1
|
Song X, Geng Y, Xu C, Li J, Guo Y, Shi Y, Ma Q, Li Q, Zhang M. The complete mitochondrial genomes of five critical phytopathogenic Bipolaris species: features, evolution, and phylogeny. IMA Fungus 2024; 15:15. [PMID: 38863028 PMCID: PMC11167856 DOI: 10.1186/s43008-024-00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
In the present study, three mitogenomes from the Bipolaris genus (Bipolaris maydis, B. zeicola, and B. oryzae) were assembled and compared with the other two reported Bipolaris mitogenomes (B. oryzae and B. sorokiniana). The five mitogenomes were all circular DNA molecules, with lengths ranging from 106,403 bp to 135,790 bp. The mitogenomes of the five Bipolaris species mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 13 PCGs in the five mitogenomes. Across the 13 core PCGs tested, nad6 had the least genetic distance among the 16 Pleosporales species we investigated, indicating that this gene was highly conserved. In addition, the Ka/Ks values for all 12 core PCGs (excluding rps3) were < 1, suggesting that these genes were subject to purifying selection. Comparative mitogenomic analyses indicate that introns were the main factor contributing to the size variation of Bipolaris mitogenomes. The introns of the cox1 gene experienced frequent gain/loss events in Pleosporales species. The gene arrangement and collinearity in the mitogenomes of the five Bipolaris species were almost highly conserved within the genus. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the five Bipolaris species formed well-supported topologies. This study is the first report on the mitogenomes of B. maydis and B. zeicola, as well as the first comparison of mitogenomes among Bipolaris species. The findings of this study will further advance investigations into the population genetics, evolution, and genomics of Bipolaris species.
Collapse
Affiliation(s)
- Xinzheng Song
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiaxin Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Maniatis EI, Karamichali I, Stefanidou E, Boutsika A, Tsitsigiannis DI, Paplomatas E, Madesis P, Zambounis A. Insights into the Transcriptional Reprogramming of Peach Leaves Inoculated with Taphrina deformans. PLANTS (BASEL, SWITZERLAND) 2024; 13:861. [PMID: 38592856 PMCID: PMC10976055 DOI: 10.3390/plants13060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The dimorphic fungus Taphrina deformans is the causal agent of peach leaf curl disease, which affects leaves, flowers, and fruits. An RNA-seq approach was employed to gain insights into the transcriptional reprogramming of a peach cultivar during leaf inoculation with the yeast phase of the fungus across a compatible interaction. The results uncovered modulations of specific peach differentially expressed genes (DEGs) in peaches and pathways related to either the induction of host defense responses or pathogen colonization and disease spread. Expression profiles of DEGs were shown to be highly time-dependent and related to the presence of the two forms of the fungal growth, the inoculated yeast form and the later biotrophic phase during mycelial development. In parallel, this differential reprogramming was consistent with a diphasic detection of fungal load in the challenged leaves over the 120 h after inoculation (HAI) period. Leaf defense responses either occurred during the early yeast phase inoculation at 24 HAI, mediated primarily by cell wall modification processes, or more pronouncedly during the biotrophic phase at 72 HAI, as revealed by the activation of DEGs related to pathogen perception, signaling transduction, and secondary metabolism towards restraining further hypha proliferation. On the contrary, the expression patterns of specific DEGs at 120 HAI might further contribute to host susceptibility. These findings will further allow us to elucidate the molecular responses beyond the peach-T. deformans interaction.
Collapse
Affiliation(s)
- Elissaios I. Maniatis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioanna Karamichali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece
| | - Eleni Stefanidou
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis Madesis
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| |
Collapse
|
3
|
Cao Y, He K, Li Q, Chen X, Mo H, Li Z, Ji Q, Li G, Du G, Yang H. Transcriptome analysis of Armillaria gallica 012 m in response to auxin. J Basic Microbiol 2023; 63:17-25. [PMID: 36449692 DOI: 10.1002/jobm.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Gastrodia elata is an achlorophyllous and fully mycoheterotrophic orchid which obtains carbon and other nutrients from Armillaria species in its life cycle. Many researchers suggested that plant hormones, as signing molecules, play a central role in the plant-fungi interaction. In the process of Armillaria gallica 012 m cultivation, both exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) distinctly stimulated the growth of mycelia in solid media. The differential expression genes (DEGs) of A. gallica 012 m with IAA versus blank control (BK) and IBA versus BK were investigated. The results showed that more than 80% of DEGs of the IAA group were coincident with the DEGs of the IBA group, and more than half of upregulated DEGs and most of the downregulated DEGs of the IAA group coincided with those DEGs of the IBA group. Above research implied that A. gallica 012 m could perceive IAA and IBA, and possess similar responses and signaling pathways to IAA and IBA. The overlapping differential genes of the IAA group and IBA group were analyzed by GO term, and the results showed that several DEGs identified were related to biological processes including positive regulation of the biological process and biological process. The downregulated NmrA-like and FKBP_C genes might be benefit to the growth of mycelia. Those results can explain that exiguous IAA and IBA improved the growth of A. gallica to some extent. We speculate that IAA and IBA are signaling molecules, and regulate the expression of growth-related genes of A. gallica 012 m by the same signaling pathway.
Collapse
Affiliation(s)
- Yapu Cao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Kaixiang He
- Department of Chemistry, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Qingqing Li
- Life Science College, Southwest Forestry University, Kunming, China.,Kunming Xianghao Technology Co. Ltd., Kunming, China
| | - Xin Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Haiying Mo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Zhihao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Qiaolin Ji
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Haiying Yang
- Department of Chemistry, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| |
Collapse
|
4
|
Christita M, Sipilä TP, Auzane A, Overmyer K. Distinct Taphrina strains from the phyllosphere of birch exhibiting a range of witches' broom disease symptoms. Environ Microbiol 2022; 24:3549-3564. [PMID: 35579036 PMCID: PMC9545635 DOI: 10.1111/1462-2920.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non-infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom-bearing branches, healthy leaves from symptom-free branches on symptom-bearing trees and leaves from symptom-free branches on symptom-free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom-free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty-two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.
Collapse
Affiliation(s)
- Margaretta Christita
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
- Environment and Forestry Research and Development Institute of Manado, Jalan Adipura, MapangetManadoNorth SulawesiIndonesia
| | - Timo P. Sipilä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Agate Auzane
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Ma Q, Geng Y, Li Q, Cheng C, Zang R, Guo Y, Wu H, Xu C, Zhang M. Comparative mitochondrial genome analyses reveal conserved gene arrangement but massive expansion/contraction in two closely related Exserohilum pathogens. Comput Struct Biotechnol J 2022; 20:1456-1469. [PMID: 35386100 PMCID: PMC8956966 DOI: 10.1016/j.csbj.2022.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
Exserohilum turcicum and E. rostratum, two closely related fungal species, are both economically important pathogens but have quite different target hosts (specific to plants and cross-kingdom infection, respectively). In the present study, complete circular mitochondrial genomes of the two Exserohilum species were sequenced and de novo assembled, which mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). Comparative analyses indicated that these two fungi had significant mitogenomic collinearity and consistent mitochondrial gene arrangement, yet with vastly different mitogenome sizes, 264,948 bp and 64,620 bp, respectively. By contrast with the 17 introns containing 17 intronic ORFs (one-to-one) in the E. rostratum mitogenome, E. turcicum involved far more introns (70) and intronic ORFs (126), which was considered as the main contributing factors of their mitogenome expansion/contraction. Within the generally intron-rich gene cox1, a total of 18 and 10 intron position classes (Pcls) were identified separately in the two mitogenomes. Moreover, 16.16% and 10.85% ratios of intra-mitogenomic repetitive regions were detected in E. turcicum and E. rostratum, respectively. Based on the combined mitochondrial gene dataset, we established a well-supported topology of phylogeny tree of 98 ascomycetes, implying that mitogenomes may act as an effective molecular marker for fungal phylogenetic reconstruction. Our results served as the first report on mitogenomes in the genus Exserohilum, and would have significant implications in understanding the origin, evolution and pathogenic mechanisms of this fungal lineage.
Collapse
Affiliation(s)
- Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chongyang Cheng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Rui Zang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection. J Fungi (Basel) 2021; 7:jof7100864. [PMID: 34682285 PMCID: PMC8537764 DOI: 10.3390/jof7100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Fission yeasts have a unique life history and exhibit distinct evolutionary patterns from other yeasts. Besides, the species demonstrate stable genome structures despite the relatively fast evolution of their genomic sequences. To reveal what could be the reason for that, comparative genomic analyses were carried out. Our results provided evidence that the structural and sequence evolution of the fission yeasts were correlated. Moreover, we revealed ancestral locally collinear blocks (aLCBs), which could have been inherited from their last common ancestor. These aLCBs proved to be the most conserved regions of the genomes as the aLCBs contain almost eight genes/blocks on average in the same orientation and order across the species. Gene order of the aLCBs is mainly fission-yeast-specific but supports the idea of filamentous ancestors. Nevertheless, the sequences and gene structures within the aLCBs are as mutable as any sequences in other parts of the genomes. Although genes of certain Gene Ontology (GO) categories tend to cluster at the aLCBs, those GO enrichments are not related to biological functions or high co-expression rates, they are, rather, determined by the density of essential genes and Rec12 cleavage sites. These data and our simulations indicated that aLCBs might not only be remnants of ancestral gene order but are also maintained by natural selection.
Collapse
|
7
|
Cissé OH, Ma L, Dekker JP, Khil PP, Youn JH, Brenchley JM, Blair R, Pahar B, Chabé M, Van Rompay KKA, Keesler R, Sukura A, Hirsch V, Kutty G, Liu Y, Peng L, Chen J, Song J, Weissenbacher-Lang C, Xu J, Upham NS, Stajich JE, Cuomo CA, Cushion MT, Kovacs JA. Genomic insights into the host specific adaptation of the Pneumocystis genus. Commun Biol 2021; 4:305. [PMID: 33686174 PMCID: PMC7940399 DOI: 10.1038/s42003-021-01799-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Pneumocystis jirovecii, the fungal agent of human Pneumocystis pneumonia, is closely related to macaque Pneumocystis. Little is known about other Pneumocystis species in distantly related mammals, none of which are capable of establishing infection in humans. The molecular basis of host specificity in Pneumocystis remains unknown as experiments are limited due to an inability to culture any species in vitro. To explore Pneumocystis evolutionary adaptations, we have sequenced the genomes of species infecting macaques, rabbits, dogs and rats and compared them to available genomes of species infecting humans, mice and rats. Complete whole genome sequence data enables analysis and robust phylogeny, identification of important genetic features of the host adaptation, and estimation of speciation timing relative to the rise of their mammalian hosts. Our data reveals insights into the evolution of P. jirovecii, the sole member of the genus able to infect humans. Cissé, Ma et al. utilize genomic data from Pneumocystis species infecting macaques, rabbit, dogs and rats to investigate the molecular basis of host specificity in Pneumocystis. Their analyses provide insight to the specific adaptations enabling the infection of humans by P. jirovecii.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA.,Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA.,Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Ho Youn
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert Blair
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | - Magali Chabé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Rebekah Keesler
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Antti Sukura
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Li Peng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nathan S Upham
- Arizona State University, School of Life Sciences, Tempe, ARI, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside-California, Riverside, CA, USA
| | - Christina A Cuomo
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie T Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
8
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
9
|
Červenák F, Sepšiová R, Nosek J, Tomáška Ľ. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol Evol 2020; 13:6127219. [PMID: 33537752 PMCID: PMC7857110 DOI: 10.1093/gbe/evaa268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.
Collapse
Affiliation(s)
- Filip Červenák
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Katsoula A, Vasileiadis S, Sapountzi M, Karpouzas DG. The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity? FEMS Microbiol Ecol 2020; 96:5813261. [PMID: 32221586 DOI: 10.1093/femsec/fiaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Pesticides interact with microorganisms in various ways with the outcome being negative or positive for the soil microbiota. Pesticides' effects on soil microorganisms have been studied extensively in soil but not in other pesticides-exposed microbial habitats like the phyllosphere. We tested the hypothesis that soil and phyllosphere support distinct microbial communities, but exhibit a similar response (accelerated biodegradation or toxicity) to repeated exposure to the fungicide iprodione. Pepper plants received four repeated foliage or soil applications of iprodione, which accelerated its degradation in soil (DT50_1st = 1.23 and DT50_4th = 0.48 days) and on plant leaves (DT50_1st > 365 and DT50_4th = 5.95 days). The composition of the epiphytic and soil bacterial and fungal communities, determined by amplicon sequencing, was significantly altered by iprodione. The archaeal epiphytic and soil communities responded differently; the former showed no response to iprodione. Three iprodione-degrading Paenarthrobacter strains were isolated from soil and phyllosphere. They hydrolyzed iprodione to 3,5-dichloraniline via the formation of 3,5-dichlorophenyl-carboxiamide and 3,5-dichlorophenylurea-acetate, a pathway shared by other soil-derived arthrobacters implying a phylogenetic specialization in iprodione biotransformation. Our results suggest that iprodione-repeated application could affect soil and epiphytic microbial communities with implications for the homeostasis of the plant-soil system and agricultural production.
Collapse
Affiliation(s)
- A Katsoula
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - S Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - M Sapountzi
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| |
Collapse
|
11
|
Lukša J, Vepštaitė-Monstavičė I, Apšegaitė V, Blažytė-Čereškienė L, Stanevičienė R, Strazdaitė-Žielienė Ž, Ravoitytė B, Aleknavičius D, Būda V, Mozūraitis R, Servienė E. Fungal Microbiota of Sea Buckthorn Berries at Two Ripening Stages and Volatile Profiling of Potential Biocontrol Yeasts. Microorganisms 2020; 8:microorganisms8030456. [PMID: 32210172 PMCID: PMC7143951 DOI: 10.3390/microorganisms8030456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sea buckthorn, Hippophae rhamnoides L., has considerable potential for landscape reclamation, food, medicinal, and cosmetics industries. In this study, we analyzed fungal microorganism populations associated with carposphere of sea buckthorn harvested in Lithuania. An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to reveal the ripening-affected fungal community alterations on sea buckthorn berries. According to alpha and beta diversity analyses, depending on the ripening stage, sea buckthorn displayed significantly different fungal communities. Unripe berries were shown to be prevalent by Aureobasidium, Taphrina, and Cladosporium, while ripe berries were dominated by Aureobasidium and Metschnikowia. The selected yeast strains from unripe and mature berries were applied for volatile organic compounds identification by gas chromatography and mass spectrometry techniques. It was demonstrated that the patterns of volatiles of four yeast species tested were distinct from each other. The current study for the first time revealed the alterations of fungal microorganism communities colonizing the surface of sea buckthorn berries at different ripening stages. The novel information on specific volatile profiles of cultivable sea buckthorn-associated yeasts with a potential role in biocontrol is important for the development of the strategies for plant cultivation and disease management, as well as for the improvement of the quality and preservation of the postharvest berries. Management of the fungal microorganisms present on the surface of berries might be a powerful instrument for control of phytopathogenic and potentially antagonistic microorganisms affecting development and quality of the berries.
Collapse
Affiliation(s)
- Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Živilė Strazdaitė-Žielienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Bazilė Ravoitytė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Vincas Būda
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania; (V.A.); (L.B.-Č.); (D.A.); (V.B.); (R.M.)
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania (I.V.-M.); (R.S.); (Ž.S.-Ž.); (B.R.)
- Correspondence: ; Tel.: +370-5-272-93-63
| |
Collapse
|
12
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Wang Q, Sun M, Zhang Y, Song Z, Zhang S, Zhang Q, Xu J, Liu H. Extensive chromosomal rearrangements and rapid evolution of novel effector superfamilies contribute to host adaptation and speciation in the basal ascomycetous fungi. MOLECULAR PLANT PATHOLOGY 2020; 21:330-348. [PMID: 31916390 PMCID: PMC7036362 DOI: 10.1111/mpp.12899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/06/2019] [Accepted: 11/28/2019] [Indexed: 05/11/2023]
Abstract
The basal ascomycetes in genus Taphrina have strict host specificity and coevolution with their host plants, making them appealing models for studying the genomic basis of ecological divergence and host adaption. We therefore performed genome sequencing and comparative genomics of different Taphrina species with distinct host ranges to reveal their evolution. We identified frequent chromosomal rearrangements and highly dynamic lineage-specific (LS) genomic regions in Taphrina genomes. The LS regions occur at the flanking regions of chromosomal breakpoints, and are greatly enriched for DNA repeats, non-core genes, and in planta up-regulated genes. Furthermore, we identified hundreds of candidate secreted effector proteins (CSEPs) that are commonly organized in gene clusters that form distinct AT-rich isochore-like regions. Nearly half of the CSEPs constitute two novel superfamilies with modular structures unique to Taphrina. These CSEPs are commonly up-regulated during infection, enriched in the LS regions, evolved faster, and underwent extensive gene gain and loss in different species. In addition to displaying signatures of positive selection, functional characterization of selected CSEP genes confirmed their roles in suppression of plant defence responses. Overall, our results showed that extensive chromosomal rearrangements and rapidly evolving CSEP superfamilies play important roles in speciation and host adaptation in the early-branching ascomycetous fungi.
Collapse
Affiliation(s)
- Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhenzhen Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jin‐Rong Xu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
14
|
Draft Genome Sequence of the Birch Tree Fungal Pathogen Taphrina betulina UCD315. Microbiol Resour Announc 2019; 8:8/48/e01255-19. [PMID: 31776224 PMCID: PMC6883111 DOI: 10.1128/mra.01255-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Taphrina betulina
is the ascomycete yeast that causes the formation of witches’ brooms in birch trees. Here, we report the first draft genome sequence of
T. betulina
, from strain UCD315, isolated from soil in Ireland. The genome is haploid and 12.5 Mb long.
Collapse
|
15
|
Cissé OH, Hauser PM. Genomics and evolution of Pneumocystis species. INFECTION GENETICS AND EVOLUTION 2018; 65:308-320. [PMID: 30138710 DOI: 10.1016/j.meegid.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023]
Abstract
The genus Pneumocystis comprises highly diversified fungal species that cause severe pneumonia in individuals with a deficient immune system. These fungi infect exclusively mammals and present a strict host species specificity. These species have co-diverged with their hosts for long periods of time (> 100 MYA). Details of their biology and evolution are fragmentary mainly because of a lack of an established long-term culture system. Recent genomic advances have unlocked new areas of research and allow new hypotheses to be tested. We review here new findings of the genomic studies in relation with the evolutionary trajectory of these fungi and discuss the impact of genomic data analysis in the context of the population genetics. The combination of slow genome decay and limited expansion of specific gene families and introns reflect intimate interactions of these species with their hosts. The evolutionary adaptation of these organisms is profoundly influenced by their population structure, which in turn is determined by intrinsic features such as their self-fertilizing mating system, high host specificity, long generation times, and transmission mode. Essential key questions concerning their adaptation and speciation remain to be answered. The next cornerstone will consist in the establishment of a long-term culture system and genetic manipulation that should allow unravelling the driving forces of Pneumocystis species evolution.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
16
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Svetaz LA, Bustamante CA, Goldy C, Rivero N, Müller GL, Valentini GH, Fernie AR, Drincovich MF, Lara MV. Unravelling early events in the Taphrina deformans-Prunus persica interaction: an insight into the differential responses in resistant and susceptible genotypes. PLANT, CELL & ENVIRONMENT 2017; 40:1456-1473. [PMID: 28244594 DOI: 10.1111/pce.12942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Leaf peach curl is a devastating disease affecting leaves, flowers and fruits, caused by the dimorphic fungus Taphrina deformans. To gain insight into the mechanisms of fungus pathogenesis and plant responses, leaves of a resistant and two susceptible Prunus persica genotypes were inoculated with blastospores (yeast), and the infection was monitored during 120 h post inoculation (h.p.i.). Fungal dimorphism to the filamentous form and induction of reactive oxygen species (ROS), callose synthesis, cell death and defence compound production were observed independently of the genotype. Fungal load significantly decreased after 120 h.p.i. in the resistant genotype, while the pathogen tended to grow in the susceptible genotypes. Metabolic profiling revealed a biphasic re-programming of plant tissue in susceptible genotypes, with an initial stage co-incident with the yeast form of the fungus and a second when the hypha is developed. Transcriptional analysis of PRs and plant hormone-related genes indicated that pathogenesis-related (PR) proteins are involved in P. persica defence responses against T. deformans and that salicylic acid is induced in the resistant genotype. Conducted experiments allowed the elucidation of common and differential responses in susceptible versus resistant genotypes and thus allow us to construct a picture of early events during T. deformans infection.
Collapse
Affiliation(s)
- Laura A Svetaz
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Camila Goldy
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nery Rivero
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Gabriela L Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Gabriel H Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional no. 9 Km 170, San Pedro, Argentina
| | - Alisdair R Fernie
- Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
18
|
Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, Le Floch G, Harrison RJ, Holub E, Sukno SA, Sreenivasaprasad S, Thon MR. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics 2016; 17:555. [PMID: 27496087 PMCID: PMC4974774 DOI: 10.1186/s12864-016-2917-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. RESULTS We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. CONCLUSIONS This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content.
Collapse
Affiliation(s)
- Riccardo Baroncelli
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), University of Western Brittany, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frb. C, Copenhagen, Denmark
| | - Antonio Zapparata
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), University of Western Brittany, Technopôle Brest-Iroise, 29280 Plouzané, France
| | | | - Eric Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, Warwickshire CV35 9EF UK
| | - Serenella A. Sukno
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Campus de Villamayor, C/Del Duero, 12, 37185 Villamayor Salamanca, Spain
| | - Surapareddy Sreenivasaprasad
- Institute of Biomedical and Environmental Science and Technology (iBEST), University of Bedfordshire, University Square, Luton, Bedfordshire LU1 3JU UK
| | - Michael R. Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Campus de Villamayor, C/Del Duero, 12, 37185 Villamayor Salamanca, Spain
| |
Collapse
|
19
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
20
|
Ho HL, Haynes K. Candida glabrata: new tools and technologies-expanding the toolkit. FEMS Yeast Res 2015; 15:fov066. [PMID: 26205243 PMCID: PMC4629792 DOI: 10.1093/femsyr/fov066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a noticeable rise in fungal infections related to non-albicans Candida species, including Candida glabrata which has both intrinsic resistance to and commonly acquired resistance to azole antifungals. Phylogenetically, C. glabrata is more closely related to the mostly non-pathogenic model organism Saccharomyces cerevisiae than to other Candida species. Despite C. glabrata's designation as a pathogen by Wickham in 1957, relatively little is known about its mechanism of virulence. Over the past few years, technology to analyse the molecular basis of infection has developed rapidly, and here we briefly review the major advances in tools and technologies available to explore and investigate the virulence of C. glabrata that have occurred over the past decade.
Collapse
Affiliation(s)
- Hsueh-lui Ho
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
21
|
Kammonen JI, Smolander OP, Sipilä T, Overmyer K, Auvinen P, Paulin L. Increased transcriptome sequencing efficiency with modified Mint-2 digestion-ligation protocol. Anal Biochem 2015; 477:38-40. [PMID: 25513723 DOI: 10.1016/j.ab.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022]
Abstract
The standard digestion-ligation cloning method enables synthesis of large amounts of complementary DNA (cDNA) from a model organism facilitating study of the transcriptome. Here, we used cDNA amplification of the dimorphic yeast Taphrina betulina as an example of how a library construction protocol can significantly increase sequencing throughput. Two modification steps were introduced to the Evrogen standard Mint-2 protocol to improve its suitability for next-generation sequencing projects. We performed two partial Illumina MiSeq sequencing runs with the modified protocol: one with and one without biotin-purified primers. The results demonstrated that biotinylated libraries increased both accuracy and throughput of the modified protocol. Moreover, our sequencing results indicate that a sequence-specific miscall may affect the output of Illumina's MiSeq platform.
Collapse
Affiliation(s)
- Juhana I Kammonen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Timo Sipilä
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kirk Overmyer
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
22
|
Morrison EN, Knowles S, Hayward A, Thorn RG, Saville BJ, Emery RJN. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia 2015; 107:245-57. [PMID: 25572099 DOI: 10.3852/14-157] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed.
Collapse
Affiliation(s)
- Erin N Morrison
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9J 7B8 Canada
| | - Sarah Knowles
- Biology Department, Trent University, Peterborough, Ontario, K9J 7B8 Canada
| | - Allison Hayward
- Biology Department, Trent University, Peterborough, Ontario, K9J 7B8 Canada
| | - R Greg Thorn
- Department of Biology, Western University, London, Ontario, N6A 5B7 Canada
| | - Barry J Saville
- Forensic Science Program, Trent University, Peterborough, Ontario, K9J 7B8 Canada
| | - R J N Emery
- Biology Department, Trent University, Peterborough, Ontario, K9J 7B8 Canada
| |
Collapse
|