1
|
Khatun MS, Islam MSU, Shing P, Zohra FT, Rashid SB, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of FORMIN gene family in potato (Solanum tuberosum L.) and their expression profiles in response to drought stress condition. PLoS One 2024; 19:e0309353. [PMID: 39186738 PMCID: PMC11346945 DOI: 10.1371/journal.pone.0309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Formin proteins, characterized by the FH2 domain, are critical in regulating actin-driven cellular processes and cytoskeletal dynamics during abiotic stress. However, no genome-wide analysis of the formin gene family has yet to be conducted in the economically significant plant potato (Solanum tuberosum L.). In this study, 26 formin genes were identified and characterized in the potato genome (named as StFH), each containing the typical FH2 domain and distributed across the ten chromosomes. The StFH was categorized into seven subgroups (A-G) and the gene structure and motif analysis demonstrated higher structural similarities within the subgroups. Besides, the StFH exhibited ancestry and functional similarities with Arabidopsis. The Ka/Ks ratio indicated that StFH gene pairs were evolving through purifying selection, with five gene pairs exhibiting segmental duplications and two pairs exhibiting tandem duplications. Subcellular localization analysis suggested that most of the StFH genes were located in the chloroplast and plasma membrane. Moreover, 54 cis-acting regulatory elements (CAREs) were identified in the promoter regions, some of which were associated with stress responses. According to gene ontology analysis, the majority of the StFH genes were involved in biological processes, with 63 out of 74 GO terms affecting actin polymerization. Six major transcription factor families, including bZIP, C2H2, ERF, GATA, LBD, NAC, and HSF, were identified that were involved in the regulation of StFH genes in various abiotic stresses, including drought. Further, the 60 unique microRNAs targeted 24 StFH by regulating gene expression in response to drought stress were identified. The expression of StFH genes in 14 different tissues, particularly in drought-responsive tissues such as root, stem, shoot apex, and leaf, underscores their significance in managing drought stress. RNA-seq analysis of the drought-resistant Qingshu No. 9 variety revealed the potential role of up-regulated genes, including StFH2, StFH10, StFH19, and StFH25, in alleviating drought stress. Overall, these findings provide crucial insights into the response to drought stress in potatoes and can be utilized in breeding programs to develop potato cultivars with enhanced drought-tolerant traits.
Collapse
Affiliation(s)
- Mst. Sumaiya Khatun
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pollob Shing
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
2
|
Ning J, Liang P, Wu X, Wang W, Wu Q, Wang S, Yang X, Zhang Y, Xie W. Silencing of catalase reduces unfavorable low-temperature tolerance capacity in whiteflies. PEST MANAGEMENT SCIENCE 2024; 80:3116-3125. [PMID: 38334193 DOI: 10.1002/ps.8016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Temperature is a primary factor that determines the eco-geographical distribution and population development of invasive insects. Temperature stress leads to various negative effects, including excess reactive oxygen species (ROS), and catalase (CAT) is a key enzyme against ROS in the antioxidant pathway. The whitefly Bemisia tabaci MED is a typical invasive pest that causes damage worldwide. Our previous studies have shown that CAT promotes whitefly adaptation to high temperature by eliminating ROS. However, the mechanism underlying the low-temperature adaptation of whiteflies is still unknown. RESULTS In this study, we investigated the role of CAT in the low-temperature tolerance of B. tabaci MED by analyzing its survival rate, reproduction, and ROS levels at 25 °C (as a control, suitable temperature), 20 °C (moderately decreased temperature), and 4 °C (severely decreased temperature). Silencing of BtCAT1, BtCAT2, or BtCAT3 reduced the viability of whiteflies under a short-term severely decreased temperature (4 °C), which manifested as decreases in survival and fecundity accompanied by significant increases in ROS levels. Moreover, even at a moderately decreased temperature (20 °C), silencing of BtCAT1 led to high ROS levels and low survival rates in adults. CONCLUSION Silencing of BtCATs significantly increased the sensitivity of B. tabaci MED to low temperatures. BtCAT1 is likely more essential than other BtCATs for low-temperature tolerance in whiteflies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Ning
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
3
|
Liang P, Ning J, Wang W, Zhu P, Gui L, Xie W, Zhang Y. Catalase promotes whitefly adaptation to high temperature by eliminating reactive oxygen species. INSECT SCIENCE 2023; 30:1293-1308. [PMID: 36478361 DOI: 10.1111/1744-7917.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Thermal stress usually leads to excessive production of reactive oxygen species (ROS) in all aerobic organisms. Catalases (CAT) are the key antioxidant enzymes, which act as the first line of defense against ROS in the antioxidant pathway. The highly invasive and widely distributed whitefly Bemisia tabaci MED damages plants by feeding as well as by transmitting many plant viruses. Previous studies have shown that strong adaptability to high temperature helps explain the spread of MED around the world. However, the mechanism underlying high temperature adaptation of this pest is not well understood. In this study, 6 CAT genes were identified from the MED genome and transcriptome dataset, among which BtCAT1, BtCAT2, and BtCAT3 were found to be highly expressed in adults. The expression of BtCAT1, BtCAT2, or BtCAT3 increased with induction temperature and induction time. The MED was exposed with mean high temperature (30 °C or 35 °C) and a short-term extremely high temperature (39 °C or 41 °C) after the silencing of BtCAT1, BtCAT2, or BtCAT3 to significantly increased ROS levels by at least 0.5 times and significantly decreased survival rate and fecundity of MED adults. The ROS level in the treated specimens gradually returned to a normal level after 24 h at 25 °C, but the survival rate still declined significantly. Taken together, our results demonstrate that CAT could help B. tabaci adapt to long-term mean high temperatures and short-term extremely high temperatures by eliminating excessive ROS.
Collapse
Affiliation(s)
- Peng Liang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Ning
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlu Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pu Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, China
| | - Lianyou Gui
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Insect, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zhao M, Wang T, Sun T, Yu X, Tian R, Zhang WH. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC PLANT BIOLOGY 2020; 20:99. [PMID: 32138663 PMCID: PMC7059299 DOI: 10.1186/s12870-020-2301-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the regulation of plant responses to environmental stress by acting as essential regulators of gene expression. However, whether and how lncRNAs are involved in cold acclimation-dependent freezing tolerance in plants remains largely unknown. Medicago truncatula is a prominent model for studies of legume genomics, and distinguished by its cold-acclimation characteristics. To determine the roles of lncRNAs in plant cold stress response, we conducted genome-wide high-throughput sequencing in the legume model plant M. truncatula. RESULTS RNA-seq data were generated from twelve samples for the four treatments, i.e., non-cold treated leaves and roots, cold-treated leaves and roots of M. truncatula Jemalong A17 seedlings. A total of 1204 million raw reads were generated. Of them, 1150 million filtered reads after quality control (QC) were subjected to downstream analysis. A large number of 24,368 unique lncRNAs were identified from the twelve samples. Among these lncRNAs, 983 and 1288 were responsive to cold treatment in the leaves and roots, respectively. We further found that the intronic-lncRNAs were most sensitive to the cold treatment. The cold-responsive lncRNAs were unevenly distributed across the eight chromosomes in M. truncatula seedlings with obvious preferences for locations. Further analyses revealed that the cold-responsive lncRNAs differed between leaves and roots. The putative target genes of the lncRNAs were predicted to mainly involve the processes of protein translation, transport, metabolism and nucleic acid transcription. Furthermore, the networks of a tandem array of CBF/DREB1 genes that were reported to be located in a major freezing tolerance QTL region on chromosome 6 and their related lncRNAs were dissected based on their gene expression and chromosome location. CONCLUSIONS We identified a comprehensive set of lncRNAs that were responsive to cold treatment in M. truncatula seedlings, and discovered tissue-specific cold-responsive lncRNAs in leaves and roots. We further dissected potential regulatory networks of CBF Intergenic RNA (MtCIR1) and MtCBFs that play critical roles in response and adaptation of M. truncatula to cold stress.
Collapse
Affiliation(s)
- Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tianyang Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoxi Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Inner Mongolia Research Center for Prataculture, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|