in their oligotrophic habitats. This forces them to supplement their diet with phagocytized prey, in contrasts to the thecate amoeba Paulinella chromatophora, which also successfully transformed cyanobacteria into permanent organelles. Although Paulinella endosymbionts were acquired very recently in comparison to primary plastids, Paulinella has lost the ability to phagocytose, most probably due to the fact that it inhabits nutrient-rich environments, which renders the phagotrophy nonessential.
Collapse
Affiliation(s)
- Przemysław Gagat
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383 Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383 Wrocław, Poland
| |
Collapse
|
19
|
Wainwright PC, Price SA. The Impact of Organismal Innovation on Functional and Ecological Diversification. Integr Comp Biol 2016; 56:479-88. [DOI: 10.1093/icb/icw081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
|
21
|
Cooper JT, Sinclair GA, Wawrik B. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion. Front Microbiol 2016; 7:639. [PMID: 27242681 PMCID: PMC4860509 DOI: 10.3389/fmicb.2016.00639] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 01/25/2023] Open
Abstract
Dinoflagellates are a major component of marine phytoplankton and many species are recognized for their ability to produce harmful algal blooms (HABs). Scrippsiella trochoidea is a non-toxic, marine dinoflagellate that can be found in both cold and tropic waters where it is known to produce “red tide” events. Little is known about the genomic makeup of S. trochoidea and a transcriptome study was conducted to shed light on the biochemical and physiological adaptations related to nutrient depletion. Cultures were grown under N and P limiting conditions and transcriptomes were generated via RNAseq technology. De novo assembly reconstructed 107,415 putative transcripts of which only 41% could be annotated. No significant transcriptomic response was observed in response to initial P depletion, however, a strong transcriptional response to N depletion was detected. Among the down-regulated pathways were those for glutamine/glutamate metabolism as well as urea and nitrate/nitrite transporters. Transcripts for ammonia transporters displayed both up- and down-regulation, perhaps related to a shift to higher affinity transporters. Genes for the utilization of DON compounds were up-regulated. These included transcripts for amino acids transporters, polyamine oxidase, and extracellular proteinase and peptidases. N depletion also triggered down regulation of transcripts related to the production of Photosystems I & II and related proteins. These data are consistent with a metabolic strategy that conserves N while maximizing sustained metabolism by emphasizing the relative contribution of organic N sources. Surprisingly, the transcriptome also contained transcripts potentially related to secondary metabolite production, including a homolog to the Short Isoform Saxitoxin gene (sxtA) from Alexandrium fundyense, which was significantly up-regulated under N-depletion. A total of 113 unique hits to Sxt genes, covering 17 of the 34 genes found in C. raciborskii were detected, indicating that S. trochoidea has previously unrecognized potential for the production of secondary metabolites with potential toxicity.
Collapse
Affiliation(s)
- Joshua T Cooper
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Geoffrey A Sinclair
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University Raleigh, NC, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| |
Collapse
|
22
|
Butterfield ER, Howe CJ, Nisbet RER. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins. Genome Biol Evol 2016; 8:439-45. [PMID: 26798115 PMCID: PMC4779609 DOI: 10.1093/gbe/evw002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events.
Collapse
Affiliation(s)
- Erin R Butterfield
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, North Terrace, Adelaide, SA, Australia Department of Biochemistry, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - R Ellen R Nisbet
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, North Terrace, Adelaide, SA, Australia Department of Biochemistry, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| |
Collapse
|
23
|
Kohli GS, John U, Van Dolah FM, Murray SA. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME JOURNAL 2016; 10:1877-90. [PMID: 26784357 PMCID: PMC5029157 DOI: 10.1038/ismej.2015.263] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022]
Abstract
Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success.
Collapse
Affiliation(s)
- Gurjeet S Kohli
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Sydney Institute of Marine Sciences, Mosman, New South Wales, Australia
| | - Uwe John
- Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Frances M Van Dolah
- Marine Biotoxins Program, National Oceanic and Atmospheric Administration Center for Coastal and Environmental Health and Biomolecular Research, Charleston, SC, USA
| | - Shauna A Murray
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia.,Sydney Institute of Marine Sciences, Mosman, New South Wales, Australia
| |
Collapse
|
24
|
Bentlage B, Rogers TS, Bachvaroff TR, Delwiche CF. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates. J Eukaryot Microbiol 2015; 63:123-37. [PMID: 26291956 DOI: 10.1111/jeu.12261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis.
Collapse
Affiliation(s)
- Bastian Bentlage
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Travis S Rogers
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E Pratt St., Baltimore, Maryland, 21202
| | - Charles F Delwiche
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742.,Maryland Agricultural Experiment Station, AGNR, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
25
|
Lin X, Wang L, Shi X, Lin S. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoA(aty)) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases. Front Microbiol 2015; 6:868. [PMID: 26379645 PMCID: PMC4548154 DOI: 10.3389/fmicb.2015.00868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Lu Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China ; Department of Marine Sciences, University of Connecticut Groton, CT, USA
| |
Collapse
|
26
|
Rosic N, Ling EYS, Chan CKK, Lee HC, Kaniewska P, Edwards D, Dove S, Hoegh-Guldberg O. Unfolding the secrets of coral-algal symbiosis. ISME JOURNAL 2015; 9:844-56. [PMID: 25343511 DOI: 10.1038/ismej.2014.182] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022]
Abstract
Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef-building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30,000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and <2% of sequences having bacterial or other foreign origin. We report 1053 genes, orthologous among four Symbiodinium clades, that share a high level of sequence identity to known proteins from the SwissProt (SP) database. Approximately 80% of the transcripts aligning to the 1053 SP genes were unique to Symbiodinium species and did not align to other dinoflagellates and unrelated eukaryotic transcriptomes/genomes. Six pathways were common to all four Symbiodinium clades including the phosphatidylinositol signaling system and inositol phosphate metabolism pathways. The list of Symbiodinium transcripts common to all four clades included conserved genes such as heat shock proteins (Hsp70 and Hsp90), calmodulin, actin and tubulin, several ribosomal, photosynthetic and cytochrome genes and chloroplast-based heme-containing cytochrome P450, involved in the biosynthesis of xanthophylls. Antioxidant genes, which are important in stress responses, were also preserved, as were a number of calcium-dependent and calcium/calmodulin-dependent protein kinases that may play a role in the establishment of symbiosis. Our findings disclose new knowledge about the genetic uniqueness of symbiotic dinoflagellates and provide a list of homologous genes important for the foundation of coral-algal symbiosis.
Collapse
Affiliation(s)
- Nedeljka Rosic
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edmund Yew Siang Ling
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Chon-Kit Kenneth Chan
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Hong Ching Lee
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paulina Kaniewska
- 1] School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David Edwards
- 1] School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia [3] Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Sophie Dove
- 1] School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia
| | - Ove Hoegh-Guldberg
- 1] School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia [2] ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia [3] Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
27
|
Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015; 15:16. [PMID: 25887237 PMCID: PMC4337275 DOI: 10.1186/s12862-015-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. Results A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. Conclusions We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Meyer JM, Rödelsperger C, Eichholz K, Tillmann U, Cembella A, McGaughran A, John U. Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes. BMC Genomics 2015; 16:27. [PMID: 25612855 PMCID: PMC4316588 DOI: 10.1186/s12864-014-1205-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/24/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Unicellular dinoflagellates are an important group of primary producers within the marine plankton community. Many of these species are capable of forming harmful algae blooms (HABs) and of producing potent phycotoxins, thereby causing deleterious impacts on their environment and posing a threat to human health. The recently discovered toxigenic dinoflagellate Azadinium spinosum is known to produce azaspiracid toxins. These toxins are most likely produced by polyketide synthases (PKS). Recently, PKS I-like transcripts have been identified in a number of dinoflagellate species. Despite the global distribution of A. spinosum, little is known about molecular features. In this study, we investigate the genomic and transcriptomic features of A. spinosum with a focus on polyketide synthesis and PKS evolution. RESULTS We identify orphan and homologous genes by comparing the transcriptome data of A. spinosum with a diverse set of 18 other dinoflagellates, five further species out of the Rhizaria Alveolate Stramelopile (RAS)-group, and one representative from the Plantae. The number of orphan genes in the analysed dinoflagellate species averaged 27%. In contrast, within the A. spinosum transcriptome, we discovered 12,661 orphan transcripts (18%). The dinoflagellates toxins known as azaspiracids (AZAs) are structurally polyethers; we therefore analyse the transcriptome of A. spinosum with respect to polyketide synthases (PKSs), the primary biosynthetic enzymes in polyketide synthesis. We find all the genes thought to be potentially essential for polyketide toxin synthesis to be expressed in A. spinosum, whose PKS transcripts fall into the dinoflagellate sub-clade in PKS evolution. CONCLUSIONS Overall, we demonstrate that the number of orphan genes in the A. spinosum genome is relatively small compared to other dinoflagellate species. In addition, all PKS domains needed to produce the azaspiracid carbon backbone are present in A. spinosum. Our study underscores the extraordinary evolution of such gene clusters and, in particular, supports the proposed structural and functional paradigm for PKS Type I genes in dinoflagellates.
Collapse
Affiliation(s)
- Jan M Meyer
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany. .,Evolutionary biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Evolutionary biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Karsten Eichholz
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany. .,Adenoviridae: Receptors, Trafficking and Vectorology, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| | - Urban Tillmann
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | - Allan Cembella
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | - Angela McGaughran
- Evolutionary biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Uwe John
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|